
Citation: Fu, S.; Zhou, Y.; Lei, J.;

Zhou, N. Changes in the

Spatiotemporal of Net Primary

Productivity in the Conventional

Lake Chad Basin between 2001 and

2020 Based on CASA Model.

Atmosphere 2023, 14, 232. https://

doi.org/10.3390/atmos14020232

Academic Editor: Zuntao Fu

Received: 8 December 2022

Revised: 18 January 2023

Accepted: 19 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Changes in the Spatiotemporal of Net Primary Productivity in
the Conventional Lake Chad Basin between 2001 and 2020
Based on CASA Model
Shilin Fu 1,2,†, Yiqi Zhou 2,3,†, Jiaqiang Lei 1,2 and Na Zhou 1,2,*

1 National Engineering Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology
and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 National Key Laboratory of Arid Area Ecological Security and Sustainable Development, Xinjiang Institute of

Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
* Correspondence: zndesert@ms.xjb.ac.cn
† These authors contributed equally to this work.

Abstract: Accurate estimation of vegetation Net Primary Productivity (NPP) has important theoretical
and practical significance for ecological environment governance, carbon cycle research, and the
rational development and utilization of natural resources. In this study, the spatial characteristics,
temporal changes, and driving factors of NPP in the Conventional Lake Chad Basin (CLCB) were
based on MODIS data by constructing a Carnegie Ames Stanford Approach (CASA) model and
using a combination of Residual trends (RESTREND) and correlation analysis. The results showed
that from 2001 to 2020, the NPP of the CLCB decreased annually (1.14 g C/m2), mainly because of
overgrazing, deforestation, and large-scale irrigation. We conducted a driving factor analysis and
found that the main influencing factor of the NPP of the CLCB is high-intensity human activities,
including farmland reclamation and animal husbandry. Although the impact of climate change on
NPP is not obvious in the short term, climate change may help recover NPP in the long term. The
continued reduction in NPP has greatly increased the difficulty of regreening the Sahel; the increase
in population density and rapid urbanization have led are major contributing factors to this. Our
findings have important implications for the continued implementation of stringent revegetation
policies. However, owing to limited data and methods, only the overall change trend of NPP was
obtained, and comprehensive follow-up studies are needed.

Keywords: net primary productivity; CASA model; conventional Lake Chad Basin; climate change

1. Introduction

Vegetation net primary productivity (NPP), which refers to the net accumulation of
organic matter produced by photosynthesis per unit area of green plants [1], is not only a key
indicator for considering climate change but also an important factor reflecting vegetation
activities [2,3]. In addition, the study of NPP is of great significance for the rational use of
vegetation resources, development of vegetation production potential, and realization of
maximum vegetation yield [4,5]. NPP is affected by human and natural factors, and climate
change is one of the primary drivers of interannual fluctuations in NPP [6]. The 2021 Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) concluded
that average global land and ocean temperatures have increased by approximately 1.09 ◦C
over the past decade (2011–2020) compared to the period 1850–1900, and the temperature
increase is particularly obvious in arid and semi-arid regions [7]. Therefore, exploring the
spatiotemporal variability of ecosystem NPP and its driving mechanisms under climate
change conditions can help humans manage and utilize natural resources more effectively.

The Chad Basin in Africa is located in the center of the Sahel region, and desertification
is very in this area serious [8,9]. The Conventional Lake Chad Basin (CLCB) is the most
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active area in the Chad Basin, and the water supply to the Chad Basin comes from this area,
which belongs to the Lake Chad Basin Committee [10]. Owing to climate change, more
than 90% of the water in the CLCB is lost during heat and evaporation [11]. Population
growth, uncontrolled irrigation in surrounding areas, desertification, deforestation, and
drought have had a significant impact on local livelihoods and survival. In recent years,
with the implementation of a series of policies, the habitat quality of the CLCB has been
greatly improved, which has promoted the recovery of regional vegetation and the growth
of carbon sequestration. However, the specific impacts of climate change and human
activities on vegetation have not been systematically analyzed [12,13]. Therefore, exploring
the dynamic changes of NPP in the traditional watershed of the CLCB has important
guiding significance and reference value for monitoring the ecological environment and
the formulation of ecological restoration plans in this area.

This study attempted to answer the following questions: What is the spatiotemporal
distribution of NPP in the CLCB? Based on the background of climate change, what is the
changing trend of NPP in the CLCB? According to the current changing trend of NPP, what
are the driving factors of NPP in the CLCB, and how does the driving effect manifest?

In response to the above three issues, based on the multi-source remote sensing data
from 2001 to 2020, we combined the Carnegie Ames Stanford Approach (CASA) model
and the Mann–Kendall trend analysis method to estimate the vegetation NPP in the CLCB
to analyze its spatiotemporal changes and trends. Meanwhile, the relative contribution of
different driving factors, such as climatic factors and human activities, to the change in
vegetation NPP was explored using the Residual trends (RESTREND) method.

The rest of the paper is organized as follows: Section 2 presents a literature review;
Section 3 presents the research domain, methods, and data, including the method used to
construct the CASA model, the RESTREND method, and data sources; Section 4 presents
the results of this study; Section 5 discusses the results; and Section 6 concludes the paper.

2. Literature Review

In recent years, many studies have investigated the interannual variation of NPP
from multiple fields and different perspectives [14,15], and multiple studies have been
conducted at the national [16,17], ecosystem [18,19], and land use levels [14,20,21]. For
example, [22] revealed the characteristics of land-use change in the Yangtze River Basin and
its driving effect on NPP, which is of great significance for understanding the ecological
environmental effects of the Yangtze River Basin. Based on the center of gravity model
and geographic detectors, [23] determined the main driving factors of the spatiotemporal
changes in vegetation NPP in the Hengduan Mountains from 2000 to 2015 and found
that NPP and precipitation were negatively correlated. Based on the CASA model and
long-term NDVI dataset, [24] quantified the annual NPP of China’s terrestrial ecosystems
and identified the main climate drivers at different scales.

Currently, although human activity has been shown to be one of the causes of global
vegetation loss, this is not the case at the CLCB [25]. Since the United Nations Sustainable
Development Summit jointly adopted the “2030 Agenda for Sustainable Development,”
a series of restoration and development projects have been implemented in the CLCB,
such as the poverty alleviation project (Rehabilitation and Resilience Building Programme
for Socio-Ecological Systems in the Lake Chad Basin, PRESIBALT) formulated by the
Lake Chad Basin Committee and the Economic Recovery Project (Lake Chad Inclusive
Economic and Social Recovery Project, RESLAC), which created conditions for continuous
optimization and an increase in NPP [26,27]. However, not all projects are conducive
to restoring vegetation productivity. Several studies have reported that many problems
remain in the CLCB, such as water resource conflicts and population displacement due to
increased resource pressure and unequal environments, which require specific planning
by the African Union and international agencies [28]. Therefore, in addition to climate
change, human activities can also be considered as key factors affecting the spatiotemporal
distribution and trend changes of NPP.
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Multiple linear regression and correlation analysis methods, such as the Pearson corre-
lation coefficient [29], Spearman coefficient [30], and Mann–Kendall trend analysis [31,32],
are usually used to explore the relationship between vegetation growth and natural and
human factors. [33] used Sen’s slope and sensitivity analysis to explore the correlation
between climate factors and NPP, using the upper mountainous and oasis areas in the
middle and lower reaches of the Shiyang River Basin as the research area. The results
showed that NPP was extremely sensitive to precipitation, relative humidity, and net so-
lar radiation. [34] evaluated the impact of climate change and land use on regional NPP,
analyzed the spatiotemporal distribution pattern and dynamic change characteristics of
NPP under a long-term series in Anhui Province, China, and found that the NPP change
of different land use types was related to climate factors, land cover area, and vegeta-
tion type. [35] used the residual method to identify and normalize precipitation-induced
changes in vegetation NPP. They found that reducing grazing pressure had a positive effect
on vegetation productivity; that is, grazing was the main driving factor of vegetation NPP
changes in the Xilingol Grassland. [36] analyzed the relative contributions of human activi-
ties and climate change to China’s NPP based on the two-step method of residual trend
analysis (RESTREND) and concluded that precipitation plays a decisive role in vegetation
change in arid and semi-arid regions. In addition, the temperature is the dominant factor in
alpine vegetation dynamics, and solar radiation is beneficial to vegetation growth in most
parts of China.

Based on a summary of previous studies, we identified research gaps from three
perspectives. First, due to the limitation of field data accuracy and workload, previous
studies have mainly focused on relatively developed or well-developed cities and national-
scale studies, while only a handful of studies have examined changes in the heart of the
Lake Chad Basin in Africa’s Sahel region, where desertification is so severe that vegetation
production potential needs to be assessed. Second, many studies have used NDVI to assess
regional vegetation productivity; however, in areas with little vegetation coverage, NDVI
is insensitive to vegetation changes [37]. However, NPP estimates are also affected by
data quality, interpolation methods, and choice of the study area. Previous studies have
shown large discrepancies in the computational results, even for those based on the same
model [2]. Third, although existing studies have explored the main driving factors of NPP,
commonly used segmental regression models have overfitting problems, and the addition
of model parameters is highly artificial, leading to calculation errors in NPP.

First, this study constructed the CASA model to quantify the spatiotemporal distri-
bution and variation of vegetation NPP in the CLCB from 2001 to 2020. Second, based
on the spatiotemporal distribution of NPP, the Sen + Mann–Kendall method was used to
obtain the changing trend of NPP. Third, in the selection of driving factor analysis methods,
both the RUE and RESTREND methods are able to distinguish the two major types of
factors, natural factors, and human factors, to a certain extent. However, both methods
assume a linear relationship between vegetation productivity and rainfall, which is not
linear in the semiarid Sahel. Therefore, this study combined trend analysis, correlation
analysis, and residual trend analysis to construct a classification framework to distinguish
the climatic factors that cause vegetation changes in the regular Lake Chad Basin from other
factors. The findings of this study can be applied to ecological risk assessments and future
management of ecological restoration projects in the context of global change, providing
new and timely insights into vegetation restoration of ecosystems in poor, arid regions,
thereby facilitating the implementation of strict environmental control policies. This study
could inform the development of sustainable environmental management programs to
control the malign changes in vegetation productivity in the context of climate change in
arid regions.
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3. Materials and Methods
3.1. Study Area

The Lake Chad Basin (LCB) is one of the largest inland basins in the world, covering
approximately 8% of Africa (2.5 × 106 km2), mainly located between 6.85◦–24.45◦ E and
5.19◦–25.29◦ N (Figure 1). The LCB is a transboundary basin spanning eight countries: the
Central African Republic, Chad, Libya, Niger, Nigeria, Algeria, Cameroon, and Sudan. In
2012, the population of LCB was estimated to be approximately 45 million [38]. Chad is the
country most economically dependent on LCB resources, with 91% of the population living
in the LCB. Nigeria has more than 26 million people living in the LCB. Recurring droughts,
decreased rainfall, and degradation of vegetation cover has resulted in drastic changes in
the environmental conditions of the region. The drying up of the LCB, the encroachment of
the desert, and the decline of agriculture, livestock, and fisheries threaten the social and
economic well-being of more than 22 million people in the basin [39]. The Conventional
Lake Chad Basin (CLCB) is the most active area in the LCB, and the entire water supply to
the LCB comes from this area, which belongs to the Lake Chad Basin Commission (LCBC).
The CLCB accounts for approximately 40% (1.29 × 106 km2) of the LCB. Since the 1960s,
the surface area of the CLCB has decreased annually due to climate variability and various
human activities (mainly agriculture). In impoverished regions, especially those in Africa,
reduced river runoff has had severe ecosystem impacts, and there is an urgent need to
estimate the NPP of vegetation in the CLCB and explore the main drivers of change.
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Figure 1. Schematic of the study area.

3.2. Data Sources

The research data selected in this study included seven types of natural elements:
surface temperature, evapotranspiration, potential evapotranspiration, NDVI, total solar
radiation, precipitation, and land cover. Except for the land cover data obtained directly
using the European Space Agency’s Climate Change Initiative (CCI) project data, other
data were preprocessed through the Google Earth Engine (GEE) such as splicing, cropping,
and coefficient conversion before subsequent data analysis. Evapotranspiration, potential
evapotranspiration, total solar radiation, and precipitation were obtained from the Terra-
Climate dataset. MODIS MOD11A1 and MOD13A1 data products were used for land
surface temperature and NDVI, respectively. The specific years of use and spatial resolution
of the data are listed in Table 1. We reclassified ESA CCI land cover data into 7 categories
based on Table 2.
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Table 1. Data sources and basic characteristics.

Data Resources Resolution/m Period

Land Cover ESA CCI 300 2001–2020
NDVI MOD13A1 500 2001–2020

Potential
Evapotranspiration TerraClimate 4638.3 2001–2020

Total Solar Radiation TerraClimate 4638.3 2001–2020
Evapotranspiration TerraClimate 4638.3 2001–2020

Precipitation TerraClimate 4638.3 2001–2020
Surface Temperature MOD11A1 1000 2001–2020

Table 2. Land cover reclassification based on the ESA-CCI land cover dataset.

Land Cover Type ESA CCI-LC Codes Name

Croplands
10,11,12 Cropland, rainfed

20 Cropland, irrigated
30 cropland (>50%)/natural vegetation (<50%)

Forest

50 Tree cover, broadleaved, evergreen (>15%)
60,61 Tree cover, broadleaved, deciduous (>15%)

70,71,72 Tree cover, needle leaved, evergreen (>15%)
80,81 Tree cover, needle leaved, deciduous (>15%)

90 Tree cover, broadleaved and needle leaved
100 tree and shrub (>50%)/herbaceous (<50%)

Grasslands

40 natural vegetation (>50%)/cropland (<50%)
110 herbaceous (>50%)/tree and shrub (<50%)

120,122 Shrubland
130 Grassland
140 Lichens and mosses

150,153 Sparse vegetation (tree, shrub, herbaceous)

Wetlands
160,170 Tree cover, flooded

180 Shrub or herbaceous, flooded
Artificial areas 190 Urban areas

Bare lands
200,201,202 Bare areas

220 Permanent snow and ice
Water 210 Water bodies

3.3. Methods
3.3.1. CASA Model

In the CASA model, NPP is calculated as the product of absorbed photosynthetically
active radiation (APAR) and light use efficiency (ε) [40]. This study used the improved
CASA model method to calculate the annual NPP value of the study area from 2001
to 2020 [41].

The main calculation method of the model is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

FPAR(x, t) =
NDVI(x, t)− NDVIi,min

NDVIi,max − NDVIi,min
× (FPARmax − FPARmin) + FPARmin (3)

where NPP(x, t) is the NPP (gC m−2) of pixel x in month t; ε(x, t) represents the actual
value of the light energy utilization rate of pixel x in month t, which can be obtained by
estimating the impact of surface temperature and water stress on the maximum light energy
use efficiency under ideal conditions. APAR(x, t) is the absorption of photosynthetically
active radiation (MJ m−2) of pixel x in month t; SOL(x, t) is the total solar radiation of pixel
x in month t (unit: MJ m−2); FPAR(x, t) is the absorption ratio of photosynthetically active
radiation (no unit); 0.5 is the ratio of the effective solar radiation used by vegetation to total
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solar radiation, which is a constant. For different vegetation types, FPAR is estimated by
the maximum and minimum values of NDVI of the vegetation type and the corresponding
maximum and minimum values of FPAR. The improved results of the previous studies
determine the values of NDVImax, NDVImin and light energy use efficiency ε for different
land cover types [42].

3.3.2. Sen + Mann–Kendall Trend Analysis

The trend analysis method in this study adopted Sen’s slope combined with the
Mann–Kendall trend significance test. The calculation formula for Sen’s slope is:

β = Median
( xj − xi

j− i

)
∀j > i (4)

where 1 < j < i < n, when β > 0, the change trend of the time series data increases; when
β < 0, the change trend of the time series data is reduced. Because β is a non-normalized
parameter, it can only reflect the size of the change trend of the time series itself, and the
significance of the trend change cannot be judged by itself. Therefore, the significance test
of the trend must be combined with the Mann–Kendall method.

Mann–Kendall trend test is a commonly used time series trend test method, which is
a non-parametric statistical test method [43,44]. Its advantage is that it does not require
samples to follow a certain distribution and is not disturbed by a few outliers. It is more
suitable for type variables and order variables.

The Mann–Kendall test constructs statistical variables S for time series data
(x1, x2, . . . . . . , xn) for testing:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(5)

sgn
(
xj − xi

)
=


1 i f

(
xj − xi > 0

)
0 i f

(
xj − xi = 0

)
−1 i f

(
xj − xi < 0

) (6)

S obeys normal distribution. The variance calculation formula is:

Var(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(7)

where m is the number of repeated data groups in the time series and ti is the number of
repeated data points in the ith group of repeated data.

When n ≥ 10, the calculation formula of Z is:

Z =


S−1√
var(s)

S > 0

0 S = 0
S+1√
var(s)

S < 0
(8)

The time series studied in this study was 20 years long; therefore, the test statistic Z
was used to test the trend, and the test was carried out at a confidence level of α = 0.05.
When β is positive, the trend is positive, and when β is negative, the trend is negative.
If the absolute value of Z is greater than 1.96, it indicates that the trend significance test
has passed.
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3.3.3. Drivers of NPP Trends

It is well known that in semi-arid areas such as the CLCB, vegetation productivity
is highly dependent on precipitation; that is, the interannual variation of NPP is not only
affected by the abundance and dryness of annual precipitation, but also depends on the
distribution and seasonal variation of precipitation events within a year. Therefore, this
study explored the correlation between precipitation, which is an influencing factor, and
NPP. This study calculated the pixel-level Pearson correlation coefficient (r) between NPP
and precipitation from to 2001–2020 to evaluate the nature and intensity of the relationship
between NPP and precipitation. In general, r was considered to be statistically significant
at the 95% level (p < 0.05).

Multivariate Residual Trend analysis (RESTREND) is a widely used method for an-
alyzing differences in natural variability and degradation of ecosystems. In the process
of residual trend analysis, this study used NPP time series and precipitation time series
to carry out linear regression analysis, the Ordinary Least Square method to obtain the
coefficients of the regression model, and then use the coefficients and precipitation time
series to calculate the predicted value of NPP and the remaining residual part. Finally, this
study performed a linear regression on the residual series (dependent variable) and time
(independent variable) and used the Ordinary Least Square method to calculate the trend
in the residual series. The calculation formula is as follows:

NPP(j) = a0 + a× Precipitation(j) + E (9)

E(t) = b0 + b× t (10)

where j refers to the jth year in the time series, j = 1, 2, . . . , n. a0 and a are two parameters
in the linear regression of the NPP time series to the precipitation factor, which represent
the intercept and slope of the linear regression model. E is the regression residual, that
is, the difference between the NPP value and predicted NPP value. t is the t-th year in
the time series, t = 1, 2, . . . , n. b0 and b are the intercept and slope of the residual series
versus time linear regression model, respectively, where parameter b represents the trend
existing in the residual series, that is, the vegetation change trend caused by factors other
than precipitation. The standard F-test was used to determine the linear goodness of fit of
the two models at a 95% confidence level.

Based on the methods described above, this study developed a framework for cap-
turing the relative contributions of the drivers. This framework is based on the fact that
the dynamics of biomass productivity per pixel mainly depend on the interaction between
climatic factors (precipitation) and anthropogenic factors [45]. Therefore, this study sepa-
rates climatic factors from anthropogenic factors and evaluates the relative contributions of
these two factors to NPP status and changing trends.

Many case studies have shown that RUE or RESTREND analysis can be used to
explore the influence of precipitation and anthropogenic factors on the change in NPP
trend; however, this study adopts a more comprehensive classification scheme to identify
the contribution of precipitation and anthropogenic factors to the change in NPP rate [45].
This classification scheme is based on the slope of the NPP trend, the correlation coefficient
between NPP and precipitation, and the slope of the NPP residual trend, resulting in a
set of decision rules with six possibilities (shown in Table 3). This classification scheme
intuitively reflects three situations driven by: (1) only precipitation, (2) human factors, and
(3) both factors (precipitation and human activities).
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Table 3. Classification rules to distinguish rainfall-driven NPP changes from changes caused by
human factors.

NPP Trend
(p Value < 0.05)

Pearson Correlation
Coefficient

Residual Trend
(p Value < 0.05)

Interpretation of the
NPP Trend

Positive NPP Trend
(slope > 0)

r > 0.49 Slope > 0 Precipitation and
Human Activities

r > 0.49 Slope < 0 or Slope
(p value > 0.05) Precipitation

r < 0.49 / Human Activities

Negative NPP Trend
(slope < 0)

r > 0.49 Slope < 0 Precipitation and
Human Activities

r > 0.49 Slope > 0 or Slope
(p value > 0.05) Precipitation

r < 0.49 / Human Activities

4. Results
4.1. Spatial Variation Characteristics of NPP

To determine the health status and sustainable development level of the CLCB ecosys-
tem and improve vegetation productivity, this study explored the spatial variation charac-
teristics of the NPP distribution of the CLCB by analyzing the dynamic evolution process
of the NPP of the CLCB from 2001 to 2020 (Figure 2). The average NPP of the CLCB in the
past 20 years was 392.64 g C/m2. The annual average NPP of the entire study area presents
a distinct spatial pattern and strong variability, which is generally higher in the south and
lower in the north, and increases from northwest to southeast. This is closely related to
the type of the CLCB coverage (Figure 3a). The northwest of the CLCB is mainly covered
with bare land and sparse vegetation, and can be characterized by a dry climate and low
NPP value, while the southeast of the CLCB is mainly covered by forest and grasslands,
covered with perennial woody plants, and has high biomass production. There is a large
amount of farmland in the central area of the CLCB, where the soil is fertile and suitable for
the growth of various crops [45]. Although the biomass production of farmland cannot be
compared with that of forests and grasslands, it still provides some help for the ecological
restoration of the CLCB. However, the size of the lake has shrunk dramatically over the
decades due to overgrazing, deforestation, and large-scale irrigation [46]. Abandoned fields
(i.e., abandoned crops) are prone to NPP reduction. As highlighted by [47], in the CLCB,
cropped vegetation tends to have higher NPP values than native vegetation in some cases,
especially degraded savannahs with sparse vegetation, suggesting that when cropland is
abandoned, the NPP content will decrease to some extent. In addition, croplands (including
fallow land and grasslands) are vulnerable to grazing pressure, which means that high
stocking rates, soil degradation, and species shifts may lead to reduced NPP yields [48].
The area and proportion of each land cover type of the CLCB in 2020 are shown in Table 4.
The annual average evapotranspiration, potential evapotranspiration, total solar radiation,
precipitation, surface temperature, and NDVI data of different land cover types from 2001
to 2020 are shown in Table 5.

Table 4. Area and proportion of land cover types in the CLCB in 2020 (unit: km2).

Croplands Forest Grasslands Wetlands Artificial Areas Bare Lands Water

377,083.06 241,672.65 511,999.90 13,882.43 1418.47 141,016.48 5117.36
29.18% 18.70% 39.62% 1.07% 0.11% 10.91% 0.4%
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Table 5. Annual average various data statistics of different land cover types in the CLCB between
2001 to 2020.

Data Croplands Forest GRASSLANDS Wetlands Artificial Areas Bare Lands Water

NDVI 0.32 0.57 0.32 0.46 0.29 0.10 0.22
Potential Evapotranspiration (mm) 2158.41 1817.38 2210.86 2289.27 1995.92 2498.39 2133.22

Total Solar Radiation (W/m2) 2961.26 2961.88 3045.06 3110.91 2818.15 3139.70 3057.57
Evapotranspiration (mm) 588.79 853.58 508.41 340.53 679.01 110.79 578.49

Precipitation (mm) 677.26 1029.74 570.61 360.07 824.81 116.74 643.55
Surface Temperature (◦C) 39.09 33.81 39.18 32.68 37.08 39.86 31.22

At the national scale, the vegetation NPP values of the CLCB in the Cameroon and
Central African Republic parts were higher, and the vegetation NPP values of the CLCB in
the Niger and Sudan parts were opposite. According to the topographic map (Figure 1)
and precipitation distribution map (Figure 3b) of the study area, it can be seen that the
CLCB has a higher altitude in Cameroon and the Central African Republic, with sufficient
precipitation (Figure 3b). The typical tropical rainforest climate includes abundant biolog-
ical species. The vegetation types are diverse; therefore, the biomass production in this
area is high. However, part of the CLCB in Sudan is mainly located in the Muir Mountains,
which is in a tropical desert climate with a high temperature and little rain, and the climate
is dry, which leads to low NPP values [49].
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4.2. Temporal Variation Characteristics of NPP

From the perspective of time, the average NPP value of the entire study area decreased
from 383.36 g C/m2 in 2001 to 360.57 g C/m2 in 2020. Therefore, the annual average NPP of
the CLCB showed a downward trend of 1.14 g C/m2 per year. Moreover, according to the
change in the trend of NPP in the study area from 2001 to 2020 (Figure 4), the results show
that the area where NPP decreased accounted for 11.04% (1.42 × 105 km2), and the area
where NPP increased accounted for only 4.53% (5.84 × 105 km2). The main falling areas are
located in Nigeria, southern Chad, and Cameroon, while the main rising areas are located
in eastern Chad. This finding is consistent with previous studies reporting year-on-year
decreases in vegetation productivity in the CLCB [50]. Previous studies have also shown
that the decline in vegetation productivity in Nigeria is mainly due to its high population
density and the reduction in the per capita availability of NPP [51] owing to the reduction
of woody plants [52].
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Figure 4. Spatial distribution of NPP trends in the CLCB from 2001 to 2020. The significance of each
pixel is at the 5% level.

In the past 20 years, the rate of decline of NPP of the entire CLCB and various terrestrial
ecosystems was the largest in the Forest area (−3.52 g C/m2), followed by Artificial areas
(−2.85 g C/m2). The overall NPP in the study area also showed a downward trend, and
the lowest value of the annual average NPP appeared in 2020, at only 360.57 g C/m2

(Figure 5a). Figure 5b shows that the regional proportions of NPP increased and decreased
in each terrestrial ecosystem. Among them, the NPP of artificial areas decreased the most,
by up to 54.03% (with an area of 766.39 km2); the NPP of wetlands increased the most,
accounting for approximately 20.10% (with an area of 2790.59 km2). According to previous
research, meeting the energy needs of many urban populations in many Sahel countries
has led to extensive deforestation in peri-urban areas [53]. Moreover, one of the current
key problems of the CLCB is the loss of agricultural systems and large-scale forests [54].
Although local governments, non-governmental organizations (NGOs), and cooperatives
have helped local farmers reduce deforestation and forest degradation, many farmers
continued to conduct extensive agricultural production, which has led to a year-by-year
decline in local NPP [55].
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4.3. Driving Factors of Changes in NPP Trends

Climate change is an important factor affecting the NPP of the CLCB. In addition,
human activities can cause changes in vegetation productivity. Based on the comprehensive
framework of RESTREND and correlation analysis, this study used NPP as the dependent
variable and precipitation factors as independent variables to analyze the driving factors of
the NPP change trend in the study area (Figure 6). The main area of NPP decline was located
in the southern part of the CLCB (Figure 6a). Although the overall NPP values in these
areas are higher than those in the north, with continuous urbanization, the transformation
of forests into farmland, and the influence of human factors such as overgrazing, NPP
values have dropped significantly [56]. The main area that showed a rise in NPP is located
east of the CLCB in the area that borders Chad and Sudan. Moreover, the main driving
factors for the rise and fall of the CLCB’s NPP are human factors, and the proportion of the
decrease due to human factors in areas with significant forest changes can reach 75.72%
(46,661.48 km2). The areas where NPP increased due to human factors in grasslands and
wetlands accounted for 45.95% and 38.59% of the significant change areas in each region,
respectively (Figure 6b). Previous studies have shown that climate variability is the main
driver of NPP improvement in southeastern Chad [56]. Considering that the improvements
in NPP were mainly found in farmland and forested areas within southeastern Chad,
although the precipitation has been relatively stable in recent years, other natural factors,
such as the reduction of steam pressure deficit and atmospheric carbon dioxide content,
may help improve the NPP in this area [57,58].
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5. Discussion

Our study provides numerical evidence for NPP reduction in the CLCB and identifies
key drivers. This decrease was mainly due to deforestation and overgrazing caused by
increased human activities. In addition, although precipitation has a certain dominant
effect on NPP changes, climate variability may lead to some increases in NPP.

We counted the population and forest area proportions of the countries included in
the CLCB (Figure 7), which are the two crucial impact factors of NPP. The results show that
among the seven countries, Nigeria has had the fastest population growth rate in recent
years, reaching 4.04 million people/year, increasing from 125.39 million people in 2001
to 211.40 million people in 2020 (Figure 7a). Previous studies have shown that land use
in Nigeria has undergone dramatic changes due to human activities, such as commercial
logging (selective and destructive), agricultural reclamation, livestock and pasture farming,
construction of dams, mining, and burning of bushes (forest fires), etc. [59,60]. These human
factors have increased the pressure of the population on land, the intensity of agricultural
activities, and the rate of deforestation, which in turn has led to a decline in NPP [61]. This
is consistent with the results of the present study. Nigeria’s sharply increasing population
and year-by-year shrinking forest area indicate the adverse effects of human factors on
NPP (Figure 7b).
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In addition, Chad had the largest area in the CLCB, and the NPP value in the eastern
region of Chad showed an increasing trend. Studies have shown that current international
aid to Chad is gradually increasing, and the top two categories of development aid are
agriculture and forestry [62]. Moreover, it is not only changes in precipitation that has
driven Chad’s significant increase in agricultural production, but also human factors in
Chad’s agroecosystem play a role.

Our findings show that the current NPP of the CLCB decreases each year. Although
we provide valuable results that can inform the future development of the CLCB, some
limitations should be mentioned. First, owing to differences in the data sources used to
study vegetation indicators such as NPP, even though the method is the same, there may
still be some potential errors and uncertainties, which may lead to some invisible errors in
the calculation of NPP. Although there are many literature references for using the CASA
model to calculate NPP, our reference rate is not sufficient for areas with different climate
types and vegetation coverage, and more appropriate long-term data and parameters
should be selected for future estimations. Second, insufficient consideration of natural
factors such as climate change may exacerbate sources of uncertainty. Because climate
and NPP changes are inextricably linked, future research should investigate the impact
of climate change on the dynamic changes in vegetation types. Third, owing to space
constraints, we did not conduct segmental statistics on NPP development trends. However,
the change in NPP may be non-monotonic. Therefore, follow-up research should add a



Atmosphere 2023, 14, 232 13 of 15

short-term trend analysis to detect mutation points. In addition, current environmental
restoration policies must be clarified to minimize uncertainties in future NPP calculations.

6. Conclusions

This study analyzed the spatiotemporal changes and trends of NPP in the CLCB from
2002 to 2020. We elucidated the main factors influencing NPP and explored NPP changes
in different terrestrial ecosystems. The conclusions are as follows.

The NPP of the CLCB has been decreasing annually, and most areas still required
vegetation restoration at present. Human factors (including urbanization, overgrazing,
deforestation, and farmland reclamation) are key factors affecting vegetation productivity.
In addition, climate change also has a certain impact on NPP, but possible changes in
climate conditions (e.g., carbon dioxide content) may also improve NPP to a certain extent.

With the gradual reduction of NPP, increasing areas of forest and thus increasing NPP
without sacrificing social and economic development is currently the biggest challenge
facing the CLCB. Responsible government agencies and policymakers must improve and
strengthen NPP restoration to ensure the reasonable expansion of green forest areas. In
addition, to improve vegetation productivity, more factors affecting NPP changes should
be analyzed, and sustainable development paths should be determined simultaneously.
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