Network Analysis Measuring the Impact of Volcanic Eruptions
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methods
2.3. Network Measures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poli, P.; Shapiro, N.M. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha’apai Explosion From Teleseismic Waves. Geophys. Res. Lett. 2022, 49, e2022GL098123. [Google Scholar] [CrossRef]
- IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis. Earth Planet. Sci. Lett. 2022, 591, 117639. [CrossRef]
- Global Sulfur Dioxide Monitoring Galleries. Available online: https://so2.gsfc.nasa.gov/tropomi_2019_now.html#2022 (accessed on 25 September 2022).
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Baldini, J.U.; Brown, R.J.; McElwaine, J.N. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? Sci. Rep. 2015, 5, 17442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, 50168. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Arseneault, D.; Boucher, É.; Churakova, O.V.; Gennaretti, F.; Crivellaro, A.; Hughes, M.K.; Kirdyanov, A.V.; Klippel, L.; Krusic, P.J.; et al. Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia 2020, 64, 125757. [Google Scholar] [CrossRef]
- Grattan, J.; Brayshay, M.; Sadler, J. Modelling the distal impacts of past volcanic gas emissions. Evidence of Europe-wide environmental impacts from gases emitted during the eruption of Italian and Icelandic volcanoes in 1783 [Vers la modélisation des impacts distaux des gaz d’anciennes éruptions volcaniques. Exemples européens liés à l’activité de volcans italiens et islandais en 1783]. Quaternaire 1998, 9, 25–35. [Google Scholar]
- Stothers, R.B. The great Tambora eruption in 1815 and its aftermath. Science 1984, 224, 1191–1198. [Google Scholar] [CrossRef]
- Robock, A. Snow and ice feedbacks prolong effects of nuclear winter. Nature 1984, 310, 667–670. [Google Scholar] [CrossRef]
- Mitchell, J.M., Jr. Recent secular changes of global temperature. Ann. New York Acad. Sci. 1961, 95, 235–250. [Google Scholar] [CrossRef]
- Robock, A.; Mass, C. The Mount St. Helens volcanic eruption of 18 May 1980: Large short-term surface temperature effects. Science 1982, 216, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Mass, C.; Robock, A. The short-term influence of the Mount St. Helens volcanic eruption on surface temperature in the Northwest United States. Mon. Weather. Rev. 1982, 110, 614–622. [Google Scholar] [CrossRef]
- Timmreck, C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 545–564. [Google Scholar] [CrossRef]
- Stenchikov, G.; Robock, A.; Ramaswamy, V.; Schwarzkopf, M.D.; Hamilton, K.; Ramachandran, S. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res. Atmos. 2002, 107, ACL-28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, F.; Li, J.; Duan, Y.; Zhu, C.; He, J. Potential Impact of Tonga Volcano Eruption on Global Mean Surface Air Temperature. J. Meteorol. Res. 2022, 36, 1–5. [Google Scholar] [CrossRef]
- Millan, L.; Santee, M.L.; Lambert, A.; Livesey, N.J.; Werner, F.; Schwartz, M.J.; Pumphrey, H.C.; Manney, G.L.; Wang, Y.; Su, H.; et al. The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophys. Res. Lett. 2022, 49, e2022GL099381. [Google Scholar] [CrossRef]
- Vömel, H.; Evan, S.; Tully, M. Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai. Science 2022, 377, 1444–1447. [Google Scholar] [CrossRef]
- Newman, M. Networks; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [CrossRef]
- Barabási, A.L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Havlin, S. Complex Networks: Structure, Robustness And Function; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025–1028. [CrossRef] [Green Version]
- Newman, M.E.J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 2001, 64, 016131. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, D.; Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 2013, 342, 1337–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925. [Google Scholar] [CrossRef] [Green Version]
- Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C. Synchronization in complex networks. Phys. Rep. 2008, 469, 93–153. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2021, 896, 1–84. [Google Scholar] [CrossRef] [PubMed]
- Ludescher, J.; Martin, M.; Boers, N.; Bunde, A.; Ciemer, C.; Fan, J.; Havlin, S.; Kretschmer, M.; Kurths, J.; Runge, J.; et al. Network-based forecasting of climate phenomena. Proc. Natl. Acad. Sci. USA 2021, 118, e1922872118. [Google Scholar] [CrossRef] [PubMed]
- Tsonis, A.A.; Swanson, K.L. Topology and Predictability of El Niño and La Niña Networks. Phys. Rev. Lett. 2008, 100, 228502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, K.; Gozolchiani, A.; Havlin, S. Climate Networks around the Globe are Significantly Affected by El Niño. Phys. Rev. Lett. 2008, 100, 228501. [Google Scholar] [CrossRef]
- Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. Complex networks in climate dynamics. Eur. Phys. J. Spec. Top. 2009, 174, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Donges, J.F.; Zou, Y.; Marwan, N.; Kurths, J. The backbone of the climate network. EPL Europhys. Lett. 2009, 87, 48007. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, M.; Marti, A.C.; Masoller, C. Inferring long memory processes in the climate network via ordinal pattern analysis. Chaos Interdiscip. J. Nonlinear Sci. 2011, 21, 013101. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.A.; Paczuski, M.; Davidsen, J. Interpretation of link fluctuations in climate networks during El Niño periods. EPL Europhys. Lett. 2013, 102, 48003. [Google Scholar] [CrossRef]
- Fan, J.; Meng, J.; Ashkenazy, Y.; Havlin, S.; Schellnhuber, H.J. Network analysis reveals strongly localized impacts of El Niño. Proc. Natl. Acad. Sci. USA 2017, 114, 7543–7548. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Meng, J.; Ludescher, J.; Li, Z.; Surovyatkina, E.; Chen, X.; Kurths, J.; Schellnhuber, H.J. Network-based approach and climate change benefits for forecasting the amount of indian monsoon rainfall. J. Clim. 2022, 35, 1009–1020. [Google Scholar]
- Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Improved El Niño forecasting by cooperativity detection. Proc. Natl. Acad. Sci. USA 2013, 110, 11742–11745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Very early warning of next El Niño. Proc. Natl. Acad. Sci. USA 2014, 111, 2064–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, N.; Bookhagen, B.; Marwan, N.; Kurths, J. Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim. Dyn. 2012, 39, 971–987. [Google Scholar] [CrossRef]
- Stolbova, V.; Martin, P.; Bookhagen, B.; Marwan, N.; Kurths, J. Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka. Nonlinear Process. Geophys. 2014, 21, 901–917. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Boers, N.; Pappenberger, F.; Kurths, J. Complex network approach for detecting tropical cyclones. Clim. Dyn. 2021, 57, 3355–3364. [Google Scholar] [CrossRef]
- Cheung, K.K.; Ozturk, U. Synchronization of extreme rainfall during the Australian summer monsoon: Complex network perspectives. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063117. [Google Scholar] [CrossRef]
- Boers, N.; Bookhagen, B.; Marwan, N.; Kurths, J.; Marengo, J. Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophys. Res. Lett. 2013, 40, 4386–4392. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, Y.; Meng, J.; Fan, J. Network Analysis Measuring the Impact of Volcanic Eruptions. Atmosphere 2022, 13, 1910. https://doi.org/10.3390/atmos13111910
Sun Y, Zhang Y, Meng J, Fan J. Network Analysis Measuring the Impact of Volcanic Eruptions. Atmosphere. 2022; 13(11):1910. https://doi.org/10.3390/atmos13111910
Chicago/Turabian StyleSun, Yu, Yuelong Zhang, Jun Meng, and Jingfang Fan. 2022. "Network Analysis Measuring the Impact of Volcanic Eruptions" Atmosphere 13, no. 11: 1910. https://doi.org/10.3390/atmos13111910
APA StyleSun, Y., Zhang, Y., Meng, J., & Fan, J. (2022). Network Analysis Measuring the Impact of Volcanic Eruptions. Atmosphere, 13(11), 1910. https://doi.org/10.3390/atmos13111910