Characteristics, Ozone Formation Potential and Sources of VOCs in Shandong Province, Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling and Analysis
2.3. Quality Assurance and Control (QA/QC)
3. Results and Discussion
3.1. Characteristics of Gaseous Pollutant
3.1.1. Characteristics of Ozone Pollution
3.1.2. General Characteristics of VOCs
3.2. Reactivity and Ozone Formation Potential of VOCs
3.3. Emission Sources of VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, K.; Jacob, D.J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K.H.; Sulprizio, M.P.; Song, S.; Lu, X.; et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl. Acad. Sci. USA 2021, 118, e2015797118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Xing, Y. Long-Term Change Analysis of PM2.5 and Ozone Pollution in China’s Most Polluted Region during 2015–2020. Atmosphere 2022, 13, 104. [Google Scholar] [CrossRef]
- Li, J.; Deng, S.; Li, G.; Lu, Z.; Song, H.; Gao, J.; Sun, Z.; Xu, K. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China. Environ. Res. 2022, 203, 111821. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Xiao, Y.; Chu, C.; Zhang, N.; Yu, L. Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. Ecotoxicol. Environ. Saf. 2022, 241, 113808. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, L.; Zhou, S.; Zhang, T.; Zhai, S.; Yang, Z.; Wang, D.; Song, H. Effects of ground-level ozone pollution on yield and economic losses of winter wheat in Henan, China. Atmos. Environ. 2021, 262, 118654. [Google Scholar] [CrossRef]
- Malashock, D.A.; Delang, M.N.; Becker, J.S.; Serre, M.L.; West, J.J.; Chang, K.-L.; Cooper, O.R.; Anenberg, S.C. Global trends in ozone concentration and attributable mortality for urban, peri-urban, and rural areas between 2000 and 2019: A modelling study. Lancet Planet. Health 2022, 6, e958–e967. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, W.; Gao, W.; Zhou, B.; Liao, X. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Saf. Environ. Prot. 2020, 139, 147–160. [Google Scholar] [CrossRef]
- Tohid, L.; Sabeti, Z.; Sarbakhsh, P.; Benis, K.Z.; Shakerkhatibi, M.; Rasoulzadeh, Y.; Rahimian, R.; Darvishali, S.J.A.P.R. Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran. Atmos. Pollut. Res. 2018, 10, 556–563. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Dong, M.; Li, W.; Gao, X.; Ye, R.; Zhang, D. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wu, Z.; Luo, S.; Song, W.; Wang, X. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J. Environ. Sci. 2022, 114, 322–333. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Pei, C.; Chen, T.; Mu, J.; Liu, Y.; Wang, Y.; Wang, W.; Xue, L. Worsening ozone air pollution with reduced NOx and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China. J. Environ. Manag. 2022, 324, 116327. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Yan, Y.; Chen, N.; Qi, S. Compositions, sources and health risks of ambient volatile organic compounds (VOCs) at a petrochemical industrial park along the Yangtze River. Sci. Total Environ. 2019, 703, 135505. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chiang, H.-C.; Shie, R.-H.; Ku, C.-H.; Lin, T.-Y.; Chen, M.-J.; Chen, N.-T.; Chen, Y.-C. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef]
- Dave, P.N.; Sahu, L.K.; Tripathi, N.; Bajaj, S.; Patel, K. Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: Impact on local air quality. Heliyon 2020, 6, e04537. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.; Chen, X.; Li, Z.; Li, M.; Song, Z.; Liu, W.; Li, P.; Zhang, X.; Lichtfouse, E.; et al. Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. Environ. Chem. Lett. 2022, 20, 1577–1588. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Zhang, M.; Liu, H.; Xu, Y. Model analysis of meteorology and emission impacts on springtime surface ozone in Shandong. Sci. Total Environ. 2021, 771, 144784. [Google Scholar] [CrossRef]
- Zhan, J.; Feng, Z.; Liu, P.; He, X.; He, Z.; Chen, T.; Wang, Y.; He, H.; Mu, Y.; Liu, Y. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Environ. Pollut. 2021, 285, 117444. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, L.; Chen, J.; Wang, X.; Xue, L.; Sui, X.; Wen, L.; Xu, C.; Yao, L.; Zhang, J.; et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013. Atmos. Environ. 2016, 124, 156–165. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Zhang, Y.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Deng, Y.; Zhai, R.; Wang, Z.; et al. Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmos. Pollut. Res. 2021, 12, 230–241. [Google Scholar] [CrossRef]
- Mozaffar, A.; Zhang, Y.-L.; Fan, M.; Cao, F.; Lin, Y.-C. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jing, S.; Gao, Y.; Peng, Y.; Lou, S.; Cheng, T.; Tao, S.; Li, L.; Li, Y.; et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmos. Environ. 2019, 215, 116902. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Hou, M.; Huang, H.; Fan, L.; Ye, D. Characteristics and sources of volatile organic compounds (VOCs) in Xinxiang, China, during the 2021 summer ozone pollution control. Sci. Total Environ. 2022, 842, 156746. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zou, Q.; Jin, L.; Shen, Y.; Shen, J.; Xu, B.; Qu, F.; Zhang, F.; Xu, J.; Pei, X.; et al. Characteristics and sources of ambient Volatile Organic Compounds (VOCs) at a regional background site, YRD region, China: Significant influence of solvent evaporation during hot months. Sci. Total Environ. 2023, 857, 159674. [Google Scholar] [CrossRef]
- Zhang, D.; He, B.; Yuan, M.; Yu, S.; Yin, S.; Zhang, R. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. J. Environ. Sci. 2021, 108, 44–57. [Google Scholar] [CrossRef]
- Blake, D.R.; Rowland, F.S. Urban Leakage of Liquefied Petroleum Gas and Its Impact on Mexico City Air Quality. Science 1995, 269, 953. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.; Heo, J.-B.; Yi, S.-M. Apportioning and Locating Nonmethane Hydrocarbon Sources to a Background Site in Korea. Environ. Sci. Technol. 2010, 44, 5849–5854. [Google Scholar] [CrossRef]
- Carriero, G.; Neri, L.; Famulari, D.; Lonardo, S.D.; Piscitelli, D.; Manco, A.; Esposito, A.; Chirico, A.; Facini, O.; Finardi, S. Composition and emission of VOC from biogas produced by illegally managed waste landfills in Giugliano (Campania, Italy) and potential impact on the local population. Sci. Total Environ. 2018, 640–641, 377–386. [Google Scholar] [CrossRef]
- Miri, M.; Rostami Aghdam Shendi, M.; Ghaffari, H.R.; Ebrahimi Aval, H.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Yazdani Aval, M.; Mohammadi, A.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.-A.; Lee, M.; Park, J.; Jeon, E.; Shim, M.; Shin, Y. An analysis of the temporal variability in volatile organic compounds (VOCs) within megacity Seoul and an identification of their sources. Atmos. Pollut. Res. 2022, 13, 101338. [Google Scholar] [CrossRef]
- Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; et al. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. Atmos. 1992, 97, 6037–6055. [Google Scholar] [CrossRef]
- Carter; William, P. L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air Waste 1994, 44, 881–899. [Google Scholar] [CrossRef] [Green Version]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Sherwood Rowland, F. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R. Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. Part A Gen. Top. 1990, 24, 1–41. [Google Scholar] [CrossRef]
- Wang, T.; Guo, H.; Blake, D.R.; Kwok, Y.H.; Simpson, I.J.; Li, Y.S. Measurements of Trace Gases in the Inflow of South China Sea Background Air and Outflow of Regional Pollution at Tai O, Southern China. J. Atmos. Chem. 2005, 52, 295. [Google Scholar] [CrossRef]
- Barletta, B.; Meinardi, S.; Sherwood Rowland, F.; Chan, C.-Y.; Wang, X.; Zou, S.; Yin Chan, L.; Blake, D.R. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Lu, S.; Shao, M.; Zeng, L.; Zheng, J.; Xie, F.; Lin, H.; Hu, K.; Lu, X. Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China. Sci. Total Environ. 2020, 757, 143823. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Baudic, A.; Gros, V.; Sauvage, S.; Locoge, N.; Sanchez, O.; Sarda-Estève, R.; Kalogridis, C.; Petit, J.E.; Bonnaire, N.; Baisnée, D.; et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos. Chem. Phys. 2016, 16, 11961–11989. [Google Scholar] [CrossRef] [Green Version]
Site | Weather Condition | ||||
---|---|---|---|---|---|
NOX (mg/m3) | O3 (μg/m3) | T (°C) | H (%) | ||
JN | Max | 104 | 192 | 38 | 70 |
Average | 36 | 90 | 32 | 58 | |
Min | 17 | 9 | 27 | 42 | |
SD | 19 | 42 | 3 | 8 | |
DZ | Max | 56 | 193 | 35 | 88 |
Average | 18 | 107 | 31 | 68 | |
Min | 2 | 1 | 26 | 52 | |
SD | 13 | 58 | 2 | 10 | |
ZB | Max | 164 | 148 | 35 | 87 |
Average | 56 | 62 | 30 | 67 | |
Min | 11 | 5 | 24 | 52 | |
SD | 43 | 49 | 3 | 11 | |
HZ | Max | 42 | 147 | 35 | 85 |
Average | 21 | 76 | 31 | 70 | |
Min | 9 | 17 | 26 | 49 | |
SD | 8 | 39 | 2 | 11 | |
DY | Max | 73 | 220 | 35 | 83 |
Average | 44 | 79 | 31 | 67 | |
Min | 34 | 12 | 27 | 49 | |
SD | 8 | 58 | 2 | 10 | |
QD | Max | 37 | 164 | 30 | 96 |
Average | 15 | 93 | 28 | 77 | |
Min | 7 | 22 | 26 | 59 | |
SD | 8 | 35 | 1 | 10 | |
CD | Max | 23 | 217 | 29 | 100 |
Average | 15 | 127 | 27 | 81 | |
Min | 11 | 11 | 25 | 55 | |
SD | 3 | 61 | 1 | 12 |
Compounds | MDL | Inland Sites | Coastal Sites | Background Site | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JN | DZ | ZB | HZ | DY | QD | CD | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Ethane | 0.2 | 0.70 | 0.74 | 0.42 | 0.37 | 1.91 | 4.2 | 0.91 | 0.58 | 0.85 | 0.81 | 0.36 | 0.34 | 0.31 | 0.29 |
Propane | 0.1 | 4.86 | 2.5 | 1.06 | 0.31 | 9.82 | 1.6 | 5.39 | 1.0 | 3.65 | 1.6 | 1.05 | 0.80 | 1.2 | 0.64 |
Isobutane | 0.05 | 1.42 | 0.87 | 0.40 | 0.08 | 298 | 2.0 | 0.52 | 0.25 | 0.74 | 0.29 | 0.19 | 0.20 | 0.27 | 0.15 |
n-Butane | 0.1 | 3.17 | 4.0 | 0.67 | 0.35 | 442 | 1.2 | 1.11 | 0.29 | 1.88 | 1.2 | 0.32 | 0.21 | 0.58 | 0.37 |
Isopentane | 0.02 | 1.56 | 2.5 | 1.06 | 0.20 | 2.97 | 1.9 | 1.17 | 0.46 | 1.20 | 0.92 | 1.43 | 0.22 | 1.13 | 0.30 |
n-Pentane | 0.02 | 1.11 | 2.3 | 1.19 | 0.64 | 9.87 | 2.0 | 0.78 | 0.35 | 0.89 | 0.23 | 0.69 | 0.41 | 2.16 | 1.4 |
n-Hexane | 0.3 | 0.62 | 1.1 | 0.36 | 0.20 | 0.76 | 0.67 | 1.22 | 0.82 | 0.33 | 0.31 | 0.26 | 0.12 | 0.24 | 0.11 |
Cyclohexane | 0.1 | 0.09 | 1.0 | 0.18 | 0.13 | 0.14 | 0.10 | 0.76 | 0.81 | 0.11 | 0.09 | 0.18 | 0.15 | 0.12 | 0.14 |
n-Octane | 0.1 | 0.13 | 0.23 | ND a | 0.16 | 0.15 | 0.28 | 0.22 | 0.04 | 0.04 | 3.55 | 1.1 | 0.95 | 1.8 | |
Ethene | 0.09 | 3.16 | 2.4 | 1.42 | 0.48 | 3.35 | 1.0 | 1.92 | 0.54 | 1.60 | 1.4 | 0.87 | 0.30 | 0.95 | 0.18 |
Propene | 0.06 | 0.58 | 0.40 | 0.25 | 0.10 | 10.3 | 1.0 | 0.30 | 0.09 | 0.32 | 0.24 | 0.32 | 0.46 | 0.16 | 0.06 |
1-Butene | 0.2 | 2.75 | 2.89 | 0.42 | 0.10 | 15.1 | 1.9 | 0.23 | 0.1 | 0.39 | 0.15 | 0.95 | 0.38 | 0.53 | 0.28 |
cis-2-Butene | 0.05 | 0.11 | 0.13 | 0.19 | 0.03 | 0.37 | 0.43 | 0.08 | 0.04 | 0.19 | 0.07 | 0.41 | 0.07 | 0.59 | 0.59 |
trans-2-Butene | 0.05 | 1.94 | 3.65 | 0.12 | 0.05 | 20.7 | 1.9 | 0.06 | 0.03 | 0.12 | 0.04 | 0.28 | 0.04 | 0.18 | 0.03 |
1-Pentene | 0.02 | 1.44 | 2.69 | 0.21 | 0.16 | 0.35 | 0.72 | 0.05 | 0.02 | 0.10 | 0.05 | 0.5 | 0.47 | 0.16 | 0.16 |
1,3-butadine | 0.05 | 0.36 | 0.31 | 0.58 | 0.21 | 2.01 | 1.0 | 0.69 | 0.49 | 0.40 | 0.12 | 0.93 | 0.59 | 0.23 | 0.15 |
Bezene | 0.03 | 0.79 | 1.91 | 0.73 | 0.26 | 1.41 | 0.59 | 0.60 | 0.25 | 0.71 | 0.57 | 1.02 | 0.06 | 0.98 | 0.40 |
Toluene | 0.03 | 0.41 | 0.68 | 0.43 | 0.28 | 1.81 | 1.7 | 0.86 | 0.56 | 0.40 | 0.27 | 0.67 | 0.34 | 0.53 | 0.44 |
Ethylbenzene | 0.1 | 0.23 | 0.47 | 0.20 | 0.09 | 0.39 | 0.17 | 0.24 | 0.16 | 0.13 | 0.19 | 4.52 | 1.3 | 0.19 | 0.23 |
m,p-Xylene | 0.05 | 0.25 | 0.21 | 0.37 | 0.20 | 0.95 | 0.50 | 0.45 | 0.31 | 0.25 | 0.31 | 7.91 | 1.3 | 0.32 | 0.38 |
o-Xylene | 0.05 | 0.09 | 0.10 | 0.20 | 0.12 | 0.35 | 0.19 | 0.24 | 0.11 | 0.18 | 0.07 | 1.94 | 1.2 | 0.13 | 0.12 |
Acetylene | 0.07 | 2.77 | 1.49 | 3.03 | 0.85 | 2.05 | 1.4 | 0.92 | 0.37 | 0.75 | 0.31 | 0.38 | 0.18 | 0.52 | 0.16 |
TVOC | 33.6 | 15.9 | 833 | 21.6 | 23.3 | 32.8 | 15.3 |
Compounds | KOH × 1012 | Compounds | KOH × 1012 |
---|---|---|---|
ethane | 0.26 | 2,3-dimethylpentane | 6.3 |
ethene | 8.52 | 3-methylhexane | 7.18 |
acetylene | 0.9 | 2,2,4-trimethylpentane | 3.34 |
propane | 1.15 | heptane | 7.15 |
propene | 26.3 | methylcyclohexane | 10.4 |
isobutane | 2.12 | 2,3,4-trimethylpentane | 6.6 |
n-butane | 2.54 | toluene | 5.96 |
1-butene | 31.40 | 2-methylheptane | 5.2 |
trans-2-butene | 56.4 | 3-methylheptane | 8.54 |
cis-2-butene | 64 | octane | 8.68 |
isopentane | 3.6 | ethylbenzene | 7 |
1-pentene | 31.4 | m/p-xylene | 19 |
pentane | 3.94 | styrene | 10 |
1,3-butadine | 101 | o-xylene | 13.7 |
trans-2-pentene | 65 | nonane | 8.11 |
cis-2-pentene | 67 | isopropylbenzene | 6.3 |
2,2-dimethylbutane | 2.32 | propylbenzene | 6 |
cyclopentane | 5.16 | m-ethyltoluene | 0.32 |
2,3-dimethylbutane | 6.3 | p-ethyltoluene | 0.37 |
2-methylpentane | 5.6 | mesitylene | 57.5 |
3-methylpentane | 5.7 | o-ethyltoluene | 0.8 |
1-hexene | 37 | 1,2,4-trimethylbenzene | 32.5 |
hexane | 5.61 | decane | 11 |
methylcyclopentane | 7.05 | 1,2,3-trimethylbenzene | 32.7 |
2,4-dimethylpentane | 4.77 | m-diethylbenzene | 24.3 |
benzene | 1.23 | p-dimethylbenzene | 24.3 |
cyclohexane | 7.49 | undecane | 12.3 |
2-methylhexane | 7.18 | dodecane | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, F.; Tan, L.; Shi, J.; Li, J.; Xu, X.; Chen, Y.; Zhang, F.; You, X. Characteristics, Ozone Formation Potential and Sources of VOCs in Shandong Province, Eastern China. Atmosphere 2023, 14, 667. https://doi.org/10.3390/atmos14040667
Cao F, Tan L, Shi J, Li J, Xu X, Chen Y, Zhang F, You X. Characteristics, Ozone Formation Potential and Sources of VOCs in Shandong Province, Eastern China. Atmosphere. 2023; 14(4):667. https://doi.org/10.3390/atmos14040667
Chicago/Turabian StyleCao, Fangfang, Li Tan, Jinghua Shi, Jinjun Li, Xiuyan Xu, Ye Chen, Fengju Zhang, and Xihua You. 2023. "Characteristics, Ozone Formation Potential and Sources of VOCs in Shandong Province, Eastern China" Atmosphere 14, no. 4: 667. https://doi.org/10.3390/atmos14040667
APA StyleCao, F., Tan, L., Shi, J., Li, J., Xu, X., Chen, Y., Zhang, F., & You, X. (2023). Characteristics, Ozone Formation Potential and Sources of VOCs in Shandong Province, Eastern China. Atmosphere, 14(4), 667. https://doi.org/10.3390/atmos14040667