Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Methods
3.3.1. CASA Model
3.3.2. Sen + Mann–Kendall Trend Analysis
3.3.3. Drivers of NPP Trends
4. Results
4.1. Spatial Variation Characteristics of NPP
4.2. Temporal Variation Characteristics of NPP
4.3. Driving Factors of Changes in NPP Trends
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, D.; Zhou, Y.; Guo, J.; Chao, Z.; Guo, X. Relationship between net primary productivity and soil water content in the Shule River Basin. Catena 2022, 208, 105770. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, J.; Zhao, X.; Tang, Z.; Zhu, J.; Fang, J. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ. Res. Lett. 2019, 14, 124009. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, D.; Guo, J.; Chao, Z.; Meng, X. Assessing the impact of land conversion and management measures on the net primary productivity in the Bailong River Basin, in China. Catena 2021, 207, 105672. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Liu, J.; Jiao, L.; Lian, X.; Xu, Z.; Zhou, Z. Assessing the comprehensive impacts of different urbanization process on vegetation net primary productivity in Wuhan, China, from 1990 to 2020. Sustain. Cities Soc. 2021, 75, 103295. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Chen, X.; Zhao, X.-L.; Lv, D.-J.; Zhang, Y. Assessing the impact of land surface temperature on urban net primary productivity increment based on geographically weighted regression model. Sci. Rep. 2021, 11, 22282. [Google Scholar] [CrossRef]
- Zhou, Y.; Zou, S.; Duan, W.; Chen, Y.; Takara, K.; Di, Y. Analysis of energy carbon emissions from agroecosystems in Tarim River Basin, China: A pathway to achieve carbon neutrality. Appl. Energy 2022, 325, 119842. [Google Scholar] [CrossRef]
- Okonkwo, C.; Demoz, B.; Onyeukwu, K. Characteristics of drought indices and rainfall in Lake Chad Basin. Int. J. Remote Sens. 2013, 34, 7945–7961. [Google Scholar] [CrossRef]
- Babamaaji, R.A.; Lee, J. Land use/land cover classification of the vicinity of Lake Chad using NigeriaSat-1 and Landsat data. Environ. Earth Sci. 2014, 71, 4309–4317. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 6317. [Google Scholar] [CrossRef] [Green Version]
- Nwilo, P.; Olayinka, D.; Okolie, C.; Emmanuel, E.; Orji, M.; Daramola, O. Impacts of land cover changes on desertification in northern Nigeria and implications on the Lake Chad Basin. J. Arid Environ. 2020, 181, 104190. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Agutu, N.O.; Okwuashi, O.; Ferreira, V.G. Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. J. Hydrol. 2016, 540, 106–128. [Google Scholar] [CrossRef] [Green Version]
- Lilje, J.; Mosler, H.-J. Effects of a behavior change campaign on household drinking water disinfection in the Lake Chad basin using the RANAS approach. Sci. Total Environ. 2018, 619, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Lai, C.; Wu, X.; Zeng, Z.; Chen, X.; Lian, Y. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, S.; AghaKouchak, A.; Huang, Y.; Li, Y.; Qin, D.; Xie, A.; Li, S. Broad consistency between satellite and vegetation model estimates of net primary productivity across global and regional scales. J. Geophys. Res. Biogeosciences 2018, 123, 3603–3616. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Cheng, Y.; Ju, W.; Chen, H.Y.; Ruan, H. Afforestation promotes the enhancement of forest LAI and NPP in China. For. Ecol. Manag. 2020, 462, 117990. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP using three models compared with MODIS-NPP data over China. PloS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Han, B.; Yang, F.; Chen, S.; Liu, Y.; Yang, W. Determining the contributions of climate change and human activities to the vegetation NPP dynamics in the Qinghai-Tibet Plateau, China, from 2000 to 2015. Environ. Monit. Assess. 2020, 192, 663. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef]
- Lunyolo, L.D.; Khalifa, M.; Ribbe, L. Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda. Sci. Total Environ. 2021, 753, 142549. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Jiang, T.; Tan, M.; Hu, M.; Liu, Y.; Zeng, W. Response of net primary production to land use and climate changes in the middle-reaches of the Heihe River Basin. Ecol. Evol. 2019, 9, 4651–4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Chen, S.-T.; Guo, B.; Zhang, R.; Zang, W.-Q.; Wei, C.-X.; Wu, H.-W.; Yang, X.; Zhen, X.-Y.; Li, X.; Zhang, D.-F. Quantitatively determine the dominant driving factors of the spatial—Temporal changes of vegetation npp in the hengduan mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J. Regional contributions to interannual variability of net primary production and climatic attributions. Agric. For. Meteorol. 2021, 303, 108384. [Google Scholar] [CrossRef]
- Wakdok, S.S.; Bleischwitz, R. Climate Change, Security, and the Resource Nexus: Case Study of Northern Nigeria and Lake Chad. Sustainability 2021, 13, 10734. [Google Scholar] [CrossRef]
- Okpara, U.T.; Stringer, L.C.; Dougill, A.J. Integrating climate adaptation, water governance and conflict management policies in lake riparian zones: Insights from African drylands. Environ. Sci. Policy 2018, 79, 36–44. [Google Scholar] [CrossRef]
- Nagabhatla, N.; Brahmbhatt, R. Geospatial Assessment of water-migration scenarios in the context of sustainable development goals (SDGs) 6, 11, and 16. Remote Sens. 2020, 12, 1376. [Google Scholar] [CrossRef]
- Nagabhatla, N.; Cassidy-Neumiller, M.; Francine, N.N.; Maatta, N. Water, conflicts and migration and the role of regional diplomacy: Lake Chad, Congo Basin, and the Mbororo pastoralist. Environ. Sci. Policy 2021, 122, 35–48. [Google Scholar] [CrossRef]
- Jie, T.; Junnan, X.; Yichi, Z.; Weiming, C.; Yuchuan, H.; Chongchong, Y.; Wen, H. Quantitative assessment of the effects of climate change and human activities on grassland NPP in Altay Prefecture. J. Resour. Ecol. 2021, 12, 743–756. [Google Scholar] [CrossRef]
- Liu, H.; Cao, L.; Jia, J.; Gong, H.; Qi, X.; Xu, X. Effects of land use changes on the nonlinear trends of net primary productivity in arid and semiarid areas, China. Land Degrad. Dev. 2021, 32, 2183–2196. [Google Scholar] [CrossRef]
- Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial–temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 718. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, W.; Wang, Y.; Wang, Y.; Wang, H.; Wang, Y.; Zhu, L.; Yang, R. Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. J. Earth Syst. Sci. 2020, 129, 24. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [Google Scholar] [CrossRef]
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Assessing the effects of grazing on variations of vegetation NPP in the Xilingol Grassland, China, using a grazing pressure index. Ecol. Indic. 2018, 88, 372–383. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Mahmood, R.; Jia, S. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Sci. Total Environ. 2019, 675, 122–140. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.-I. Evaluation of sentinel-2 and landsat 8 images for estimating chlorophyll-a concentrations in lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, W.; Zhang, Y. Seasonally and spatially varied controls of climatic factors on net primary productivity in alpine grasslands on the Tibetan Plateau. Glob. Ecol. Conserv. 2020, 21, e00814. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, W.; Zhang, Y. Direct and lagged effects of spring phenology on net primary productivity in the alpine grasslands on the Tibetan Plateau. Remote Sens. 2020, 12, 1223. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Li, M.; Ren, F.; Tian, L. Estimation and Spatio-Temporal Change Analysis of NPP in Subtropical Forests: A Case Study of Shaoguan, Guangdong, China. Remote Sens. 2022, 14, 2541. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the impacts of drought on net primary productivity of global land biomes in different climate zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Leroux, L.; Bégué, A.; Seen, D.L.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Coe, M.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Bégué, A.; Vintrou, E.; Ruelland, D.; Claden, M.; Dessay, N. Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Glob. Environ. Change 2011, 21, 413–420. [Google Scholar] [CrossRef]
- Scoones, I. Review of The End of Desertification? Disputing Environmental Change in the Drylands by Roy H. Behnke and Michael Mortimore; Springer: Berlin, Germany, 2018. [Google Scholar]
- Biro, K.; Pradhan, B.; Buchroithner, M.; Makeschin, F. Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degrad. Dev. 2013, 24, 90–102. [Google Scholar] [CrossRef]
- Ardö, J.; Tagesson, T.; Jamali, S.; Khatir, A. MODIS EVI-based net primary production in the Sahel 2000–2014. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 35–45. [Google Scholar] [CrossRef]
- Abdi, A.; Seaquist, J.; Tenenbaum, D.; Eklundh, L.; Ardö, J. The supply and demand of net primary production in the Sahel. Environ. Res. Lett. 2014, 9, 094003. [Google Scholar] [CrossRef]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenne, N.; Lambin, E. A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agric. Ecosyst. Environ. 2001, 85, 145–161. [Google Scholar] [CrossRef]
- Epule, E.T.; Peng, C.; Lepage, L.; Chen, Z. The causes, effects and challenges of Sahelian droughts: A critical review. Reg. Environ. Change 2014, 14, 145–156. [Google Scholar] [CrossRef]
- Epule, T.E.; Ford, J.D.; Lwasa, S.; Lepage, L. Climate change adaptation in the Sahel. Environ. Sci. Policy 2017, 75, 121–137. [Google Scholar] [CrossRef]
- Ugbaje, S.U.; Odeh, I.O.; Bishop, T.F.; Li, J. Assessing the spatio-temporal variability of vegetation productivity in Africa: Quantifying the relative roles of climate variability and human activities. Int. J. Digit. Earth 2017, 10, 879–900. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Dangal, S.R.; Tao, B.; Yang, J.; Tian, H. Recent patterns of terrestrial net primary production in Africa influenced by multiple environmental changes. Ecosyst. Health Sustain. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Olokeogun, O.S.; Ayanlade, A.; Popoola, O.O. Assessment of riparian zone dynamics and its flood-related implications in Eleyele area of Ibadan, Nigeria. Environ. Syst. Res. 2020, 9, 6. [Google Scholar] [CrossRef]
- Borisade, T.V.; Odiwe, A.I.; Akinwumiju, A.S.; Uwalaka, N.O.; Orimoogunje, O.I. Assessing the impacts of land use on riparian vegetation dynamics in Osun State, Nigeria. Trees, Forests and People 2021, 5, 100099. [Google Scholar] [CrossRef]
- Petrakis, R.E.; Van Leeuwen, W.J.; Villarreal, M.L.; Tashjian, P.; Dello Russo, R.; Scott, C.A. Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande. Land 2017, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.; Becker, P.; Uvo, C.B. Drivers of abrupt and gradual changes in agricultural systems in Chad. Reg. Environ. Change 2020, 20, 75. [Google Scholar] [CrossRef]
Data | Resources | Resolution/m | Period |
---|---|---|---|
Land Cover | ESA CCI | 300 | 2001–2020 |
NDVI | MOD13A1 | 500 | 2001–2020 |
Potential Evapotranspiration | TerraClimate | 4638.3 | 2001–2020 |
Total Solar Radiation | TerraClimate | 4638.3 | 2001–2020 |
Evapotranspiration | TerraClimate | 4638.3 | 2001–2020 |
Precipitation | TerraClimate | 4638.3 | 2001–2020 |
Surface Temperature | MOD11A1 | 1000 | 2001–2020 |
Land Cover Type | ESA CCI-LC Codes | Name |
---|---|---|
Croplands | 10,11,12 | Cropland, rainfed |
20 | Cropland, irrigated | |
30 | cropland (>50%)/natural vegetation (<50%) | |
Forest | 50 | Tree cover, broadleaved, evergreen (>15%) |
60,61 | Tree cover, broadleaved, deciduous (>15%) | |
70,71,72 | Tree cover, needle leaved, evergreen (>15%) | |
80,81 | Tree cover, needle leaved, deciduous (>15%) | |
90 | Tree cover, broadleaved and needle leaved | |
100 | tree and shrub (>50%)/herbaceous (<50%) | |
Grasslands | 40 | natural vegetation (>50%)/cropland (<50%) |
110 | herbaceous (>50%)/tree and shrub (<50%) | |
120,122 | Shrubland | |
130 | Grassland | |
140 | Lichens and mosses | |
150,153 | Sparse vegetation (tree, shrub, herbaceous) | |
Wetlands | 160,170 | Tree cover, flooded |
180 | Shrub or herbaceous, flooded | |
Artificial areas | 190 | Urban areas |
Bare lands | 200,201,202 | Bare areas |
220 | Permanent snow and ice | |
Water | 210 | Water bodies |
NPP Trend (p Value < 0.05) | Pearson Correlation Coefficient | Residual Trend (p Value < 0.05) | Interpretation of the NPP Trend |
---|---|---|---|
Positive NPP Trend (slope > 0) | r > 0.49 | Slope > 0 | Precipitation and Human Activities |
r > 0.49 | Slope < 0 or Slope (p value > 0.05) | Precipitation | |
r < 0.49 | / | Human Activities | |
Negative NPP Trend (slope < 0) | r > 0.49 | Slope < 0 | Precipitation and Human Activities |
r > 0.49 | Slope > 0 or Slope (p value > 0.05) | Precipitation | |
r < 0.49 | / | Human Activities |
Croplands | Forest | Grasslands | Wetlands | Artificial Areas | Bare Lands | Water |
---|---|---|---|---|---|---|
377,083.06 | 241,672.65 | 511,999.90 | 13,882.43 | 1418.47 | 141,016.48 | 5117.36 |
29.18% | 18.70% | 39.62% | 1.07% | 0.11% | 10.91% | 0.4% |
Data | Croplands | Forest | GRASSLANDS | Wetlands | Artificial Areas | Bare Lands | Water |
---|---|---|---|---|---|---|---|
NDVI | 0.32 | 0.57 | 0.32 | 0.46 | 0.29 | 0.10 | 0.22 |
Potential Evapotranspiration (mm) | 2158.41 | 1817.38 | 2210.86 | 2289.27 | 1995.92 | 2498.39 | 2133.22 |
Total Solar Radiation (W/m2) | 2961.26 | 2961.88 | 3045.06 | 3110.91 | 2818.15 | 3139.70 | 3057.57 |
Evapotranspiration (mm) | 588.79 | 853.58 | 508.41 | 340.53 | 679.01 | 110.79 | 578.49 |
Precipitation (mm) | 677.26 | 1029.74 | 570.61 | 360.07 | 824.81 | 116.74 | 643.55 |
Surface Temperature (°C) | 39.09 | 33.81 | 39.18 | 32.68 | 37.08 | 39.86 | 31.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Zhou, Y.; Lei, J.; Zhou, N. Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model. Atmosphere 2023, 14, 232. https://doi.org/10.3390/atmos14020232
Fu S, Zhou Y, Lei J, Zhou N. Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model. Atmosphere. 2023; 14(2):232. https://doi.org/10.3390/atmos14020232
Chicago/Turabian StyleFu, Shilin, Yiqi Zhou, Jiaqiang Lei, and Na Zhou. 2023. "Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model" Atmosphere 14, no. 2: 232. https://doi.org/10.3390/atmos14020232
APA StyleFu, S., Zhou, Y., Lei, J., & Zhou, N. (2023). Changes in the Spatiotemporal of Net Primary Productivity in the Conventional Lake Chad Basin between 2001 and 2020 Based on CASA Model. Atmosphere, 14(2), 232. https://doi.org/10.3390/atmos14020232