Enhancing Forecast Skill of Winter Temperature of East Asia Using Teleconnection Patterns Simulated by GloSea5 Seasonal Forecast Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Multiple Linear Regression (MLR) Model
2.3. Statistical Skill Score
3. Results
3.1. The Predictability Evaluation in Wintertime T2m of GloSea5
3.2. Predictability Evaluation in Teleconnection Patterns of GloSea5
3.3. Improved Predictions over T2m by Statistical Prediction Model of the Teleconnection Patterns
4. Discussion
5. Conclusions and Policy Implication
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, H.; Yan, W.; Elahi, E.; Cao, Y. Air pollution risks human mental health: An implication of two-stages least squares estimation of interaction effects. Environ. Sci. Pollut. Res. 2020, 27, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability experiments with a large numerical model. Tellus A Dyn. Meteorol. Oceanogr. 1982, 34, 505–513. [Google Scholar] [CrossRef]
- Palmer, T. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 2000, 63, 71–116. [Google Scholar] [CrossRef] [Green Version]
- Slingo, J.; Palmer, T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4751–4767. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Dirmeyer, P.A.; DelSole, T. Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett. 2011, 38, L24812. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim. Dyn. 2012, 39, 2957–2973. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, V. Predictability of Weather and Climate. Earth Space Sci. 2019, 6, 1043–1056. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Fan, K.; Yang, H. East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system. Clim. Dyn. 2017, 51, 2793–2805. [Google Scholar] [CrossRef]
- Pokhrel, S.; Hazra, A.; Chaudhari, H.S.; Saha, S.K.; Paulose, F.; Krishna, S.; Krishna, P.M.; Rao, S.A. Hindcast skill improvement in Climate Forecast System (CFSv2) using modified cloud scheme. Int. J. Clim. 2018, 38, 2994–3012. [Google Scholar] [CrossRef]
- Dai, H.; Fan, K. Skilful two-month-leading hybrid climate prediction for winter temperature over China. Int. J. Clim. 2020, 40, 4922–4943. [Google Scholar] [CrossRef]
- Luo, X.; Wang, B. How predictable is the winter extremely cold days over temperate East Asia? Clim. Dyn. 2017, 48, 2557–2568. [Google Scholar] [CrossRef]
- Wang, L.; Ting, M.; Kushner, P.J. A robust empirical seasonal prediction of winter NAO and surface climate. Sci. Rep. 2017, 7, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.J.; Scaife, A.A.; Hanna, E.; Jones, J.M.; Erdélyi, R. Simple Statistical Probabilistic Forecasts of the Winter NAO. Weather. Forecast 2017, 32, 1585–1601. [Google Scholar] [CrossRef] [Green Version]
- Golian, S.; Murphy, C.; Wilby, R.L.; Matthews, T.; Donegan, S.; Quinn, D.F.; Harrigan, S. Dynamical–statistical seasonal forecasts of winter and summer precipitation for the Island of Ireland. Int. J. Clim. 2022, 42, 5714–5731. [Google Scholar] [CrossRef]
- Rust, H.W.; Richling, A.; Bissolli, P.; Ulbrich, U. Linking teleconnection patterns to European temperature—A multiple linear regression model. Meteorol. Z. 2015, 24, 411–423. [Google Scholar] [CrossRef]
- MacLachlan, C.; Arribas, A.; Peterson, K.A.; Maidens, A.; Fereday, D.; Scaife, A.A.; Gordon, M.; Vellinga, M.; Williams, A.; Comer, R.E.; et al. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. 2015, 141, 1072–1084. [Google Scholar] [CrossRef]
- Lim, Y.-K.; Kim, H.-D. Comparison of the impact of the Arctic Oscillation and Eurasian teleconnection on interannual variation in East Asian winter temperatures and monsoon. Theor. Appl. Clim. 2015, 124, 267–279. [Google Scholar] [CrossRef]
- Wang, B.; Lee, J.-Y.; Kang, I.-S.; Shukla, J.; Park, C.-K.; Kumar, A.; Schemm, J.; Cocke, S.; Kug, J.-S.; Luo, J.-J.; et al. Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim. Dyn. 2009, 33, 93–117. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Hu, Z.-Z.; Jha, B.; Yang, S.; Zhu, J.; Shen, B.; Zhang, R. Variability and predictability of Northeast China climate during 1948–2012. Clim. Dyn. 2014, 43, 787–804. [Google Scholar] [CrossRef]
- Jung, M.-I.; Son, S.-W.; Choi, J.; Kang, H.-S. Assessment of 6-Month Lead Prediction Skill of the GloSea5 Hindcast Experiment. Atmosphere 2015, 25, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J.; Ahn, J.-B. Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature. Clim. Dyn. 2015, 46, 3205–3221. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.-K.; Kim, H.-D. Impact of the dominant large-scale teleconnections on winter temperature variability over East Asia. J. Geophys. Res. Atmos. 2013, 118, 7835–7848. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, L.; Zhou, W.; Chen, W. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Clim. Dyn. 2014, 42, 2817–2839. [Google Scholar] [CrossRef]
- Gao, T.; Yu, J.-Y.; Paek, H. Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theor. Appl. Clim. 2016, 129, 815–831. [Google Scholar] [CrossRef] [Green Version]
- Walters, D.N.; Best, M.J.; Bushell, A.C.; Copsey, D.; Edwards, J.M.; Falloon, P.D.; Harris, C.M.; Lock, A.P.; Manners, J.C.; Morcrette, C.J.; et al. The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev. 2011, 4, 919–941. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Milton, S.; Cullen, M.; Golding, B.; Mitchell, J.F.B.; Shelly, A. Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey. Bull. Am. Meteorol. Soc. 2012, 93, 1865–1877. [Google Scholar] [CrossRef]
- Madec, G.; Bourdallé-Badie, R.; Bouttier, P.-A.; Bricaud, C.; Bruciaferri, D.; Calvert, D.; Chanut, J.; Clementi, E.; Coward, A.; Delrosso, D.; et al. NEMO Ocean Engine Gurvan Madec, and the NEMO Team; Notes du Pôle de modélisation de l’Institut Pierre-Simon Laplace; IPSL: Portland, OR, USA, 2016; Volume 27, ISSN 1288-1619. [Google Scholar]
- Best, M.J.; Pryor, M.; Clark, D.B.; Rooney, G.G.; Essery, R.L.H.; Ménard, C.B.; Edwards, J.M.; Hendry, M.A.; Porson, A.; Gedney, N.; et al. The Joint UK Land Environment Simulator (JULES), model description–Part 1: Energy and water fluxes. Geosci. Model Dev. 2011, 4, 677–699. [Google Scholar] [CrossRef] [Green Version]
- Hunke, E.C.; Lipscomb, W.H.; Turner, A.K.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1 LA-CC-06-012. Fluid Dyn. Group Los Alamos Natl. Lab. 2010, 675, 500. [Google Scholar]
- Valcke, S. The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev. 2013, 6, 373–388. [Google Scholar] [CrossRef] [Green Version]
- Lea, D.J.; Mirouze, I.; Martin, M.J.; King, R.R.; Hines, A.; Walters, D.; Thurlow, M. Assessing a New Coupled Data Assimilation System Based on the Met Office Coupled Atmosphere–Land–Ocean–Sea Ice Model. Mon. Weather. Rev. 2015, 143, 4678–4694. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Heo, S.-I.; Hyun, Y.-K.; Ryu, Y.; Kang, H.-S.; Lim, Y.-J.; Kim, Y. An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5). Atmos. Korean Meteorol. Soc. 2019, 29, 257–267. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia-Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Salmerón, R.; García, C.B.; García, J. Variance Inflation Factor and Condition Number in multiple linear regression. J. Stat. Comput. Simul. 2018, 88, 2365–2384. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2018; Volumes 1–3, pp. 542–545. ISBN 9780128114322. [Google Scholar]
- Goddard, L.; Kumar, A.; Solomon, A.; Smith, D.; Boer, G.; Gonzalez, P.; Kharin, V.; Merryfield, W.; Deser, C.; Mason, S.J.; et al. A verification framework for interannual-to-decadal predictions experiments. Clim. Dyn. 2012, 40, 245–272. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Son, S.-W.; Ham, Y.-G.; Lee, J.-Y.; Kim, H.-M. Seasonal-to-Interannual Prediction Skills of Near-Surface Air Temperature in the CMIP5 Decadal Hindcast Experiments. J. Clim. 2016, 29, 1511–1527. [Google Scholar] [CrossRef]
- Allan, H. Murphy Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient. Mon. Weather. Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Lin, H.; Brunet, G.; Derome, J. Forecast Skill of the Madden–Julian Oscillation in Two Canadian Atmospheric Models. Mon. Weather. Rev. 2008, 136, 4130–4149. [Google Scholar] [CrossRef]
- Chevuturi, A.; Turner, A.G.; Johnson, S.; Weisheimer, A.; Shonk, J.K.P.; Stockdale, T.N.; Senan, R. Forecast skill of the Indian monsoon and its onset in the ECMWF seasonal forecasting system 5 (SEAS5). Clim. Dyn. 2021, 56, 2941–2957. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Clim. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Handorf, D.; Dethloff, K. How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 19777. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-J.; Kwon, M.; Kang, H.-W.; Author, C. Record-Breaking High Temperature in July 2021 over East Sea and Possible Mechanism. Atmos. Korean Meteorol. Soc. 2022, 32, 17–25. [Google Scholar] [CrossRef]
Reanalysis Data | ERA5 |
---|---|
Institute | ECMWF |
Period | 1979–2019 (41 years) |
Resolution | 0.25° 0.25° (interpolated at 1° intervals) |
Variables | 500 hPa geopotential height (Z500, gpm), surface temperature (T2m, K) |
Model Data | GloSea5 |
Institute | KMA |
Period | 1991–2016 (26 years) |
Number of ensembles | 3-ensemble members |
Resolution | 0.83° 0.56° (interpolated at 1° intervals) |
Variables | 500 hPa geopotential height (Z500, gpm), surface temperature (T2m, K) |
PNA | PE | NAO | EA | WP | EAWR | |
---|---|---|---|---|---|---|
Pattern Corr. | 0.92 | 0.74 | 0.82 | 0.71 | 0.75 | 0.73 |
PNA | PE | NAO | EA | WP | EAWR | |
---|---|---|---|---|---|---|
EA (East Asia) | −0.1 | 0.48 * | −0.3 | 0.59 * | 0.54 * | 0.43 * |
NE (Northern Europe) | −0.2 | 0.5 * | −0.75 * | 0.26 | 0.23 | −0.39 * |
Before | After (Applied MLR) | |||||
---|---|---|---|---|---|---|
ACC | RMSE | MSSS | ACC | RMSE | MSSS | |
EA (East Asia) | 0.19 | 1.37 | −6.08 | 0.44 (+0.25) | 0.74 (−0.63) | −5.71 (+0.37) |
NE (Northern Europe) | 0.42 | 2.07 | −0.60 | 0.75 (+0.33) | 1.39 (−0.68) | −0.69 (−0.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Kim, H.-R.; Noh, N.; Kim, K.-Y.; Kim, B.-M. Enhancing Forecast Skill of Winter Temperature of East Asia Using Teleconnection Patterns Simulated by GloSea5 Seasonal Forecast Model. Atmosphere 2023, 14, 438. https://doi.org/10.3390/atmos14030438
Lee Y, Kim H-R, Noh N, Kim K-Y, Kim B-M. Enhancing Forecast Skill of Winter Temperature of East Asia Using Teleconnection Patterns Simulated by GloSea5 Seasonal Forecast Model. Atmosphere. 2023; 14(3):438. https://doi.org/10.3390/atmos14030438
Chicago/Turabian StyleLee, Yejin, Ha-Rim Kim, Namkyu Noh, Ki-Young Kim, and Baek-Min Kim. 2023. "Enhancing Forecast Skill of Winter Temperature of East Asia Using Teleconnection Patterns Simulated by GloSea5 Seasonal Forecast Model" Atmosphere 14, no. 3: 438. https://doi.org/10.3390/atmos14030438
APA StyleLee, Y., Kim, H. -R., Noh, N., Kim, K. -Y., & Kim, B. -M. (2023). Enhancing Forecast Skill of Winter Temperature of East Asia Using Teleconnection Patterns Simulated by GloSea5 Seasonal Forecast Model. Atmosphere, 14(3), 438. https://doi.org/10.3390/atmos14030438