Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Model
2.3. Freeze-Dry Cloud Scheme
3. Results
4. Summary and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Cowtan, K.; Way, R.G. Coverage Bias in the HadCRUT4 Temperature Series and Its Impact on Recent Temperature Trends. Q. J. R. Meteorol. Soc. 2014, 140, 1935–1944. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic Sea Ice Decline: Faster than Forecast. Wiley Online Libr. 2007, 34, 9501. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignesh, P.P.; Jiang, J.H.; Kishore, P.; Su, H.; Smay, T.; Brighton, N.; Velicogna, I. Assessment of CMIP6 Cloud Fraction and Comparison with Satellite Observations. Earth Sp. Sci. 2020, 7, e2019EA000975. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.L.; Lee, J.N. Arctic Low Cloud Changes as Observed by MISR and CALIOP: Implication for the Enhanced Autumnal Warming and Sea Ice Loss. J. Geophys. Res. Atmos. 2012, 117, 7107. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, J.M.; De Boer, G.; Shupe, M.D.; Spackman, J.R.; Wang, J.; Neiman, P.J.; Wick, G.A.; Hock, T.F.; Hood, R.E. Global Hawk Dropsonde Observations of the Arctic Atmosphere Obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR) Field Campaign. Atmos. Meas. Tech. 2014, 7, 3917–3926. [Google Scholar] [CrossRef] [Green Version]
- Hodson, D.L.R.; Keeley, S.P.E.; West, A.; Ridley, J.; Hawkins, E.; Hewitt, H.T. Identifying Uncertainties in Arctic Climate Change Projections. Clim. Dyn. 2013, 40, 2849–2865. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; You, Q.; Wu, F.; Chen, H.W.; Chen, D.; Cohen, J. Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. J. Clim. 2021, 34, 4871–4892. [Google Scholar] [CrossRef]
- Gettelman, A.; Hannay, C.; Bacmeister, J.T.; Neale, R.B.; Pendergrass, A.G.; Danabasoglu, G.; Lamarque, J.F.; Fasullo, J.T.; Bailey, D.A.; Lawrence, D.M.; et al. High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett. 2019, 46, 8329–8337. [Google Scholar] [CrossRef]
- Vavrus, S.; Waliser, D. An Improved Parameterization for Simulating Arctic Cloud Amount in the CCSM3 Climate Model. J. Clim. 2008, 21, 5673–5687. [Google Scholar] [CrossRef]
- Cesana, G.; Chepfer, H. How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett. 2012, 39, L20803. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.E.; Hillman, B.R.; Klein, S.A.; Zhang, Y.; Medeiros, B.; Pincus, R.; Gettelman, A.; Eaton, B.; Boyle, J.; Marchand, R.; et al. Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators. J. Clim. 2012, 25, 5190–5207. [Google Scholar] [CrossRef]
- Titchner, H.A.; Rayner, N.A. The Met Office Hadley Centre Sea Ice and Sea Surface Temperature Data Set, Version 2: 1. Sea Ice Concentrations. J. Geophys. Res. 2014, 119, 2864–2889. [Google Scholar] [CrossRef]
- Shaw, J.K.; McGraw, Z.; Bruno, O.; Storelvmo, T.; Hofer, S. Using Satellite Observations to Evaluate Model Representation of Arctic Mixed-Phase Clouds. Authorea 2022. Preprint. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Webb, M.J.; Bony, S.; Chepfer, H.; Dufresne, J.L.; Klein, S.A.; Zhang, Y.; Marchand, R.; Haynes, J.M.; Pincus, R.; et al. COSP: Satellite simulation software for model assessment. Bull. Am. Meteorol. Soc. 2011, 92, 1023–1043. [Google Scholar] [CrossRef]
- Evans, K.F.; Walter, S.J.; Heymsfield, A.J.; McFarquhar, G.M. Submillimeter-Wave Cloud Ice Radiometer: Simulations of Retrieval Algorithm Performance. J. Geophys. Res. Atmos. 2002, 107, AAC-2. [Google Scholar] [CrossRef]
- Larson, V.E. CLUBB-SILHS: A Parameterization of Subgrid Variability in the Atmosphere. arXiv 2017, arXiv:1711.03675. [Google Scholar] [CrossRef]
- Bogenschutz, P.A.; Gettelman, A.; Morrison, H.; Larson, V.E.; Craig, C.; Schanen, D.P. Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model. J. Clim. 2013, 26, 9655–9676. [Google Scholar] [CrossRef]
- Lewellen, W.S.; Yoh, S. Binormal Model of Ensemble Partial Cloudiness. J. Atmos. Sci. 1993, 50, 1228–1237. [Google Scholar] [CrossRef]
- Baek, E.-H.; Bae, J.; Sung, H.-J.; Jung, E.; Kim, B.-M.; Jeong, J.-H.; Bhatt, S.; Wang, M.; Baek, E.-H.; Bae, J.; et al. Characteristics of High-Latitude Climate and Cloud Simulation in Community Atmospheric Model Version 6 (CAM6). Atmosphere 2022, 13, 936. [Google Scholar] [CrossRef]
- Yao, B.; Liu, C.; Yin, Y.; Liu, Z.; Shi, C.; Iwabuchi, H.; Weng, F. Evaluation of Cloud Properties from Reanalyses over East Asia with a Radiance-Based Approach. Atmos. Meas. Tech. 2020, 13, 1033–1049. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Chen, X.; Overland, J.; Simmonds, I.; Wu, Y.; Zhang, P. Weakened Potential Vorticity Barrier Linked to Recent Winter Arctic Sea Ice Loss and Midlatitude Cold Extremes. J. Clim. 2019, 32, 4235–4261. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.; Sung, H.-J.; Baek, E.-H.; Choi, J.-H.; Lee, H.-J.; Kim, B.-M. Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic. Atmosphere 2023, 14, 522. https://doi.org/10.3390/atmos14030522
Bae J, Sung H-J, Baek E-H, Choi J-H, Lee H-J, Kim B-M. Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic. Atmosphere. 2023; 14(3):522. https://doi.org/10.3390/atmos14030522
Chicago/Turabian StyleBae, Jungeun, Hyun-Joon Sung, Eun-Hyuk Baek, Ji-Hun Choi, Hyo-Jung Lee, and Baek-Min Kim. 2023. "Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic" Atmosphere 14, no. 3: 522. https://doi.org/10.3390/atmos14030522
APA StyleBae, J., Sung, H. -J., Baek, E. -H., Choi, J. -H., Lee, H. -J., & Kim, B. -M. (2023). Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic. Atmosphere, 14(3), 522. https://doi.org/10.3390/atmos14030522