Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite
Abstract
:1. Introduction
2. Data
3. Spatial and Temporal Distribution of the NWC Transmitter Radio Signals
3.1. Seasonal Variation Patterns of the Electric Field Strength
3.2. Spatial Distribution of the NWC Transmitter Radio Signals
3.3. Seasonal Variations in the Peak Shifts of the Electric Field Center
4. Summary and Conclusions
- (1)
- Statistical analysis reveals a clear seasonal pattern in the NWC transmitter radio signal within a radius of 15 degrees from the center of the crossing point. The signal is more prominent in June, July, and August (winter) and smaller in December, January, and February (summer). However, no seasonal pattern is observed within a small area of a 2.5-degree radius from the center of the crossing point over the NWC transmitter.
- (2)
- A “platform” region with a peak center is identified in the electric field over the NWC transmitter. Within this region, the electric field power spectral density does not significantly decay with distance. However, outside of this region, decay with distance becomes apparent, showing a north–south asymmetry. The average power spectral density of the electric field is stronger in the north than in the south, and the decay rate is slower in the north.
- (3)
- There is a noticeable northward shift in the peak center of the NWC transmitter electric field from summer to winter. Additionally, during the winter season, we observe an expansion in the range of peak centers of the electric fields.
- (4)
- Except for the summer of 2019, ducted propagation predominantly occurs in the radiation center over the NWC transmitter. However, during the summer of 2019, non-ducted propagation may dominate the VLF signals in the radiation center over the NWC transmitter.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press: Stanford, CA, USA, 1965; Volume 11, pp. 563–564. [Google Scholar]
- Ni, B.; Huang, H.; Zhang, W.; Gu, X.; Zhao, H.; Li, X.; Baker, D.; Fu, S.; Xiang, Z.; Cao, X. Parametric Sensitivity of the Formation of Reversed Electron Energy Spectrum Caused by Plasmaspheric Hiss. Geophys. Res. Lett. 2019, 46, 4134–4143. [Google Scholar] [CrossRef]
- Ni, B.; Hua, M.; Zhou, R.; Yi, J.; Fu, S. Competition between Outer Zone Electron Scattering by Plasmaspheric Hiss and Magnetosonic Waves. Geophys. Res. Lett. 2017, 44, 3465–3474. [Google Scholar] [CrossRef]
- Meredith, N.P.; Horne, R.B.; Clilverd, M.A.; Ross, J.P.J. An Investigation of VLF Transmitter Wave Power in the Inner Radiation Belt and Slot Region. J. Geophys. Res. Space Phys. 2019, 124, 5246–5259. [Google Scholar] [CrossRef]
- Cao, X.; Ni, B.; Summers, D.; Fu, S.; Gu, X.; Shi, R. Hot Plasma Effects on the Pitch-Angle Scattering Rates of Radiation Belt Electrons Due to Plasmaspheric Hiss. Astrophys. J. 2020, 896, 118. [Google Scholar] [CrossRef]
- Inan, U.S.; Chang, H.C.; Helliwell, R.A. Electron Precipitation Zones around Major Ground-Based VLF Signal Sources. J. Geophys. Res. Space Phys. 1984, 89, 2891–2906. [Google Scholar] [CrossRef]
- Inan, U.S.; Chang, H.C.; Helliwell, R.A.; Imhof, W.L.; Reagan, J.B.; Walt, M. Precipitation of Radiation Belt Electrons by Man-Made Waves: A Comparison between Theory and Measurement. J. Geophys. Res. Space Phys. 1985, 90, 359–369. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Horne, R.B. Ground-Based Evidence of Latitude-Dependent Cyclotron Absorption of Whistler Mode Signals Originating from VLF Transmitters. J. Geophys. Res. Space Phys. 1996, 101, 2355–2367. [Google Scholar] [CrossRef]
- Gamble, R.J.; Rodger, C.J.; Clilverd, M.A.; Sauvaud, J.-A.; Thomson, N.R.; Stewart, S.L.; McCormick, R.J.; Parrot, M.; Berthelier, J.-J. Radiation Belt Electron Precipitation by Man-Made VLF Transmissions. J. Geophys. Res. Space Phys. 2008, 113, A10211. [Google Scholar] [CrossRef]
- Selesnick, R.S.; Albert, J.M.; Starks, M.J. Influence of a Ground-Based VLF Radio Transmitter on the Inner Electron Radiation Belt. J. Geophys. Res. Space Phys. 2013, 118, 628–635. [Google Scholar] [CrossRef]
- Cunningham, G.S.; Botek, E.; Pierrard, V.; Cully, C.; Ripoll, J.-F. Observation of High-Energy Electrons Precipitated by NWC Transmitter From PROBA-V Low-Earth Orbit Satellite. Geophys. Res. Lett. 2020, 47, e2020GL089077. [Google Scholar] [CrossRef]
- Němec, F.; Pekař, J.; Parrot, M. NWC Transmitter Effects on the Nightside Upper Ionosphere Observed by a Low-Altitude Satellite. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028660. [Google Scholar] [CrossRef]
- Lehtinen, N.G.; Inan, U.S. Full-Wave Modeling of Transionospheric Propagation of VLF Waves. Geophys. Res. Lett. 2009, 36, L03104. [Google Scholar] [CrossRef]
- Lehtinen, N.G.; Inan, U.S. Radiation of ELF/VLF Waves by Harmonically Varying Currents into a Stratified Ionosphere with Application to Radiation by a Modulated Electrojet. J. Geophys. Res. Space Phys. 2008, 113, A06301. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, L.; Zhang, X. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal. Chin. J. Geophys. 2017, 60, 3004–3014. (In Chinese) [Google Scholar]
- Zhao, S.; Zhou, C.; Shen, X.; Zhima, Z. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation. J. Geophys. Res. Space Phys. 2019, 124, 4697–4709. [Google Scholar] [CrossRef]
- Schmölter, E.; von Savigny, C. Solar Activity Driven 27-Day Signatures in Ionospheric Electron and Molecular Oxygen Densities. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030671. [Google Scholar] [CrossRef]
- Richardson, D.K.; Cohen, M.B. Seasonal Variation of the D-Region Ionosphere: Very Low Frequency (VLF) and Machine Learning Models. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029689. [Google Scholar] [CrossRef]
- Maurya, A.K.; Veenadhari, B.; Singh, R.; Kumar, S.; Cohen, M.B.; Selvakumaran, R.; Gokani, S.; Pant, P.; Singh, A.K.; Inan, U.S. Nighttime D Region Electron Density Measurements from ELF-VLF Tweek Radio Atmospherics Recorded at Low Latitudes. J. Geophys. Res. Space Phys. 2012, 117, A11308. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, L.; Shen, X.; Lu, H.; Zhima, Z.; Huang, J.; Zhou, C. CSES Satellite Observations of 50 Hz Power Line Radiation Over Mainland China and Its Response to COVID-19. J. Geophys. Res. 2022, 127, e2022JA030693. [Google Scholar] [CrossRef]
- Gu, X.; Wang, Q.; Ni, B.; Xu, W.; Wang, S.; Yi, J.; Hu, Z.; Li, B.; He, F.; Chen, X.; et al. First Results of the Wave Measurements by the WHU VLF Wave Detection System at the Chinese Great Wall Station in Antarctica. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030784. [Google Scholar] [CrossRef]
- Šulić, D.M.; Srećković, V.A.; Mihajlov, A.A. A Study of VLF Signals Variations Associated with the Changes of Ionization Level in the D-Region in Consequence of Solar Conditions. Adv. Space Res. 2016, 57, 1029–1043. [Google Scholar] [CrossRef]
- Marshall, R.A.; Inan, U.S. Two-Dimensional Frequency Domain Modeling of Lightning EMP-Induced Perturbations to VLF Transmitter Signals: MODELING VLF TRANSMITTER PERTURBATIONS. J. Geophys. Res. Space Phys. 2010, 115, A00E29. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, X.; Liao, L.; Zhima, Z.; Zhou, C.; Wang, Z.; Cui, J.; Lu, H. Investigation of Precursors in VLF Subionospheric Signals Related to Strong Earthquakes (M > 7) in Western China and Possible Explanations. Remote Sens. 2020, 12, 3563. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Boudjada, M.Y.; Liu, J.; Magnes, W.; Zhou, Y.; Du, X. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sens. 2020, 12, 4050. [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S. Terrestrial VLF Transmitter Injection into the Magnetosphere: VLF TRANSMITTER INJECTION. J. Geophys. Res. Space Phys. 2012, 117, A08310. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Rodger, C.J.; Gamble, R.; Meredith, N.P.; Parrot, M.; Berthelier, J.-J.; Thomson, N.R. Ground-Based Transmitter Signals Observed from Space: Ducted or Nonducted? J. Geophys. Res. Space Phys. 2008, 113, A04211. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.; Li, X.; Xia, Z.; Heelis, R.A.; Horne, R.B. Observed Propagation Route of VLF Transmitter Signals in the Magnetosphere: GROUND TRANSMITTER PROPAGATION. J. Geophys. Res. Space Phys. Space Phys. 2018, 123, 5528–5537. [Google Scholar] [CrossRef]
- Usanova, M.E.; Reid, R.A.; Xu, W.; Marshall, R.A.; Starks, M.J.; Wilson, G.R. Using VLF Transmitter Signals at LEO for Plasmasphere Model Validation. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030345. [Google Scholar] [CrossRef]
- Shen, X.; Zong, Q.-G.; Zhang, X. Introduction to Special Section on the China Seismo-Electromagnetic Satellite and Initial Results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- Zhima, Z.; Zhou, B.; Zhao, S.; Wang, Q.; Huang, J.; Zeng, L.; Lei, J.; Chen, Y.; Li, C.; Yang, D.; et al. Cross-Calibration on the Electromagnetic Field Detection Payloads of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2022, 65, 1415–1426. [Google Scholar] [CrossRef]
- Huang, J.; Lei, J.; Li, S.; Zeren, Z.; Li, C.; Zhu, X.; Yu, W. The Electric Field Detector (EFD) Onboard the ZH-1 Satellite and First Observational Results. Earth Planet. Phys. 2018, 2, 469–478. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Model—An Unified Concept for Earthquake Precursors Validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M. Decrease of Intensity of ELF/VLF Waves Observed in the Upper Ionosphere Close to Earthquakes: A Statistical Study: WAVE ATTENUATION CLOSE TO EARTHQUAKES. J. Geophys. Res. Space Phys. 2009, 114, A04303. [Google Scholar] [CrossRef]
- Xiang, Z.; Lin, X.; Chen, W.; Wang, Y.; Lu, P.; Gong, W.; Ma, W.; Hua, M.; Liu, Y. Global morphology of NWC and NAA very-low-frequency transmitter signals in the inner magnetosphere, A survey using Van Allen Probes EMFISIS meas-urements. Chin. J. Geophys. 2021, 64, 3860–3869. (In Chinese) [Google Scholar]
- Graf, K.L.; Lehtinen, N.G.; Spasojevic, M.; Cohen, M.B.; Marshall, R.A.; Inan, U.S. Analysis of Experimentally Validated Trans-Ionospheric Attenuation Estimates of VLF Signals. J. Geophys. Res. Space Phys. 2013, 118, 2708–2720. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, E.; Wang, Y.; Pan, W.; Zhang, H. Estimation of VLF amplitude standard deviation in multimode interference region. Chin. J. Radio Sci. 2011, 26, 286–290. [Google Scholar]
- Han, F.; Cummer, S.A. Midlatitude Nighttime D Region Ionosphere Variability on Hourly to Monthly Time Scales. J. Geophys. Res. Space Phys. 2010, 115, A09323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Zhao, S.; Liao, L.; Shen, X.; Lu, H. Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite. Atmosphere 2023, 14, 1816. https://doi.org/10.3390/atmos14121816
Cai H, Zhao S, Liao L, Shen X, Lu H. Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite. Atmosphere. 2023; 14(12):1816. https://doi.org/10.3390/atmos14121816
Chicago/Turabian StyleCai, Honggeng, Shufan Zhao, Li Liao, Xuhui Shen, and Hengxin Lu. 2023. "Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite" Atmosphere 14, no. 12: 1816. https://doi.org/10.3390/atmos14121816
APA StyleCai, H., Zhao, S., Liao, L., Shen, X., & Lu, H. (2023). Spatial and Temporal Distribution of Northwest Cape Transmitter (19.8 kHz) Radio Signals Using Data Collected by the China Seismo-Electromagnetic Satellite. Atmosphere, 14(12), 1816. https://doi.org/10.3390/atmos14121816