Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change
Abstract
:1. Introduction
- (1)
- Investigating the tendencies of climate network measures, such as the degree, under the effects of global warming.
- (2)
- Identifying hot spots with an intensive increase in climate network measures over time.
- (3)
- Revealing critical regions that influence the identified hot spots under the effects of global warming.
2. Materials and Methods
2.1. Data
2.2. Methods
2.3. Network Measures
2.4. Mann–Kenddall Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christopher, B.F.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Marcia, M. Climate Change Impacts. Science 2013, 341, 435. [Google Scholar]
- Hunt, A.; Watkiss, P. Climate change impacts and adaptation in cities: A review of the literature. Clim. Chang. 2010, 104, 13–49. [Google Scholar] [CrossRef] [Green Version]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Kirilenko, A.P.; Sedjo, R.A. Climate Change Impacts on Forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Hinkel, J.; Aerts, J.C.H.; Brown, S.; Jiménez, J.A.; Lincke, D.; Nicholls, R.J.; Scussolini, P.; Sanchez-Arcilla, A.; Vafeidis, A.; Addo, K.A. The Ability of Societies to Adapt to Twenty-First-Century Sea-Level Rise. Nat. Clim. Change 2018, 8, 570–578. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Myles, R.A.; Vicente, R.B.; John, B.; Wolfgang, C.; Renate, C.; John, A.C.; Leon, C.; Qin, D.; Purnamita, D. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, Ii and Iii to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Ipcc: Geneva, Switzerland, 2014. [Google Scholar]
- Caesar, L.; Rahmstorf, S.; Robinson, A.; Feulner, G.; Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 2018, 556, 191–196. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef]
- Karzani, M.; Ghavidel, Y.; Farajzadeh, M. Temporal Changes in Lethal Temperatures Above 50 °C in the Northern Hemisphere. Pure Appl. Geophys. 2022, 179, 3377–3390. [Google Scholar] [CrossRef]
- Zerafati, H.; Ghavidel, Y.; Farajzadeh, M. Historical reconstruction and statistical survey on long-term temporal changes in temperatures above 50 °C in West Asia. Arab. J. Geosci. 2021, 14, 2242. [Google Scholar] [CrossRef]
- Falkner, R. The Paris Agreement and the new logic of international climate politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, Y.; Lu, B.; Fan, J.; Zhao, Z.; Chen, X. Network-Synchronization Analysis Reveals the Weakening Tropical Circulations. Geophys. Res. Lett. 2021, 48, e2021GL093582. [Google Scholar] [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2018, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Ganopolski, A. Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model. Clim. Chang. 1999, 43, 353–367. [Google Scholar] [CrossRef]
- Cox, P.M.; Richard, A.B.; Chris, D.J.; Steven, A.S.; Ian, J.T. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, P.; De Wolde, J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming. J. Clim. 1999, 12, 2169–2188. [Google Scholar] [CrossRef]
- Liu, T.; Chen, D.; Yang, L.; Meng, J.; Wang, Z.; Ludescher, J.; Fan, J.; Yang, S.; Chen, D.; Kurths, J.; et al. Teleconnections among tipping elements in the Earth system. Nat. Clim. Chang. 2023, 13, 67–74. [Google Scholar] [CrossRef]
- Shawky, M.; Ahmed, M.R.; Ghaderpour, E.; Gupta, A.; Achari, G.; Dewan, A.; Hassan, Q.K. Remote sensing-derived land surface temperature trends over South Asia. Ecol. Inform. 2023, 74, 101969. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Mazzanti, P.; Mugnozza, G.S.; Bozzano, F. Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103241. [Google Scholar] [CrossRef]
- Li, M.; Qin, Y.; Zhang, T.; Zhou, X.; Yi, G.; Bie, X.; Li, J.; Gao, Y. Climate Change and Anthropogenic Activity Co-Driven Vegetation Coverage Increase in the Three-North Shelter Forest Region of China. Remote Sens. 2023, 15, 1509. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Barabási, A.; Réka, A. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondel, V.D.; Jean-Loup, G.; Renaud, L.; Etienne, L. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, K.; Gozolchiani, A.; Havlin, S. Climate Networks around the Globe are Significantly Affected by El Niño. Phys. Rev. Lett. 2008, 100, 228501. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Climate network percolation reveals the expansion and weakening of the tropical component under global warming. Proc. Natl. Acad. Sci. USA 2018, 115, E12128–E12134. [Google Scholar] [CrossRef] [Green Version]
- Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Very Early Warning of Next El Niño. Proc. Natl. Acad. Sci. USA 2014, 111, 2064–2066. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA 2017, 114, 7543–7548. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Fan, J.; Ashkenazy, Y.; Bunde, A.; Havlin, S. Forecasting the magnitude and onset of El Niño based on climate network. New J. Phys. 2018, 20, 043036. [Google Scholar] [CrossRef]
- Boers, N.; Bookhagen, B.; Barbosa, H.M.J.; Marwan, N.; Kurths, J.; Marengo, J.A. Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun. 2014, 5, 5199. [Google Scholar] [CrossRef] [Green Version]
- Boers, N.; Bedartha, G.; Aljoscha, R.; Bodo, B.; Brian, H.; Jürgen, K. Complex Networks Reveal Global Pattern of Extreme-Rainfall Teleconnections. Nature 2019, 566, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Jingfang, F.; Meng, J.; Ludescher, J.; Zhaoyuan, L.; Surovyatkina, E.; Xiaosong, C.; Jürgen, K.; Schellnhuber, H.J. Network-Based Approach and Climate Change Benefits for Forecasting the Amount of Indian Monsoon Rainfall. J. Clim. 2022, 35, 1009–1020. [Google Scholar]
- Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2020, 896, 1–84. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Chen, F.; Li, C.; Ran, C.; Zhang, S. Identifying the Multi-Scale Influences of Climate Factors on Runoff Changes in a Typical Karst Watershed Using Wavelet Analysis. Land 2022, 11, 1284. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.R.; Kistler, W.; Collins, D.; Deaven, L.; Gandin, M.; Iredell, S.; Saha, G.; White, J.; Woollen, Y.; et al. The Ncep/Ncar 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Gozolchiani, A.; Havlin, S.; Yamasaki, K. Emergence of El Niño as an Autonomous Component in the Climate Network. Phys. Rev. Lett. 2011, 107, 148501. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin Press: Salisbury, UK, 1948. [Google Scholar]
- Wang, Y.; Gozolchiani, A.; Ashkenazy, Y.; Berezin, Y.; Guez, O.; Havlin, S. Dominant Imprint of Rossby Waves in the Climate Network. Phys. Rev. Lett. 2013, 111, 138501. [Google Scholar] [CrossRef] [Green Version]
- Guez, O.C.; Gozolchiani, A.; Havlin, S. Influence of autocorrelation on the topology of the climate network. Phys. Rev. E 2014, 90, 062814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vecchi, G.A.; Soden, B. Global Warming and the Weakening of the Tropical Circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Lin, H. Modification of the wintertime Pacific–North American pattern related North American climate anomalies by the Asian–Bering–North American teleconnection. Clim. Dyn. 2019, 53, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Zhiwei, Z.; Tim, L. A New Paradigm for Continental U.S. Summer Rainfall Variability: Asia–North America Teleconnection. J. Clim. 2016, 29, 7313–7327. [Google Scholar]
- Kelsey, M.; Kirtman, B.P. The Summer Asia–North America Teleconnection and Its Modulation by Enso in Community Atmosphere Model, Version 5 (Cam5). Clim. Dyn. 2022, 59, 2213–2230. [Google Scholar]
- Bin Wang, B.; Lee, M.-Y.; Xie, Z.; Lu, M.; Pan, M. A new Asian/North American teleconnection linking clustered extreme precipitation from Indian to Canada. Npj Clim. Atmos. Sci. 2022, 5, 90. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuai, H.; Yu, P.; Liu, W.; Zhang, Y.; Fan, J. Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change. Atmosphere 2023, 14, 692. https://doi.org/10.3390/atmos14040692
Kuai H, Yu P, Liu W, Zhang Y, Fan J. Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change. Atmosphere. 2023; 14(4):692. https://doi.org/10.3390/atmos14040692
Chicago/Turabian StyleKuai, Haiming, Ping Yu, Wenqi Liu, Yongwen Zhang, and Jingfang Fan. 2023. "Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change" Atmosphere 14, no. 4: 692. https://doi.org/10.3390/atmos14040692
APA StyleKuai, H., Yu, P., Liu, W., Zhang, Y., & Fan, J. (2023). Climate Network Analysis Detects Hot Spots under Anthropogenic Climate Change. Atmosphere, 14(4), 692. https://doi.org/10.3390/atmos14040692