Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Dynamics Model
2.1.1. Module 1: Built Environment Model
2.1.2. Module 2: Tree Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- Molina, L.T.; Molina, M.J.; Slott, R.S.; Kolb, C.E.; Gbor, P.K.; Meng, F.; Singh, R.B.; Galvez, O.; Sloan, J.J.; Anderson, W.P.; et al. Air Quality in Selected Megacities. J. Air Waste Manag. Assoc. 2004, 54, 1–73. [Google Scholar] [CrossRef]
- Oke, T.; Maxwell, G. Urban heat island dynamics in Montreal and Vancouver. Atmos. Environ. (1967) 1975, 9, 191–200. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Raymond, W.W.; Barber, J.S.; Dethier, M.N.; Hayford, H.A.; Harley, C.D.G.; King, T.L.; Paul, B.; Speck, C.A.; Tobin, E.D.; Raymond, A.E.T.; et al. Assessment of the impacts of an unprecedented heatwave on intertidal shellfish of the Salish Sea. Ecology 2022, 103, e3798. [Google Scholar] [CrossRef]
- Philip, S.Y.; Kew, S.F.; van Oldenborgh, G.J.; Anslow, F.S.; Seneviratne, S.I.; Vautard, R.; Coumou, D.; Ebi, K.L.; Arrighi, J.; Singh, R.; et al. Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 2022, 13, 1689–1713. [Google Scholar] [CrossRef]
- Ministry of Public Safety & Solicitor General. BC Coroners Service (BCCS) Heat-Related Deaths—Knowledge Update. 2021. Available online: https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/statistical/heat_related_deaths_in_bc_knowledge_update.pdf (accessed on 26 January 2022).
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Revich, B.A.; Shaposhnikov, D.A. Climate change, heat waves, and cold spells as risk factors for increased mortality in some regions of Russia. Stud. Russ. Econ. Dev. 2012, 23, 195–207. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, Z.H.; Wang, C.; Myint, S.W. Environmental cooling provided by urban trees under extreme heat and cold waves in U.S. cities. Remote Sens. Environ. 2019, 227, 28–43. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.H.; Yang, J. Cooling Effect of Urban Trees on the Built Environment of Contiguous United States. Earth’s Future 2018, 6, 1066–1081. [Google Scholar] [CrossRef] [Green Version]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Liébard, A.; de Herde, A. Traité d’Architecture et d’Urbanisme Bioclimatiques: Concevoir, Édifier et Aménager Avec le Développement Durable; Paris Observ’ER: Paris, France, 2005. [Google Scholar]
- Domke, G.M.; Oswalt, S.N.; Walters, B.F.; Morin, R.S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24649–24651. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Nature Smart Climate Solutions Fund. 2021. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-funding/programs/nature-smart-climate-solutions-fund.html (accessed on 7 March 2022).
- Eyster, H.N.; Beckage, B. Conifers may ameliorate urban heat waves better than broadleaf trees: Evidence from Vancouver, Canada. Atmosphere 2022, 13, 830. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Rahman, M.A.; Armson, D.; Ennos, A.R. A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst. 2014, 18, 371–389. [Google Scholar] [CrossRef]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Konarska, J.; Uddling, J.; Holmer, B.; Lutz, M.; Lindberg, F.; Pleijel, H.; Thorsson, S. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 2015, 60, 159–172. [Google Scholar] [CrossRef]
- Pace, R.; Fino, F.D.; Rahman, M.A.; Pauleit, S.; Nowak, D.J.; Grote, R. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. Int. J. Biometeorol. 2021, 65, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.R.; Bhardwaj, R.; Phelan, P.E.; Golden, J.S.; Grossman-Clarke, S. Development of a zero-dimensional mesoscale thermal model for urban climate. J. Appl. Meteorol. Climatol. 2009, 48, 657–668. [Google Scholar] [CrossRef]
- Dare, R. A system dynamics model to facilitate the development of policy for urban heat island mitigation. Urban Sci. 2021, 5, 19. [Google Scholar] [CrossRef]
- Simon, H.; Lindén, J.; Hoffmann, D.; Braun, P.; Bruse, M.; Esper, J. Modeling transpiration and leaf temperature of urban trees—A case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 2018, 174, 33–40. [Google Scholar] [CrossRef]
- City of Vancouver; Vancouver Park Board. Urban Forest Strategy: 2018 Update; City of Vancouve: Vancouver, BC, Canada, 2018; pp. 1–60. [Google Scholar]
- Metro Vancouver. Land Cover Classification. Open Data Catalogue. 2019. Available online: http://www.metrovancouver.org/data (accessed on 26 January 2021).
- City of Vancouve Open Data Portal. Street Trees. 2022. Available online: https://opendata.vancouver.ca/explore/dataset/street-trees/information/ (accessed on 7 March 2022).
- Diamond Head Consulting. District of North VancouverFromme Mountain Area Ecosystem Analysis. 2004. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f2f24d4bde20ccd94550a165451afab3b1caed52 (accessed on 15 February 2022).
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Java, O.; Kohv, M.; Löhmus, A. Hydrological Model for Decision-Making: Männikjärve Bog Case Study, Estonia. Balt. J. Mod. Comput. 2020, 8, 379–390. [Google Scholar] [CrossRef]
- Java, O.; Kohv, M.; Lõhmus, A. Performance of a Bog Hydrological System Dynamics Simulation Model in an Ecological Restoration Context: Soomaa Case Study, Estonia. Water 2021, 13, 2217. [Google Scholar] [CrossRef]
- Pallardy, S.G. Physiology of Woody Plants; Elsevier: Amsterdam, The Netherlands, 2008; p. 454. [Google Scholar]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Grossman-Clarke, S.; Zehnder, J.A.; Stefanov, W.L.; Liu, Y.; Zoldak, M.A. Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteorol. 2005, 44, 1281–1297. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G. Leaf temperature and energy fluxes. In Climate Change and Terrestrial Ecosystem Modeling; Cambridge University Press: Cambridge, UK, 2019; pp. 152–166. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 1998, 12, 948–958. [Google Scholar] [CrossRef]
- Niinemets, Ü. Components of leaf dry mass per area-thickness and density-alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 1999, 144, 35–47. [Google Scholar] [CrossRef]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Pierce, L.L.; Running, S.W. Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology 1988, 69, 1762–1767. [Google Scholar] [CrossRef]
- López, A.; Molina-Aiz, F.; Valera, D.; Peña, A. Determining the emissivity of the leaves of nine horticultural crops by means of infrared thermography. Sci. Hortic. 2012, 137, 49–58. [Google Scholar] [CrossRef]
- Thomas, S.C.; Winner, W.E. Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Can. J. For. Res. 2000, 30, 1922–1930. [Google Scholar] [CrossRef]
- Hutchison, B.A.; Matt, D.R.; McMillen, R.T.; Gross, L.J.; Tajchman, S.J.; Norman, J.M. The architecture of a deciduous forest canopy in Eastern Tennessee, U.S.A. J. Ecol. 1986, 74, 635. [Google Scholar] [CrossRef]
- Kerstiens, G. Cuticles: An Integrated Functional Approach; BIOS Scientific Publishers: Oxford, UK, 1996. [Google Scholar]
- Holmgren, P.; Jarvis, P.G.; Jarvis, M.S. Resistances to carbon dioxide and water vapour transfer in leaves of different plant species. Physiol. Plant. 1965, 18, 557–573. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology; Academic Press: New York, NY, USA, 1991. [Google Scholar]
- Smith, W.K. Importance of aerodynamic resistance to water use efficiency in three conifers under field conditions. Plant Physiol. 1980, 65, 132–135. [Google Scholar] [CrossRef]
- Apple, M.E.; Olszyk, D.M.; Ormrod, D.P.; Lewis, J.; Southworth, D.; Tingey, D.T. Morphology and stomatal function of Douglas fir needles exposed to climate change: Elevated CO2 and temperature. Int. J. Plant Sci. 2000, 161, 127–132. [Google Scholar] [CrossRef]
- Sengupta, M.; Weekley, A.; Habte, A.; Lopez, A.; Molling, C.; Heidinger, A. Validation of the National Solar Radiation Database (NSRDB) (2005–2012): NREL/CP-5D00-64981; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2015.
- Rowley, F.B.; Eckley, W.A. Surface coefficients as affected by wind direction. ASHRAE Trans. 1932, 38, 33–46. [Google Scholar]
- Netzer, Y.; Yao, C.; Shenker, M.; Bravdo, B.A.; Schwartz, A. Water use and the development of seasonal crop coefficients for Superior Seedless grapevines trained to an open-gable trellis system. Irrig. Sci. 2009, 27, 109–120. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J.; Endreny, T.A. I-Tree Eco Dry Deposition Model Descriptions v1.5; United States Forest Service: Washington, DC, USA, 2022.
- World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation, Appendix 4B, WMO-No. 8 (Cimo Guide); Technical Report; World Meteorological Orgnanization: Geneva, Siwtzerland, 2008. [Google Scholar]
- Martin, T.A.; Hinckley, T.M.; Meinzer, F.C.; Sprugel, D.G. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiol. 1999, 19, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Yasutake, D.; Yamanami, A.; Kitano, M. Spatial examination of leaf-boundary-layer conductance using artificial leaves for assessment of light airflow within a plant canopy under different controlled greenhouse conditions. Agric. For. Meteorol. 2020, 280, 107773. [Google Scholar] [CrossRef]
- Er, K.B.; Innes, J.L.; Martin, K.; Klinkenberg, B. Forest loss with urbanization predicts bird extirpations in vancouver. Biol. Conserv. 2005, 126, 410–419. [Google Scholar] [CrossRef]
- Asadian, Y.; Weiler, M. A new approach in measuring rainfall interception by urban trees in Coastal British Columbia. Water Qual. Res. J. 2009, 44, 16–25. [Google Scholar] [CrossRef]
- Jaffal, I.; Ouldboukhitine, S.E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Theodosiou, T.G. Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy Build. 2003, 35, 909–917. [Google Scholar] [CrossRef]
- Takakura, T.; Kitade, S.; Goto, E. Cooling effect of greenery cover over a building. Energy Build. 2000, 31, 1–6. [Google Scholar] [CrossRef]
- Bock, A.D.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado-Alvarado, A.; Audenaert, A. A review on the leaf area index (LAI) in vertical greening systems. Build. Environ. 2023, 229, 109926. [Google Scholar] [CrossRef]
- Monteiro, M.V.; Blanuša, T.; Verhoef, A.; Richardson, M.; Hadley, P.; Cameron, R. Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential. Energy Build. 2017, 141, 56–68. [Google Scholar] [CrossRef]
- Gates, D.M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 1968, 19, 211–238. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.V.; Blanuša, T.; Verhoef, A.; Hadley, P.; Cameron, R.W.F. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Aust. J. Bot. 2016, 64, 32. [Google Scholar] [CrossRef]
- Lewis, D.A.; Nobel, P.S. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes. Plant Physiol. 1977, 60, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, L.; Meitner, M.J.; Sheppard, S.R.; Girling, C. The dimensions of urban green equity: A framework for analysis. Urban For. Urban Green. 2018, 34, 240–248. [Google Scholar] [CrossRef]
- Leong, M.; Dunn, R.R.; Trautwein, M.D. Biodiversity and socioeconomics in the city: A review of the luxury effect. Biol. Lett. 2018, 14, 20180082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, A.; Khan, A.; Santamouris, M. On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city. Build. Environ. 2021, 206, 108276. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.H.; Kaloush, K.E. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sustain. Energy Rev. 2015, 47, 830–843. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wang, Z.H. Diurnal changes in urban boundary layer environment induced by urban greening. Environ. Res. Lett. 2016, 11, 114018. [Google Scholar] [CrossRef]
- Eyster, H.N.; Satterfield, T.; Chan, K.M.A. Empirical examples demonstrate how relational thinking might enrich science and practice. People Nat. 2023; early view. [Google Scholar] [CrossRef]
- Anguelovski, I.; Connolly, J.J.; Garcia-Lamarca, M.; Cole, H.; Pearsall, H. New scholarly pathways on green gentrification: What does the urban ‘green turn’ mean and where is it going? Prog. Hum. Geogr. 2018, 43, 1064–1086. [Google Scholar] [CrossRef] [Green Version]
- Anguelovski, I.; Connolly, J.J.T.; Cole, H.; Garcia-Lamarca, M.; Triguero-Mas, M.; Baró, F.; Martin, N.; Conesa, D.; Shokry, G.; del Pulgar, C.P.; et al. Green gentrification in European and North American cities. Nat. Commun. 2022, 13, 3816. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Source |
---|---|---|---|
init. = 22 | °C | ||
3 × 10 | J/m/K | [38] | |
s | 3600 | s/h | Number of seconds in 1 h |
H | 0.3 | m | Optimized to obtain reasonable city temperatures |
g | 17, 22, or 30 | dimensionless [29] | |
0.114 | dimensionless | Average albedo in Vancouver, BC based on albedo values from [20] and percentage landcover values from the Land Cover Classification 2014—5 m Hybrid (updated in November 2019) dataset from http://www.metrovancouver.org/data (accessed on 26 January 2021) for all landcover classes except deciduous and coniferous trees, water, shadow, clouds, and ice | |
5.75 | h | Time of sunrise on August 1 in Vancouver, BC, Canada | |
L | Radians | Latitude of Vancouver, BC | |
D | 213 | day | Day of year for 1 August 2020 |
0.9 | dimensionless | [38] | |
5.67 × 10 | W/m/K | ||
v | 4.54 | m/s | Average of hourly wind velocities recorded at Vancouver Airport on 1 August 2020, via https://weatherspark.com/h/d/476/2020/8/1/Historical-Weather-on-Saturday-August-1-2020-in-Vancouver-Canada#Figures-WindSpeed (accessed on 18 January 2023) |
12.2 | °C | Historical August 1 low in rural Bowen Island, BC. Data from https://www.accuweather.com/en/ca/bowen-island/v0n/july-weather/53179 (accessed on 18 January 2023) | |
20.5 | °C | Historical August 1 high in rural Bowen Island, BC. Data from https://www.accuweather.com/en/ca/bowen-island/v0n/july-weather/53179 (accessed on 18 January 2023) | |
1.65 | W/m/K | Following [25] | |
8 | °C | Following [25] | |
d | 2 | m | Following [25] |
init. = 22 | °C | ||
(conifer) | 0.263 | kg/m | [39,40] |
(broadleaf) | 0.073 | kg/m | [39,40] |
0.7 | dimensionless | [39,41] | |
4188 | J/kg/K | ||
1396 | J/kg/K | [39] | |
72.7 | Average humidity on 1 August 2020 in Vancouver, BC | ||
0.046 | dimensionless | [42] | |
K (conifer) | 0.52 | dimensionless | [43] |
K (broadleaf) | 0.7 | dimensionless | [25] |
0.98 | dimensionless | [44] | |
(conifer) | 0.08 | dimensionless | [20] |
(broadleaf) | 0.12 | dimensionless | [20] |
2450 | J/kg | ||
0.018 | kg/mol | ||
(conifer) | 8.6 | dimensionless | LAI for Pseudotsuga menziesii [45] |
(broadleaf) | 4.9 | dimensionless | LAI for an oak–hickory forest [46] |
(conifer) | 30,303 | s/m | For Pseudotsuga menziesii [36,47] |
(broadleaf) | 8500 | s/m | For Acer platenoides [36,48] |
17.5 | s/m | Average for typical plant [36,49] | |
(conifer) | 140 | s/m | For Abies lasiocarpa [36,50] |
(conifer) | 30,303 | s/m | For Pseudotsuga menziesii [36,47] |
(broadleaf) | 8500 | s/m | For Acer platenoides [36,48] |
17.5 | s/m | Average for typical leaf [36,49] | |
(conifer) | 1 × 10 | s/m | Pseudotsuga menziesii lacks stomata on the adaxial surface [51] |
(broadleaf) | 1 × 10 | s/m | Most broadleaf trees lack stomata on the adaxial surface [39] |
29.2 | J/mol/K | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyster, H.N.; Beckage, B. Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model. Atmosphere 2023, 14, 552. https://doi.org/10.3390/atmos14030552
Eyster HN, Beckage B. Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model. Atmosphere. 2023; 14(3):552. https://doi.org/10.3390/atmos14030552
Chicago/Turabian StyleEyster, Harold N., and Brian Beckage. 2023. "Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model" Atmosphere 14, no. 3: 552. https://doi.org/10.3390/atmos14030552
APA StyleEyster, H. N., & Beckage, B. (2023). Arboreal Urban Cooling Is Driven by Leaf Area Index, Leaf Boundary Layer Resistance, and Dry Leaf Mass per Leaf Area: Evidence from a System Dynamics Model. Atmosphere, 14(3), 552. https://doi.org/10.3390/atmos14030552