Climatological Study of Air Pollutant Emissions in Saudi Arabia
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Acquired Emissions Data
3.2. Methodology
3.2.1. Homogeneity Test
3.2.2. Coefficient of Variation (COV)
3.2.3. Trend Analysis
3.2.4. Cumulative Annual Mean
3.2.5. Abrupt Change
4. Results and Discussion
4.1. Emissions Data Homogeneity
4.2. Pollutant Emissions Analysis
4.2.1. The Spatial Distribution of Pollutant Emissions and Hotspots
4.2.2. Contribution of Different Sectors to Total Pollutant Emissions
4.2.3. The Behavior of Annual Pollutant Emissions
4.2.4. Annual Cycle Patterns of Pollutant Emissions
4.3. Pollutant Emission Variability
4.3.1. Coefficient of Variation (COV)
4.3.2. Trend Analysis
4.3.3. Cumulative Annual Mean
4.3.4. Abrupt Change Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO, World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. Available online: https://apps.who.int/iris/handle/10665/186463 (accessed on 1 January 2023).
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 1 January 2023).
- Ghude, S.D.; Chate, D.M.; Jena, C.; Beig, G.; Kumar, R.; Barth, M.C.; Pfister, G.G.; Fadnavis, S.; Pithani, P. Premature mortality in India due to PM2.5 and ozone exposure. Geophys. Res. Lett. 2016, 43, 4650–4658. [Google Scholar] [CrossRef]
- Molina, L.T.; Zhu, T.; Wan, W.; Gurjar, B.R. Impacts of megacities on air quality: Challenges and opportunities. Oxf. Res. Encycl. Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Beig, G.; Chate, D.M.; Sahu, S.K.; Parkhi, N.S.; Srinivas, R.; Kausar, A.; Ghude, S.D.; Yadav, S.; Trimbake, H.K. System of Air Quality Forecasting and Research (SAFAR—India); GAW Report No. 217; World Meteorological Organization, Global Atmosphere Watch: Geneva, Switzerland, 2015; p. 51. [Google Scholar]
- Ramanathan, V. Climate change, air pollution, and health: Common sources, similar impacts, and common solutions. In Health of People, Health of Planet and Our Responsibility; Al-Delaimy, W., Ramanathan, V., Sorondo, M.S., Eds.; Springer Nature: Zurich, Switzerland, 2020; pp. 49–59. [Google Scholar]
- Saber, A.; Mohamed, H.; Morsy, M.; El-Hussainy, F.; Eid, M. Characteristics of the simulated pollutants and atmospheric conditions over Egypt. NRIAG J. Astron. Geophys. 2020, 9, 402–419. [Google Scholar] [CrossRef]
- Saber, A.; Abdallah, A.; Abdel, H.; Mohamed, B.; El-hussainy, F.M. Statistical study of the aerosols emission over Egypt. Al-Azhar Bull. Sci. 2017, 9, 63–80. [Google Scholar]
- Saber, A.; Abdel Basset, H.; Eid, M.M. Historical Study of Pollutants Emission Over Egypt Using ACCMIP Data. Al-Azhar Bull. Sci. 2020, 31, 1–9. Available online: https://absb.journals.ekb.eg/article_210378.html (accessed on 21 March 2022).
- Singh, P.; Yadav, D. Link between air pollution and global climate change. In Global Climate Change, 1st ed.; Singh, S., Singh, P., Rangabhashiyam, S., Srivastava, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 79–108. [Google Scholar]
- Hemming, W. Transport, Air Pollution and Climate Change: Two Sides of the Same Coin. Ramphal Inst. 2021, 2, 5. [Google Scholar] [CrossRef]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope III, C.A. Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.C.; Maciejcczyk, P.M. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2021, 3, 331–340. [Google Scholar] [CrossRef]
- Alam, K.; Trautmann, T.; Blaschke, T.; Subhan, F. Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens. Environ. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Farahat, A. Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arab. J. Geosci. 2016, 9, 196. [Google Scholar] [CrossRef]
- Farahat, A. Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann. Geophys. 2019, 37, 49–64. [Google Scholar] [CrossRef]
- Rahman, S.M.; Khondaker, A.N.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia-a challenging frontier. Renew. Sustain. Energy Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
- Lim, C.C.; Thurston, G.D.; Shamy, M.; Alghamdi, M.; Khoder, M.; Mohorjy, A.M.; Alkhalaf, A.K.; Brocato, J.; Chen, L.C.; Costa, M. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2018, 68, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Rushdi, A.I.; Al-Mutlaq, K.F.; Al-Otaibi, M.; El-Mubarak, A.H.; Simoneit, B.R. Air quality and elemental enrichment factors of aerosol particulate matter in Riyadh City, Saudi Arabia. Arab. J. Geosci. 2013, 6, 585–599. [Google Scholar] [CrossRef]
- Alharbi, B.; Shareef, M.M.; Husain, T. Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmos. Pollut. Res. 2015, 6, 88–98. [Google Scholar] [CrossRef]
- Al-Jeelani, H.A. Air quality assessment at Al-taneem area in the holy Makkah city, Saudi Arabia. Environ. Monit. Assess. 2009, 156, 211. [Google Scholar] [CrossRef]
- Othman, N.; Jafri, M.Z.M.; San, L.H. Estimating particulate matter concentration over arid region using satellite remote sensing: A case study in Makkah, Saudi Arabia. Mod. Appl. Sci. 2010, 4, 131. [Google Scholar] [CrossRef]
- Al-Jeelani, H.A. Diurnal and seasonal variations of surface ozone and its precursors in the atmosphere of Yanbu, Saudi Arabia. J. Environ. Protect. 2014, 5, 408. [Google Scholar] [CrossRef]
- Khalil, M.A.K.; Butenhoff, C.L.; Porter, W.C.; Almazroui, M.; Alkhalaf, A.; Al-Sahafi, M.S. Air quality in Yanbu, Saudi Arabia. J. Air Waste Manag. Assoc. 2016, 66, 341–355. [Google Scholar] [CrossRef]
- Porter, W.C.; Khalil, M.A.K.; Butenhoff, C.L.; Almazroui, M.; Al-Khalaf, A.K.; Al- Sahafi, M.S. Annual and weekly patterns of ozone and particulate matter in Jeddah, Saudi Arabia. J. Air Waste Manag. Assoc. 2014, 64, 817–826. [Google Scholar] [CrossRef]
- Rehan, M.; Munir, S. Analysis and Modeling of Air Pollution in Extreme Meteorological Conditions: A Case Study of Jeddah, the Kingdom of Saudi Arabia. Toxics 2022, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Ekholm, T.; Karvosenoja, N.; Tissari, J.; Sokka, L.; Kupiainen, K.; Sippula, O.; Savolahti, M.; Jokiniemi, J.; Savolainen, I. A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies. Energy Policy 2014, 74, 499–509. [Google Scholar] [CrossRef]
- Rawat, S.S.; Pant, S.; Kumar, A.; Ram, M.; Sharma, H.K.; Kumar, A. A State-of-the-Art Survey on Analytical Hierarchy Process Applications in Sustainable Development. Int. J. Math. Eng. Manag. Serv. 2022, 7, 883–917. [Google Scholar] [CrossRef]
- Kumar, A.; Garg, P.; Pant, S.; Ram, M.; Kumar, A. Multi-Criteria Decision-Making Techniques for Complex Decision Making Problems. Math. Eng. Sci. Aerosp. (MESA) 2022, 13, 791–803. [Google Scholar]
- Hamad, M.E.; Amer, H.M.; Farrag, M.A.; Osman, A.H.; Almajhdi, F.N. Naked DNA immunization with full-length attachment gene of human respiratory syncytial virus induces safe and protective immune response. Acta Virol. 2018, 62, 137–146. [Google Scholar] [CrossRef]
- Ibrahim, A.O.; Baqawy, G.A.; Mohamed, M.A.S. Tourism attraction sites: Boasting the booming tourism of Saudi Arabia. Int. J. Adv. Appl. Sci. 2021, 8, 1–11. [Google Scholar]
- Kumar, A.; Abdullah, M.M. An Overview of Origin, Morphology and Distribution of Desert Forms, Sabkhas and Playas of the Rub? Al Khali Desert of the Southern Arabian Peninsula. Earth Sci. India 2011, 4, 105–135. [Google Scholar]
- Stewart, S.A. Structural geology of the Rub’Al-Khali Basin, Saudi Arabia. Tectonics 2016, 35, 2417–2438. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Jones, P.D.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Clim. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Implications of climate change on water resources in Saudi Arabia. Arab. J. Sci. Eng. 2013, 38, 1959–1971. [Google Scholar] [CrossRef]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of climate change in Saudi Arabia: Implications on water resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- Granier, C.; Bessagnet, B.; Bond, T.; Angiola, A.D.; Van Der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; et al. Evolution of anthropogenic and biomass burning emission of air pollutants at global and regional scales during the 1980–2010 period. Clim. Chang. 2011, 109, 163–190. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Shindell, D.T.; Josse, B.; Young, P.J.; Cionni, I.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W.J.; Doherty, R.; et al. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev. 2013, 6, 179–206. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H.; Hofmery, W.L. Climatic Change; WMO Tech. Note 79. WMO No. 195. TP-100; WMO: Geneva, Switzerland, 1966; 79p. [Google Scholar]
- Pearson, E.S.; Hartley, H.O. Biometrika Tables for Statisticians, 2nd ed.; Cambridge University Pres: Cambridge, UK, 1958; Volume 1, 240p. [Google Scholar]
- Sneyers, R. On the Statistical Analysis of Series of Observations; Technical Note, No. 143; World Meteorological Organization (WMO): Geneva, Switzerland, 1990; 192p. [Google Scholar]
- Schonwiese, C.D.; Rapp, J. Climate Trend Atlas of Europe Based on Observations 1891–1990; Kluer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Hasanean, H.M. Variability of the North Atlantic Subtropical High and Associations with the Tropical Sea Surface Temperature. Int. J. Climatol. 2004, 24, 945–957. [Google Scholar] [CrossRef]
- Kendall, M.G. The Measurement of Rank Correlation. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1970; pp. 1–18. [Google Scholar]
- Al-Kallas, S.; Al-Mutairi, M.; Abdel Basset, H.; Abdeldym, A.; Morsy, M.; Badawy, A. Climatological Study of Ozone over Saudi Arabia. Atmosphere 2021, 12, 1275. [Google Scholar] [CrossRef]
- Mauget, S. Time series analysis based on running Mann-Whitney Z Statistics. J. Time Ser. Anal. 2011, 32, 47–53. [Google Scholar] [CrossRef]
- Saudi National Paper on Energy. Energy consumption in the Kingdom of Saudi Arabia 1986 and future projection. In Proceedings of the Arab Fourth Energy Conference, Baghdad, Iraq, March 1988; Volume 4, pp. 1–28. [Google Scholar]
- Saudi National Paper on Energy. Energy consumption in the Kingdom of Saudi Arabia in 1983 and future projection. In Proceedings of the Arab Third Energy Conference, Algiers, Algeria, 4–9 May 1985; Volume 7, pp. 159–187. [Google Scholar]
Region | Station | Latitude (°N) | Longitude (°E) | Elevation (m) |
---|---|---|---|---|
Western | Jeddah | 21.71 | 39.18 | 18 |
Al-Baha | 20.29 | 41.64 | 1655 | |
Southern | Abha | 18.23 | 42.66 | 2100 |
Central | Qassim | 26.30 | 43.76 | 648 |
Riyadh | 24.92 | 46.72 | 612 | |
Eastern | Ahsa | 25.30 | 49.49 | 180 |
Dhahran | 26.26 | 50.16 | 22 |
Station | ||||||
---|---|---|---|---|---|---|
CO | NOx | SO2 | VOCs | BC | OC | |
Jeddah | 6.5 | 4.1 | 1.6 | 1.5 | 7.1 | 4.8 |
Al-Baha | 7.2 | 6.9 | 3.4 | 2.4 | 1.3 | 3.8 |
Abha | 7.5 | 7.7 | 1.2 | 2.3 | 5.9 | 4.7 |
Qassim | 6.2 | 7.6 | 1.5 | 0.8 | 5.2 | 7.5 |
Riyadh | 7.6 | 5.4 | 1.9 | 0.3 | 7.1 | 4 |
Ahsa | 3.2 | 5.5 | 2.2 | 0.8 | 6 | 3.8 |
Dhahran | 7.7 | 3 | 2.6 | 2.2 | 0.7 | 3.7 |
Pollutant | Jeddah | Al-Baha | Abha | Qassim | Riyadh | Ahsa | Dhahran | |
---|---|---|---|---|---|---|---|---|
CO | Max. | 994.3 | 1372.1 | 1200.2 | 1050.2 | 1877.1 | 1805.5 | 4052.2 |
Min. | 281.8 | 30.3 | 324.6 | 255.1 | 446.0 | 145.0 | 391.3 | |
NOx | Max. | 363.5 | 183.5 | 323.5 | 142.9 | 941.7 | 1308.4 | 634.0 |
Min. | 45.1 | 2.2 | 65.4 | 25.6 | 88.2 | 75.4 | 61.3 | |
SO2 | Max. | 1525.9 | 324.1 | 4857.8 | 1169.2 | 2719.9 | 2786.8 | 626.7 |
Min. | 10.2 | 1.1 | 30.3 | 8.5 | 18.5 | 23.8 | 17.5 | |
VOCs | Max. | 576.9 | 934.6 | 1043.6 | 301.3 | 295.0 | 361.2 | 2854.6 |
Min. | 191.9 | 84.8 | 153.7 | 78.7 | 138.3 | 119.2 | 444.7 | |
BC | Max. | 79.9 | 10.1 | 7.0 | 24.5 | 133.6 | 19.8 | 9.2 |
Min. | 1.8 | 0.0 | 0.2 | 1.3 | 1.3 | 0.6 | 0.7 | |
OC | Max. | 142.1 | 11.8 | 16.8 | 50.4 | 237.8 | 36.3 | 83.2 |
Min. | 6.4 | 0.0 | 0.9 | 6.7 | 2.9 | 2.5 | 32.0 |
Pollutant | Jeddah | Al-Baha | Abha | Qassim | Riyadh | Ahsa | Dhahran | Total |
---|---|---|---|---|---|---|---|---|
P1 | CO, NOx, VOCs | CO, VOCs, OC | CO, NOx, VOCs | ------ | CO, NOx, SO2, VOCs | CO, NOx, SO2, VOCs | CO, NOx, VOCs, OC | 21 |
P2 | ------ | ------ | OC | CO, BC, OC | ------ | ------ | ------ | 4 |
P3 | SO2 | SO2, NOx, BC | ------ | NOx, VOCs | ------ | OC | ------ | 7 |
P4 | BC, OC | ------ | SO2, BC | SO2 | BC, OC | BC | SO2, BC | 10 |
Total | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mutairi, M.; Al-Otaibi, N.; Saber, A.; Abdel Basset, H.; Morsy, M. Climatological Study of Air Pollutant Emissions in Saudi Arabia. Atmosphere 2023, 14, 729. https://doi.org/10.3390/atmos14040729
Al-Mutairi M, Al-Otaibi N, Saber A, Abdel Basset H, Morsy M. Climatological Study of Air Pollutant Emissions in Saudi Arabia. Atmosphere. 2023; 14(4):729. https://doi.org/10.3390/atmos14040729
Chicago/Turabian StyleAl-Mutairi, Motirh, Nahaa Al-Otaibi, Amgad Saber, Heshmat Abdel Basset, and Mostafa Morsy. 2023. "Climatological Study of Air Pollutant Emissions in Saudi Arabia" Atmosphere 14, no. 4: 729. https://doi.org/10.3390/atmos14040729
APA StyleAl-Mutairi, M., Al-Otaibi, N., Saber, A., Abdel Basset, H., & Morsy, M. (2023). Climatological Study of Air Pollutant Emissions in Saudi Arabia. Atmosphere, 14(4), 729. https://doi.org/10.3390/atmos14040729