New Developments in Climate Change, Air Pollution, Pollen Allergy, and Interaction with SARS-CoV-2
Abstract
:1. Introduction
2. Climate Change, Why and How?
3. Pollen Allergy
4. Impact of Climate Change on Allergenic Plants
5. Effect of Climate Change on Chemical Air Pollution
6. Respiratory Allergies, Urban Environment, and Climate Change
7. Thunderstorm Asthma
8. Pollen Allergy and Occupational Health
9. Climate Change and Its Impact on Infectious Respiratory Disease (SARS-CoV-2)
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Amato, G.; Akdis, C. Global warming, climate change, air pollution and allergies. Allergy 2020, 75, 2158–2160. [Google Scholar] [CrossRef] [PubMed]
- Beggs, P.G.; Bambrick, H.J. Is the global rise of asthma an early impact of anthropogenic climate change? Environ. Health Perspect. 2005, 113, 915–919. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Holgate, S.T.; Pawankar, R.; Ledford, D.K.; Cecchi, L.; Al-Ahmad, M.; Al-Enezi, F.; Al-Muhsen, S.; Ansotegui, I.; Baena-Cagnani, C.E.; et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 2015, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Pawankar, R.; Vitale, C.; Lanza, M.; Molino, A.; Stanziola, A.; Sanduzzi, A.; Vatrella, A.; D’Amato, M. Climate change and air pollution: Effects on respiratory allergy. Allergy Asthma Immunol. Res. 2016, 8, 391–395. [Google Scholar] [CrossRef]
- D’Amato, G.; Vitale, C.; Lanza, M.; Molino, A.; D’Amato, M. Climate change, air pollution, and allergic respiratory diseases: An update. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 434–440. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Zwiers, F.W.; Braconnot, P.; Gillett, N.P.; Luo, Y.; Marengo Orsini, J.A.; Nicholls, N.; Penner, J.E.; Stott, P.A. Understanding and attributing climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Californian Department of Forestry and Fire Protection. Available online: http://www.fire.ca.gov/index.php (accessed on 17 April 2023).
- Gent, J.F.; Triche, E.W.; Holford, T.R.; Belanger, K.; Bracken, M.B.; Beckett, W.S.; Leaderer, B.P. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA 2003, 290, 1859–1867. [Google Scholar] [CrossRef]
- McDonnell, W.F.; Abbey, D.E.; Nishino, N.; Lebowitz, M.D. Long-term ambient ozone concentration and the incidence of asthma in nonsmoking adults: The AHSMOG Study. Environ. Res. 1999, 80, 110–121. [Google Scholar] [CrossRef]
- Singer, B.D.; Ziska, L.H.; Frenz, D.A.; Gebhard, D.E.; Straka, J.G. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct. Plant Biol. 2005, 32, 667–670. [Google Scholar] [CrossRef]
- Rogers, H.H.; Runion, G.B.; Krupa, S.V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 1994, 83, 155–189. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Overview of Greenhouse Gases. Available online: http://learning-cleanairasia.org/lms/library/ga3/99-Overview-of-Greenhouse-Gases.pdf (accessed on 17 August 2019).
- National Oceanic and Atmospheric Administration. Carbon Dioxide Now More than 50% Higher than Pre-Industrial Levels. Available online: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels (accessed on 17 April 2023).
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Taylor, P.E.; Flagan, R.; Valenta, R.; Glovsky, M.M. Release of allergens in respirable aerosols: A link between grass pollen and asthma. J. Allergy Clin. Immunol. 2002, 109, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.E.; Flagan, R.C.; Miguel, A.G.; Valenta, R.; Glovsky, M.M. Birch pollen rupture and the release of aerosols of respirable allergens. Clin. Exp. Allergy 2004, 34, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Siriwattanakul, U.; Piboonpocanun, S.; Traiperm, P.; Pichakam, A.; Songnuan, W. Amaranthus species around Bangkok, Thailand and the release of allergenic proteins from their pollens. Asian Pac. J. Allergy Immunol. 2015, 33, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.A.; O’Leary, S.; Wu, S.; Gleddie, S.; Eudes, F.; Laroche, A.; Robert, L.S. A molecular and proteomic investigation of proteins rapidly released from triticale pollen upon hydration. Plant Mol. Biol. 2012, 79, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Spieksma, M.; Nikkels, A.H. Similarity in seasonal appearance between atmospheric birch-pollen grains and allergen in paucimicronic, size-fractionated ambient aerosol. Allergy 1999, 54, 235–241. [Google Scholar] [CrossRef]
- Ziska, L.H.; Bunce, J.A.; Goins, E.W. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 2004, 139, 454–458. [Google Scholar] [CrossRef]
- Wayne, P.; Foster, S.; Connolly, J.; Bazzaz, F.; Epstein, P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann. Allergy Asthma Immunol. 2002, 88, 279–282. [Google Scholar] [CrossRef]
- Cecchi, L.; Morabito, M.; Domeneghetti, M.P.; Crisci, A.; Onorari, M.; Orlandini, S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann. Allergy Asthma Immunol. 2006, 96, 86–91. [Google Scholar] [CrossRef]
- Davies, J.M. Grass pollen allergens globally: The contribution of subtropical grasses to burden of allergic respiratory diseases. Clin. Exp. Allergy 2014, 44, 790–801. [Google Scholar] [CrossRef]
- Osborne, N.J.; Alcock, I.; Wheeler, B.W.; Hajat, S.; Sarran, C.; Clewlow, Y.; McInnes, R.N.; Hemming, D.; White, M.; Vardoulakis, S.; et al. Pollen exposure and hospitalization due to asthma exacerbations: Daily time series in a European city. Int. J. Biometeorol. 2017, 61, 1837–1848. [Google Scholar] [CrossRef]
- Jaeger, S. Exposure to grass pollen in Europe. Clin. Exp. Allergy Rev. 2008, 8, 2–6. [Google Scholar] [CrossRef]
- Kleine-Tebbe, J.; Davies, J. Grass pollen allergens. In Global Atlas of Allergy; Akdis, C.A., Agache, I., Eds.; European Academy of Allergy and Clinical Immunology: Zürich, Switzerland, 2014; pp. 22–26. [Google Scholar]
- Davies, J.; Timbrell, V.; Reibelt, L.; Simmonds, C.; Solley, G.; Smith, W.B.; Mclean-Tooke, A.; Nunen, S.; Smith, P.; Upham, J.; et al. Regional variation in allergic sensitivity to subtropical and temperate grass pollen allergens; outcomes of the multicenter cross-sectional Grass Pollen Allergy Survey (GPAS). Eur. J. Immunol. 2016, 46, 841. [Google Scholar]
- Ramon, G.D.; Viego, V.; Arango, N.; Long, M.A.; Kahn, A.; Barrionuevo, L.B. Allergy to Cynodon dactylon (Cyn d) pollen in seasonal rhinitis, comparison between skin tests and component-resolved diagnosis (CRD) in Bahía Blanca (Argentina). J. Allergy Clin. Immunol. 2018, 141, AB129. [Google Scholar] [CrossRef]
- Rogers, C.A.; Wayne, P.M.; Macklin, E.A.; Muilenberg, M.L.; Wagner, C.J.; Epstein, P.R.; Bazzaz, F.A. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ. Health Perspect. 2006, 114, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filguerias, T.S.; Davis, J.I.; Morrone, O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol. 2015, 53, 117–137. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Teisher, J.K.; Clark, L.G.; Barberá, P.; Gillespie, L.J.; Zuloaga, F.O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 2017, 55, 259–290. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- García-Mozo, H.; Oteros, J.A.; Galán, C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci. Total Environ. 2016, 548–549, 221–228. [Google Scholar] [CrossRef]
- Raiten, D.J.; Allen, L.H.; Slavin, J.L.; Mitloehner, F.M.; Thoma, G.J.; Haggerty, P.A.; Finley, J.W. Understanding the Intersection of Climate/Environmental Change, Health, Agriculture, and Improved Nutrition: A Case Study on Micronutrient Nutrition and Animal Source Foods. Curr. Dev. Nutr. 2020, 4, nzaa087. [Google Scholar] [CrossRef]
- D’Amato, G.; Annesi-Maesano, I.; Urrutia-Pereira, M.; Del Giacco, S.; Rosario Filho, N.A.; Chong-Neto, H.J.; Solé, D.; Ansotegui, I.; Cecchi, L.; Sanduzzi Zamparelli, A.; et al. Thunderstorm allergy and asthma: State of the art. Multidiscip. Respir. Med. 2021, 16, 806. [Google Scholar] [CrossRef]
- Haahtela, T. A biodiversity hypothesis. Allergy 2019, 74, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Haahtela, T.; Holgate, S.; Pawankar, R.; Akdis, C.A.; Benjaponpitak, S.; Caraballo, L.; Demain, J.; Portnoy, J.; von Hertzen, L. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 2013, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- González Roldán, N.; Engel, R.; Düpow, S.; Jakob, K.; Koops, F.; Orinska, Z.; Vigor, C.; Oger, C.; Galano, J.M.; Durand, T.; et al. Lipid Mediators From Timothy Grass Pollen Contribute to the Effector Phase of Allergy and Prime Dendritic Cells for Glycolipid Presentation. Front. Immunol. 2019, 10, 974. [Google Scholar] [CrossRef] [PubMed]
- Traidl-Hoffmann, C.; Kasche, A.; Thilo, J.; Huger, M.; Plötz, S.; Feussner, I.; Ring, J.; Behrendt, H. Lipid mediators from pollen act as chemoattractants and activators of polymorphonuclear granulocytes. J. Allergy Clin. Immunol. 2002, 109, 831–838. [Google Scholar] [CrossRef]
- McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.; Peters, J.M. Asthma in exercising children exposed to ozone: A cohort study. Lancet 2002, 359, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Gauderman, W.J.; Berhane, K.; McConnell, R.; Avol, E.; Peters, J.M.; Gilliland, F.D. Relationship between air pollution, lung function and asthma in adolescents. Thorax 2007, 62, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Kreit, J.W.; Gross, K.B.; Moore, T.B.; Lorenzen, T.J.; D’Arcy, J.; Eschenbacher, W.L. Ozone-induced changes in pulmonary function and bronchial responsiveness in asthmatics. J. Appl. Physiol. 1989, 66, 217–222. [Google Scholar] [CrossRef]
- Scannell, C.; Chen, L.L.; Aris, R.M.; Tager, I.; Christian, D.; Ferrando, R.; Welch, B.; Kelly, T.; Balmes, J.R. Greater ozone-induced inflammatory responses in subjects with asthma. Am. J. Respir. Crit. Care Med. 1996, 154, 24–29. [Google Scholar] [CrossRef]
- Bayram, H.; Sapsford, R.J.; Abdelaziz, M.M.; Khair, O.A. Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cells on nonatopic, nonasthmatic subjects and atopic asthmatic patients in vitro. J. Allergy Clin. Immunol. 2001, 107, 287–294. [Google Scholar] [CrossRef]
- Diaz Sanchez, D.; Tsien, A.; Fleming, J.; Saxon, A. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed specific IgE and skews cytokine production to a T helper cell 2-type pattern. J. Immunol. 1997, 158, 2406–2413. [Google Scholar] [CrossRef]
- D’Amato, G.; Liccardi, G.; D’Amato, M.; Holgate, S.T. Environmental risk factors and allergic bronchial asthma. Clin. Exp. Allergy 2005, 35, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Cecchi, L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin. Exp. Allergy 2008, 38, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Burney, P.; Malmberg, E.; Chinn, S.; Jarvis, D.; Luczynska, C.; Lai, E. The distribution of total and specific serum IgE in the European community respiratory health survey. J. Allergy Clin. Immunol. 1997, 99, 314–322. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Cecchi, L.; Annesi-Maesano, I. A trans-disciplinary overview of case reports of thunderstorm-related asthma outbreaks and relapse. Eur. Respir. Rev. 2012, 21, 82–87. [Google Scholar] [CrossRef]
- Traidl-Hoffmann, C.; Kasche, A.; Menzel, A.; Jakob, T.; Thiel, M.; Ring, J.; Behrendt, H. Impact of pollen on human health: More than allergen carriers? Int. Arch. Allergy Immunol. 2003, 131, 1–13. [Google Scholar] [CrossRef]
- Bernard, S.M.; Samet, J.M.; Grambsch, A.; Ebi, K.L.; Romieu, I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 2001, 109, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Confalonieri, U.; Menne, B.; Akhtar, R.; Ebi, K.L.; Hauengue, M.; Kovats, R.S.; Revich, B.; Woodward, A. Human health. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group. II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 391–431. [Google Scholar]
- USEPA. Motor Vehicles and the 1990 Clean Air Act. Fact Sheet OMS-11. EPA 400-F-92-013. 1994. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/900L1M00.PDF?Dockey=900L1M00.PDF (accessed on 17 April 2023).
- USEPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants; EPA/600/P-93/004a-cF; Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment: Washington, DC, USA, 1996. [Google Scholar]
- Zhu, C.; Farah, J.; Choël, M.; Gosselin, S.; Baroudi, M.; Petitprez, D.; Visez, N. Uptake of ozone and modification of lipids in Betula Pendula pollen. Environ. Pollut. 2018, 242 Pt A, 880–886. [Google Scholar] [CrossRef]
- Andrew, E.; Nehme, Z.; Bernard, S.; Abramson, M.J.; Newbigin, E.; Piper, B.; Dunlop, J.; Smith, K. Stormy weather: A retrospective analysis of demand for emergency medical services during epidemic thunderstorm asthma. BMJ 2017, 359, j5636. [Google Scholar] [CrossRef]
- Davies, J.; Erbas, B.; Simunovic, M.; Al Kouba, J.; Milic, A. Final Report: Literature Review on Thunderstorm Asthma and Its Implications for Public Health Advice; Contracted by: Department of Health and Human Services, Victorian State Government. 19 May 2017; Queensland University of Technology: Brisbane, Australia, 2017. [Google Scholar]
- Lindstrom, S.J.; Silver, J.D.; Sutherland, M.F. Thunderstorm asthma outbreak of november 2016: A natural disaster requiring planning. Med. J. Aust. 2017, 207, 235–237. [Google Scholar] [CrossRef]
- Ganseman, E.; Gouwy, M.; Bullens, D.M.A.; Breynaert, C.; Schrijvers, R.; Proost, P. Reported cases and diagnostics of occupational insect allergy: A systematic review. Int. J. Mol. Sci. 2022, 24, 86. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Wirz, A.; Zennaro, D.; Massari, S.; Melis, P.; Peri, V.M.; Rafaiani, C.; Riviello, M.C.; Mari, A. Biological occupational allergy: Protein microarray for the study of laboratory animal allergy (LAA). AIMS Public. Health 2018, 5, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.; Gill, N.; Ramanathan, M., Jr.; Patadia, M. Unified airway disease: Environmental factors. Otolaryngol. Clin. N. Am. 2023, 56, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Ravindra, K.; Mor, S. Occupational exposure to airborne pollen and associated health risks among gardeners: A perception-based survey. Environ. Sci. Pollut. Res. Int. 2022, 29, 70084–70098. [Google Scholar] [CrossRef] [PubMed]
- Tsui, H.C.; Ronsmans, S.; Hoet, P.H.M.; Nemery, B.; Vanoirbeek, J.A.J. Occupational asthma caused by low-molecular-weight chemicals associated with contact dermatitis: A retrospective study. J. Allergy Clin. Immunol. Pract. 2022, 10, 2346–2354.e4. [Google Scholar] [CrossRef]
- Kurt, O.K.; Basaran, N. Occupational exposure to metals and solvents: Allergy and airway diseases. Curr. Allergy Asthma Rep. 2020, 20, 38. [Google Scholar] [CrossRef]
- Rocholl, M.; Weinert, P.; Bielfeldt, S.; Laing, S.; Wilhelm, K.P.; Ulrich, C.; John, S.M. New methods for assessing secondary performance attributes of sunscreens suitable for professional outdoor work. J. Occup. Med. Toxicol. 2021, 16, 25. [Google Scholar] [CrossRef]
- World Allergy Organization. White Book on Allergy: Update 2013; Pawankar, R., Canonica, G.W., Holgate, S.T., Lockey, R.F., Blaiss, M.S., Eds.; World Allergy Organization: Milwaukee, WI, USA, 2013; ISBN 10:061592915X. [Google Scholar]
- European Academy of Allergy and Clinical Immunology. EAACI White Paper; Agache, I., Akdis, C.A., Chivato, T., Hellings, P., Hoffman-Sommergruber, K., Jutel, M., Lauerma, A., Papadopoulos, N., Schmid-Grendelmeier, P., Schmidt-Weber, C., Eds.; European Academy of Allergy and Clinical Immunology: Zurich, Switzerland, 2018. [Google Scholar]
- D’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M.; et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020, 75, 2219–2228. [Google Scholar] [CrossRef]
- Applebaum, K.M.; Graham, J.; Gray, G.M.; LaPuma, P.; McCormick, S.A.; Northcross, A.; Perry, M.J. An overview of occupational risks from climate change. Curr. Environ. Health Rep. 2016, 3, 13–22. [Google Scholar] [CrossRef]
- Rorie, A.; Poole, J.A. The Role of Extreme Weather and Climate-Related Events on Asthma Outcomes. Immunol. Allergy Clin. N. Am. 2021, 41, 73–84. [Google Scholar] [CrossRef]
- Sheehan, W.J.; Gaffin, J.M.; Peden, D.B.; Bush, R.K.; Phipatanakul, W. Advances in environmental and occupational disorders in 2016. J. Allergy Clin. Immunol. 2017, 140, 1683–1692. [Google Scholar] [CrossRef]
- Peden, D.; Reed, C.E. Environmental and occupational allergies. J. Allergy Clin. Immunol. 2010, 125, S150–S160. [Google Scholar] [CrossRef] [PubMed]
- D’Ovidio, M.C.; Annesi-Maesano, I.; D’Amato, G.; Cecchi, L. Climate change and occupational allergies: An overview on biological pollution, exposure and prevention. Ann. Ist. Super. Sanità 2016, 52, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, M.; Petersen, A.; Baur, X. Maize pollen is an important allergen in occupationally exposed workers. J. Occup. Med. Toxicol. 2011, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Tizek, L.; Redlinger, E.; Ring, J.; Eyerich, K.; Biedermann, T.; Zink, A. Urban vs. rural—Prevalence of self-reported allergies in various occupational and regional settings. World Allergy Organ. J. 2022, 15, 100625. [Google Scholar] [CrossRef]
- Han, J.; Kim, Y.; Lee, S.; Lee, S.J. Association between the prevalence of allergic reactions to skin prick tests and workplace types among agricultural workers in South Korea. Ann. Occup. Environ. Med. 2020, 32, e36. [Google Scholar] [CrossRef]
- D’Ovidio, M.C.; Di Renzi, S.; Capone, P.; Pelliccioni, A. Pollen and fungal spores evaluation in relation to occupants and microclimate in indoor workplaces. Sustainability 2021, 13, 3154. [Google Scholar] [CrossRef]
- Pelliccioni, A.; Ciardini, V.; Lancia, A.; Di Renzi, S.; Brighetti, M.A.; Travaglini, A.; Capone, P.; D’Ovidio, M.C. Intercomparison of indoor and outdoor pollen concentrations in rural and suburban research workplaces. Sustainability 2021, 13, 8776. [Google Scholar] [CrossRef]
- Lancia, A.; Gioffrè, A.; Magri, D.; D’Ovidio, M.C. Aerobiological monitoring in an indoor occupational setting using a real-time bioaerosol sampler. Atmosphere 2023, 14, 118. [Google Scholar] [CrossRef]
- Lancia, A.; Capone, P.; Vonesch, N.; Pelliccioni, A.; Grandi, C.; Magri, D.; D’Ovidio, M.C. Research progress on aerobiology in the last 30 years: A focus on methodology and occupational health. Sustainability 2021, 13, 4337. [Google Scholar] [CrossRef]
- Akdis, C.A.; Akdis, M.; Boyd, S.D.; Sampath, V.; Galli, S.J.; Nadeau, K.C. Allergy: Mechanistic insights into new methods of prevention and therapy. Sci. Transl. Med. 2023, 15, eadd2563. [Google Scholar] [CrossRef]
- Dbouk, T.; Visez, N.; Ali, S.; Shahrour, I.; Drikakis, D. Risk assessment of pollen allergy in urban environments. Sci. Rep. 2022, 12, 21076. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Smargiassi, A.; Kneeshaw, D.; Dupras, J.; Zinszer, K.; Paquette, A. Strong variations in urban allergenicity riskscapes due to poor knowledge of tree pollen allergenic potential. Sci. Rep. 2021, 11, 10196. [Google Scholar] [CrossRef] [PubMed]
- Diem, L.; Neuherz, B.; Rohrhofer, J.; Koidl, L.; Asero, R.; Brockow, K.; Diaz Perales, A.; Faber, M.; Gebhardt, J.; Torres, M.J.; et al. Real-life evaluation of molecular multiplex IgE test methods in the diagnosis of pollen associated food allergy. Allergy 2022, 77, 3028–3040. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A review of the effects of major atmospheric pollutants on pollen grains, pollen content, and allergenicity. Sci. World J. 2015, 2015, 940243. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines. In Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 17 April 2023).
- Chu, B.; Chen, R.; Liu, Q.; Wang, H. Effects of high temperature on COVID-19 deaths in U.S. counties. Geohealth 2023, 7, e2022GH000705. [Google Scholar] [CrossRef] [PubMed]
- Burnham, J.P.; Betz, F.; Lautz, R.; Mousavi, E.; Martinello, R.A.; McGain, F.; Sherman, J.D. Air exchanges, climate change, and severe acute respiratory coronavirus virus 2 (SARS-CoV-2): Results from a survey of the Society of Healthcare Epidemiology of America Research Network (SRN). Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e40. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lv, H.; Yan, H.; Zhu, C.; Ai, L.; Li, W.; Yi, J.; Zhang, L.; Tan, W. Meteorological change and hemorrhagic fever with renal syndrome epidemic in China, 2004-2018. Sci. Rep. 2022, 12, 20037. [Google Scholar] [CrossRef]
- Ashique, S.; Sandhu, N.K.; Das, S.; Haque, S.N.; Koley, K. Global comprehensive outlook of hantavirus contagion on humans: A review. Infect. Disord. Drug. Targets 2022, 22, e050122199975. [Google Scholar] [CrossRef]
- Lang, R.; Stokes, W.; Lemaire, J.; Johnson, A.; Conly, J. A case report of Coccidioides posadasii meningoencephalitis in an immunocompetent host. BMC Infect. Dis. 2019, 19, 722. [Google Scholar] [CrossRef]
- Matlock, M.; Hopfer, S.; Ogunseitan, O.A. Communicating risk for a climate-sensitive disease: A case study of valley fever in central California. Int. J. Environ. Res. Public. Health 2019, 16, 3254. [Google Scholar] [CrossRef]
- Maestrale, C.; Masia, M.; Pintus, D.; Lollai, S.; Kozel, T.R.; Gates-Hollingsworth, M.A.; Cancedda, M.G.; Cabras, P.; Pirino, S.; D’Ascenzo, V.; et al. Genetic and pathological characteristics of Cryptococcus gattii and Cryptococcus neoformans var. neoformans from meningoencephalitis in autochthonous goats and mouflons, Sardinia, Italy. Vet. Microbiol. 2015, 177, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Devnath, P.; Karah, N.; Graham, J.P.; Rose, E.S.; Asaduzzaman, M. Evidence of antimicrobial resistance in bats and its planetary health impact for surveillance of zoonotic spillover events: A scoping review. Int. J. Environ. Res. Public. Health 2022, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sweeney, M.I.; Xet-Mull, A.M.; Storm, J.; Mithani, S.K.; Jones Jr, D.B.; Miles, J.J.; Tobin, D.M.; Stout, J.E. A Cluster of Nontuberculous Mycobacterial Tenosynovitis Following Hurricane Relief Efforts. Clin. Infect. Dis. 2021, 72, e931–e937. [Google Scholar] [CrossRef]
- Katsuda, R.; Yoshida, S.; Tsuyuguchi, K.; Kawamura, T. A case report of hot tub lung: Identical strains of Mycobacterium avium from the patient and the bathroom air. Int. J. Tuberc. Lung Dis. 2018, 22, 350–352. [Google Scholar] [CrossRef]
- Ali, N.; Islam, F. The effects of air pollution on COVID-19 infection and mortality—A review on recent evidence. Front. Public. Health 2020, 8, 580057. [Google Scholar] [CrossRef]
- Paital, B.; Agrawal, P.K. Air pollution by NO2 and PM2.5 explains COVID-19 infection severity by overexpression of angiotensin-converting enzyme 2 in respiratory cells: A review. Environ. Chem. Lett. 2021, 19, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Damialis, A.; Gilles, S.; Sofiev, M.; Sofieva, V.; Kolek, F.; Bayr, D.; Plaza, M.P.; Leier-Wirtz, V.; Kaschuba, S.; Ziska, L.H.; et al. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc. Natl. Acad. Sci. USA 2021, 118, e2019034118. [Google Scholar] [CrossRef]
- Gilles, S.; Blume, C.; Wimmer, M.; Damialis, A.; Meulenbroek, L.; Gökkaya, M.; Bergougnan, C.; Eisenbart, S.; Sundell, N.; Lindh, M.; et al. Pollen exposure weakens innate defense against respiratory viruses. Allergy 2020, 75, 576–587. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.R.; Camina, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; D’Amato, M.; Annesi-Maesano, I. Climate change and respiratory diseases. Eur. Respir. Rev. 2014, 23, 161–169. [Google Scholar] [CrossRef]
- De Sario, M.; Katsouyanni, K.; Michelozzi, P. Climate change, extreme weather events, air pollution and respiratory health in Europe. Eur. Respir. J. 2013, 42, 826–843. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Ayres, J.G.; Forsberg, B.; Annesi-Maesano, I.; Dey, R.; Ebi, K.L.; Helms, P.J.; Medina-Ramon, M.; Windt, M.; Forastiere, F.; on behalf of the Environment and Health Committee of the European Respiratory Society. Climate change and respiratory disease: European Respiratory Society position statement. Eur. Respir. J. 2009, 34, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Nassikas, N.J.; Spangler, K.; Wellenius, G.A. Asthma exacerbations attributable to ozone air pollution in New England. R. I. Med. J. 2013, 104, 20–23. [Google Scholar]
- Santos, U.P.; Arbex, M.A.; Braga, A.L.F.; Futoshi Mizutani, R.; Delfini Cançado, J.E.; Terra-Filho, M.; Chatkin, J.M. Environmental air pollution: Respiratory effects. J. Bras. Pneumol. 2021, 47, e20200267. [Google Scholar] [CrossRef]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 2023. [Google Scholar] [CrossRef]
- Singh, A.B.; Kumar, P. Climate change and allergic diseases: An overview. Front. Allergy 2022, 3, 964987. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, Z.; Jiang, F.; Li, S.; Liu, S.; Wu, M.; Yan, C.; Tan, J.; Yu, G.; Hu, Y.; et al. Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. Sci. Total Environ. 2020, 706, 135975. [Google Scholar] [CrossRef]
- Poole, J.A.; Barnes, C.S.; Demain, J.G.; Bernstein, J.A.; Padukudru, M.A.; Sheehan, W.J.; Fogelbach, G.G.; Wedner, J.; Codina, R.; Levetin, E.; et al. Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee. J. Allergy Clin. Immunol. 2019, 143, 1702–1710. [Google Scholar] [CrossRef]
- Rorie, A. Climate change factors and the aerobiology effect. Immunol. Allergy Clin. N. Am. 2022, 42, 771–786. [Google Scholar] [CrossRef]
- Oh, J.W. Pollen allergy in a changing planetary environment. Allergy Asthma Immunol. Res. 2022, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Di Cicco, M.E.; Ferrante, G.; Amato, D.; Capizzi, A.; De Pieri, C.; Ferraro, V.A.; Furno, M.; Tranchino, V.; La Grutta, S. Climate change and childhood respiratory health: A call to action for paediatricians. Int. J. Environ. Res. Public. Health 2020, 17, 5344. [Google Scholar] [CrossRef] [PubMed]
- Goshua, A.; Gomez, J.; Erny, B.; Burke, M.; Luby, S.; Sokolow, S.; LaBeaud, A.D.; Auerbach, P.; Gisondi, M.A.; Nadeau, K. Addressing climate change and its effects on human health: A call to action for medical schools. Acad. Med. 2021, 96, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Dupraz, J.; Burnand, B. Role of health professionals regarding the impact of climate change on health-an exploratory review. Int. J. Environ. Res. Public. Health 2021, 18, 3222. [Google Scholar] [CrossRef] [PubMed]
- Liu, I.; Rabin, B.; Manivannan, M.; Laney, E.; Philipsborn, R. Evaluating strengths and opportunities for a co-created climate change curriculum: Medical student perspectives. Front. Public. Health 2022, 10, 1021125. [Google Scholar] [CrossRef]
- McGushin, A.; de Barros, E.F.; Floss, M.; Mohammad, Y.; Ndikum, A.E.; Ngendahayo, C.; Oduor, P.A.; Sultana, S.; Wong, R.; Abelsohn, A. The World Organization of family doctors air health train the trainer program: Lessons learned and implications for planetary health education. Lancet Planet. Health 2023, 7, e55–e63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, G.; Annesi-Maesano, I.; Biagioni, B.; Lancia, A.; Cecchi, L.; D’Ovidio, M.C.; D’Amato, M. New Developments in Climate Change, Air Pollution, Pollen Allergy, and Interaction with SARS-CoV-2. Atmosphere 2023, 14, 848. https://doi.org/10.3390/atmos14050848
D’Amato G, Annesi-Maesano I, Biagioni B, Lancia A, Cecchi L, D’Ovidio MC, D’Amato M. New Developments in Climate Change, Air Pollution, Pollen Allergy, and Interaction with SARS-CoV-2. Atmosphere. 2023; 14(5):848. https://doi.org/10.3390/atmos14050848
Chicago/Turabian StyleD’Amato, Gennaro, Isabella Annesi-Maesano, Benedetta Biagioni, Andrea Lancia, Lorenzo Cecchi, Maria Concetta D’Ovidio, and Maria D’Amato. 2023. "New Developments in Climate Change, Air Pollution, Pollen Allergy, and Interaction with SARS-CoV-2" Atmosphere 14, no. 5: 848. https://doi.org/10.3390/atmos14050848
APA StyleD’Amato, G., Annesi-Maesano, I., Biagioni, B., Lancia, A., Cecchi, L., D’Ovidio, M. C., & D’Amato, M. (2023). New Developments in Climate Change, Air Pollution, Pollen Allergy, and Interaction with SARS-CoV-2. Atmosphere, 14(5), 848. https://doi.org/10.3390/atmos14050848