Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Analysis
2.2. Dynamic Topic Modeling
2.3. Network Analysis
3. Results
3.1. Topic Analysis
3.2. NbS Research Trends by Year
3.3. Topic Network Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blesh, J.M.; Barrett, G.W. Farmers’ attitudes regarding agrolandscape ecology: A regional comparison. J. Sust. Agric. 2006, 28, 121–143. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume XIII, p. 97. [Google Scholar]
- Lieuw-Kie-Song, M.; Pérez-Cirera, V. Nature Hires: How Nature Based Solutions Can Power a Green Jobs Recovery, WWF&ILO, 2020. Available online: https://www.ilo.org/employment/units/emp-invest/rural-urban-job-creation/WCMS_757823/lang--en/index.htm (accessed on 10 October 2020).
- OECD. Building Back Better: A Sustainable, Resilient Recovery after COVID-19. 2020. Available online: https://www.oecd.org/coronavirus/policy-responses/building-back-better-a-sustainable-resilient-recovery-after-covid-19-52b869f5 (accessed on 5 June 2020).
- OECD. Nature-Based Solutions for Adapting to Water-Related Climate Risks; OECD Environment Policy Papers, No. 21; OECD Publishing: Paris, France, 2020; Available online: https://www.oecd.org/environment/nature-based-solutions-for-adapting-to-water-related-climate-risks-2257873d-en.htm (accessed on 29 July 2020).
- WWF. Living Planet Report 2020. Bending the Curve of Biodiversity Loss: A Deep Dive into Climate and Biodiversity; Marconi, V., McRae, L., Deinet, S., Ledger, S., Freeman Almond, R.E.A., Grooten, M., Petersen, T., Eds.; WWF: Gland, Switzerland, 2020. [Google Scholar]
- WWF. Nature-Based Solutions for Climate Change. 2020. Available online: https://wwf.panda.org/discover/our_focus/climate_and_energy_practice/what_we_do/nature_based_solutions_for_climate/ (accessed on 15 July 2020).
- Chausson, A.; Turner, C.B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Key, I.; Smith, A.C.; Woroniecki, S.; Seddon, N. Mapping the effectiveness of Nature-based solutions for climate change adaptation. Glob. Chang. Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; Wójcik-Madej, J.; Michalik-Śnieżek, M. An assessment of the Ecological Landscape Quality (ELQ) of Nature-Based Solutions (NBS) based on existing elements of Green and Blue Infrastructure (GBI). Sustainability 2021, 13, 11674. [Google Scholar] [CrossRef]
- United Nations Framework Convention on Climate Change (UNFCCC). Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on its fourth session. In Proceedings of the 2022 United Nations Climate Change Conference, Sharm el-Sheikh, Egypt, 6–20 November 2022. [Google Scholar]
- Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; FAO Forestry Paper; FAO: Rome, Italy, 2016; Volume 178. [Google Scholar]
- Strohmaier, R.; Rioux, J.; Seggel, A.; Meybeck, A.; Bernoux, M.; Salvatore, M.; Miranda, J.; Agostini, A. The Agriculture Sectors in the Intended Nationally Determined Contributions: Analysis; Environment and Natural Resources Management Working Paper; FAO: Rome, Italy, 2016; Volume 62. [Google Scholar]
- Salvatori, E.; Pallante, G. Forests as nature-based solutions: Ecosystem services, multiple benefits and trade-offs. Forests 2021, 12, 800. [Google Scholar] [CrossRef]
- Seddon, N.; Sengupta, S.; Garcia-Espinosa, M.; Hauler, I.; Herr, D.; Rizvi, A.R. Nature-Based Solutions in Nationally Determined Contributions: Synthesis and Recommendations for Enhancing Climate Ambition and Action by 2020; IUCN: Gland, Switzerland; University of Oxford: Oxford, UK, 2019. [Google Scholar]
- Simelton, E.; Carew-Reid, J.; Coulier, M.; Damen, B.; Howell, J.; Pottinger-Glass, C.; Tran, H.V.; Van Der Meiren, M. NBS framework for agricultural landscapes. Front. Environ. Sci. 2021, 9, 678367. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change in 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group ii to the Sixth Assessment Report of the Intergovermental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 2022. [Google Scholar]
- World Bank. Biodiversity, Climate Change, and Adaptation: Nature-Based Solutions from the World Bank Portfolio; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Dudley, N.; Stolton, S.; Belokurov, A.; Krueger, L.; Lopoukhine, N.; Mackinnon, K.; Sandwith, T.; Sekhran, N. Natural Solutions: Protected Areas Helping People Cope with Climate Change; IUCN–WCPA, TNC, UNDP, WCS: Gland, Switzerland; The World Bank: Washington, DC, USA; WWF: New York, NY, USA, 2009. [Google Scholar]
- Jang, E.; Baek, Y.; Chung, H. Emerging trends amongst adolescents from immigrant backgrounds using topic modeling and semantic network analysis. Stud. Korean Youth 2023, 34, 91–122. [Google Scholar]
- Blei, D.; Lafferty, J.D. Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 113–120. [Google Scholar]
- Choi, S.Y.; Ko, E.J. Analysis of <Korean Journal of Journalism & Communication Studies> from 1960 to 2018 using Metadata with Dynamic Topic Modeling. Korean J. J. Commun Stud. 2019, 63, 7–42. [Google Scholar]
- Lee, S.M.; Chun, S.; Park, S.U.; Lee, T.; Kim, W. Detection of Complaints of Non-Face-to-Face Work before and during COVID-19 by Using Topic Modeling and Sentiment Analysis. Korea Assoc. Inf. Syst. (Kais) 2021, 30, 277–301. [Google Scholar]
- Park, J.D. A study on Issue Tracking on Multi-Cultural Studies Using Topic Modeling. J. Korean Soc. Libr. Inf. Sci. 2019, 53, 273–289. [Google Scholar]
- Jiang, Z. Chronological scientific information recommendation via supervised dynamic topic modeling. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015. [Google Scholar]
- Na, S.T.; Ahn, J.E.; Jung, M.H.; Kim, J.H. Research Trend Analysis for Smart Grids Using Dynamic Topic Modeling. Trans. Korean Inst. Electr. Eng. 2017, 66, 613–620. [Google Scholar] [CrossRef]
- Newman, D.; Lau, J.H.; Grieser, K.; Baldwin, T. Automatic evaluation of topic coherence. In Proceedings of the Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA, USA, 2–4 June 2010; pp. 100–108. [Google Scholar]
- Kil, H. A study on the centrality types of reading fingerprint Text. J. Cheongram Korean Lang. Educ. 2020, 74, 39–70. [Google Scholar]
- Lee, J.W.; Lee, K.W. Analysis of Seoul metropolitan subway network characteristics using network centrality measures. J. Korean Soc. Rail 2017, 20, 413–422. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 10, P10008. [Google Scholar] [CrossRef]
- Yadav, R.K.; Sahoo, S.; Yadav, A.K.; Patil, S.A. Epipremnum aureum is a promising plant candidate for developing nature-based technologies for nutrients removal from wastewaters. J. Environ. Chem. Eng. 2021, 9, 106134. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Carecho, J.; Tomasino, M.P.; Almeida, C.M.R.; Mucha, A.P. Floating wetland islands implementation and biodiversity assessment in a port marina. Water 2020, 12, 3273. [Google Scholar] [CrossRef]
- Wang, L.; Yang, K.; Gao, C.; Zhu, L. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Sci. Total Environ. 2020, 747, 141265. [Google Scholar] [CrossRef] [PubMed]
- Peñalver-Alcalá, A.; Álvarez-Rogel, J.; Conesa, H.M.; González-Alcaraz, M.N. Biochar and urban solid refuse ameliorate the inhospitality of acidic mine tailings and foster effective spontaneous plant colonization under semiarid climate. J. Environ. Manag. 2021, 292, 112824. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-Based Resilience: A Multi-Type Evaluation of Productive Green infrastructure in Agricultural Settings in Ontario, Canada. Atmosphere 2021, 12, 1183. [Google Scholar] [CrossRef]
- IUCN and Climate Focus. The Bonn Challenge and the Paris Agreement: How Can Forest Landscape Restoration Advance Nationally Determined Contributions? Forest Brief No. 21, December; International Union for Conservation of Nature: Gland, Switzerland, 2017. [Google Scholar]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Grilo, F.; Pinho, P.; Alexio, C.; Catita, C.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; McPhearson, T.; Branquinho, C. Using Green to cool the grey: Modeling the cooling effect of green spaces with a high spatial resolution. Sci. Total Environ. 2020, 724, 138182. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A.; Zgela, M.; Milosevic, D.; Dunjic, J. Lowering the Temperature to Increase Heat Equity: A Multi-Scale Evaluation of Nature-Based solutions in Toronto, Ontario, Canada. Atmosphere 2022, 13, 1027. [Google Scholar] [CrossRef]
- Kabošová, L.; Katunský, D.; Kmet, S. Wind-Based Parametric Design in the Changing Climate. Appl. Sci. 2020, 10, 8603. [Google Scholar] [CrossRef]
- Mexia, T.; Vieira, J.; Prínciple, A.; Anjos, A.; Silva, P.; Lopes, N.; Freitas, C.; Santos-Reis, M.; Correia, O.; Branquinho, C.; et al. Ecosystem services: Urban parks under a magnifying glass. Environ. Res. 2018, 160, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, D.; Macegoniuk, S.; Laszkiewicz, E.; Sikorski, P. Energy crops in urban parks as a promising alternative to traditional lawns—Perceptions and a cost-benefit analysis. Urban For. Urban Green. 2020, 49, 126579. [Google Scholar] [CrossRef]
- Mori, A.S.; Dee, L.E.; Gonzalez, A.; Ohashi, H.; Cowles, J.; Wright, A.J.; Loreau, M.; Hautier, Y.; Newbold, T.; Reich, P.B.; et al. Biodiversity-productivity relationships are key to nature-based climate solutions. Nat. Clim. Chang. 2021, 11, 543–550. [Google Scholar] [CrossRef]
- Ghiasian, M.; Carrick, J.; Rhode-Barbarigos, L.; Haus, B.; Baker, A.C.; Lirman, D. Dissipation of wave energy by a hybrid artificial reef in a wave simulator: Implications for coastal resilience and shoreline protection. Limnol. Oceanogr. Methods 2021, 19, 1–7. [Google Scholar] [CrossRef]
- CBD (Convention on Biological Diversity). X/33 Biodiversity and Climate Change. In Proceedings of the Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Tenth Meeting; UNEP/CBD/COP/EDC/x/33, Nagoya, Japan, 18–29 October 2010. [Google Scholar]
- UN World Water. UN World Water Development Report 2018: Nature-Based Solutions for Water; UN World Water: New York, NY, USA, 2018. [Google Scholar]
- Li, S.; Li, X.; Ho, S.H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Chemosphere 2022, 291, 132863. [Google Scholar] [CrossRef]
- Bae, S.; Kim, Y.M. Carbon-Neutrality in Wastewater Treatment Plants: Advanced Technologies for Efficient Operation and Energy/Resource Recovery. Energies 2021, 14, 8514. [Google Scholar] [CrossRef]
- Kligerman, D.C.; Bouwer, E.J. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renew. Sust. Energ. Rev. 2015, 52, 1834–1846. [Google Scholar] [CrossRef]
- Faye, J. Sustainable Urban and Regional Development and Related Ecosystem Services and Water-Climate Interactions. Ph.D. Thesis, Department of Physical Geography, Stockholm University, Stockholm, Sweden, 2023. [Google Scholar]
- Cong, C.; Pan, H.; Page, J.; Barthel, S.; Kalantari, Z. Modeling place-based nature-based solutions to promote urban carbon neutrality. Ambio 2023, 52, 1297–1313. [Google Scholar] [CrossRef]
- Cohen, G.; Cohen, E. Breaking water carbon nexus by the natural biological system: Ultimate solution for ESG challenges. Environ. Sci. Pollut. Res. 2023, 30, 64736–64746. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.R.; Gao, B.; Ahn, M. Positive and Negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil. Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009; Volume 1, pp. 1–12. [Google Scholar]
- WWF-UK. NDCS–A Force for Nature? 2nd ed.; WWF-UK: Woking, UK, 2018. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- OECD (Organization for Economic Co-Operation and Development). Climate Change Mitigation: Policies and Progress; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of prioritized urban nature-based solutions allocation to carbon neutrality. Nat. Clim. Chang. 2023, 13, 862–870. [Google Scholar] [CrossRef]
- Toxopeus, H.; Polzin, F. Reviewing financing barriers and strategies for urban nature-based solutions. J. Environ. Manag. 2021, 289, 112371. [Google Scholar] [CrossRef] [PubMed]
- Coombes, M.A.; Viles, H.A. Integrating nature-based solutions and the conservation of urban built heritage: Challenges, opportunities, and prospects. Urban For. Urban Green. 2021, 63, 127192. [Google Scholar] [CrossRef]
- Preti, F.; Capobianco, V.; Sangalli, P. Soil and Water Bioengineering (SWB) is and has always been a nature-based solution (NBS): A reasoned comparison of terms and definitions. Ecol. Engin 2022, 181, 106687. [Google Scholar] [CrossRef]
- Holt, A.R.; Alix, A.; Thompson, A.; Maltby, L. Food production, ecosystem services and biodiversity: We can’t have it all everywhere. Sci. Total Environ. 2016, 573, 1422–1429. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction; Routledge: London, UK, 2015. [Google Scholar]
- Raška, P.; Bezak, N.; Ferreira, C.S.; Kalantari, Z.; Banasik, K.; Bertola, M.; Bourke, M.; Cerdà, A.; Davids, P.; de Brito, M.M.; et al. Identifying barriers for nature-based solutions in flood risk management: An interdisciplinary overview using expert community approach. J. Environ. Manag. 2022, 310, 114725. [Google Scholar] [CrossRef]
- UNDP. Accelerating Climate Ambition and Impact: Toolkit for Mainstreaming Nature-Based Solutions into Nationally Determined Contributions; UNDP: New York, NY, USA, 2019. [Google Scholar]
- UNDP. Pathway for Increasing Nature-Based Solutions in NDC s: A Seven-Step Approach for Enhancing Nationally Determined Contributions through Nature-Based Solutions; UNDP: New York, NY, USA, 2019. [Google Scholar]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexusbetween nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
No. of research papers | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 2 |
Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
No. of research papers | 0 | 5 | 7 | 20 | 51 | 73 | 123 | 263 | 485 | 552 |
Topic 1 | Topic 2 | Topic 3 | Topic 4 | Topic 5 | |
Coastal Restoration | Forest Carbon Sequestration | Urban Ecosystem | Water and Ecology | Urban Microclimate Management | |
1 | sea | carbon | city | vegetation | air |
2 | wave | climate | tourism | water | heat |
3 | erosion | emission | tree | ecosystem | city |
4 | protection | sequestration | group | design | temperature |
5 | risk | ecosystem | land | structure | pollution |
6 | storm | gas | policy | landscape | island |
7 | sediment | soil | demand | living | climate |
8 | shoreline | storage | problem | risk | infrastructure |
9 | dune | mitigation | trading | pollution | vegetation |
10 | flood | greenhouse | ecosystem | concentration | space |
11 | engineering | forest | supply | assessment | surface |
12 | rise | nitrogen | Francis | condition | environment |
13 | transport | dioxide | Taylor | site | mitigation |
14 | beach | stock | community | lab | concentration |
15 | marsh | biomass | space | road | tree |
16 | cost | rate | regulation | cover | park |
17 | condition | flux | people | reservoir | urbanization |
18 | coast | seagrass | activity | grass | scenario |
19 | restoration | reforestation | risk | activity | reduction |
20 | reduction | sink | UK | stability | cooling |
Topic 6 | Topic 7 | Topic 8 | Topic 9 | Topic 10 | |
Water Management | Ecosystem-based Adaptation (EbA) | Biodiversity Conservation | Sustainable Agriculture | Water Conservation and Restoration | |
1 | wetland | climate | biodiversity | energy | water |
2 | water | policy | specie | food | river |
3 | wastewater | adaptation | conservation | technology | canopy |
4 | plant | ecosystem | ecosystem | cost | condition |
5 | efficiency | city | diversity | life | season |
6 | nitrogen | governance | habitat | agriculture | tree |
7 | oxygen | risk | forest | resource | performance |
8 | flow | resilience | tree | cycle | pollution |
9 | demand | decision | reef | economy | stormwater |
10 | nutrient | practice | protection | water | climate |
11 | phosphorus | design | restoration | sustainability | groundwater |
12 | waste | stakeholder | resource | city | cover |
13 | concentration | disaster | loss | assessment | patch |
14 | effluent | sustainability | land | production | habitat |
15 | rate | action | community | performance | site |
16 | performance | role | composition | environment | concentration |
17 | lake | landscape | convention | building | farm |
18 | biomass | community | landscape | farmer | phase |
19 | cost | measure | function | security | drought |
20 | greywater | actor | taxon | region | biofilters |
Topic 11 | Topic 12 | Topic 13 | Topic 14 | Topic 15 | |
Soil Carbon Sequestration | Water Disaster Management | Green Therapy | Forest Landscape Restoration (FLR) | Water Purification Technology | |
1 | soil | water | health | restoration | metal |
2 | density | flood | community | ecosystem | plant |
3 | surface | runoff | environment | land | sediment |
4 | tree | roof | garden | climate | water |
5 | biochar | catchment | disease | landscape | pollution |
6 | time | river | water | community | leaf |
7 | property | risk | space | resource | specie |
8 | carbon | scenario | population | protection | pollutant |
9 | temperature | flow | human | river | vegetation |
10 | vegetation | event | intervention | function | delta |
11 | concentration | land | exposure | conservation | bay |
12 | material | climate | factor | biodiversity | condition |
13 | amendment | stormwater | specie | forest | bioretention |
14 | size | rainfall | risk | country | ecosystem |
15 | plant | surface | degradation | policy | wetland |
16 | space | control | cost | growth | remediation |
17 | chemical | drainage | oil | region | phytoremediation |
18 | compost | reduction | group | degradation | velocity |
19 | water | storm | engineering | risk | attenuation |
20 | cover | performance | therapy | support | bioremediation |
Topic 16 | Topic 17 | Topic 18 | Topic 19 | ||
Natural Pollination | Land Degradation Neutrality (LDN) | Urban Greening | Infrastructure | ||
1 | plant | soil | city | water | |
2 | specie | water | ecosystem | sustainability | |
3 | stream | erosion | infrastructure | resource | |
4 | meadow | measure | space | city | |
5 | pollinator | reduction | climate | innovation | |
6 | matter | land | indicator | ecosystem | |
7 | seed | cover | decision | infrastructure | |
8 | production | agriculture | stakeholder | barrier | |
9 | crop | loss | assessment | sector | |
10 | noise | plantation | design | forest | |
11 | pollination | acceptance | park | supply | |
12 | lawn | forest | resilience | factor | |
13 | biomass | redd | information | decision | |
14 | space | plot | land | irrigation | |
15 | perception | engineering | greenspace | resilience | |
16 | pollution | control | performance | condition | |
17 | field | plant | provision | investment | |
18 | home | pond | evaluation | action | |
19 | vegetation | catchment | map | practice | |
20 | seagrass | vegetation | condition | union |
Water NbS | Forest NbS | Urban NbS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Topic No./ Year | 4 | 6 | 10 | 12 | 15 | 19 | Sub -total | 2 | 11 | 14 | 17 | Sub -total | 3 | 5 | 18 | Sub -total |
2016 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 4 | 5 |
2017 | 1 | 1 | 2 | 2 | 0 | 8 | 6 | 1 | 2 | 2 | 3 | 8 | 2 | 4 | 5 | 11 |
2018 | 2 | 3 | 2 | 15 | 1 | 3 | 23 | 3 | 4 | 5 | 0 | 12 | 1 | 5 | 5 | 11 |
2019 | 6 | 5 | 2 | 13 | 3 | 6 | 29 | 3 | 4 | 8 | 4 | 19 | 3 | 6 | 26 | 35 |
2020 | 7 | 17 | 7 | 28 | 5 | 18 | 64 | 9 | 2 | 16 | 7 | 34 | 8 | 17 | 26 | 51 |
2021 | 16 | 35 | 14 | 40 | 13 | 40 | 118 | 17 | 15 | 41 | 14 | 87 | 12 | 20 | 49 | 81 |
2022 | 20 | 45 | 20 | 48 | 16 | 55 | 204 | 24 | 18 | 56 | 19 | 117 | 17 | 28 | 53 | 98 |
total (rank) | 53 (8) | 106 (5) | 47 (9) | 146 (2) | 38 (13) | 132 (3) | 522 | 57 (7) | 45 (11) | 130 (4) | 47 (9) | 279 | 43 (12) | 81 (6) | 168 (1) | 292 |
Topic | Degree Centrality | Topic | Betweenness Centrality |
---|---|---|---|
4 | 0.3333 | 15 | 0.2317 |
8 | 0.3333 | 8 | 0.1521 |
12 | 0.3333 | 4 | 0.122 |
1 | 0.2777 | 12 | 0.1132 |
15 | 0.2777 | 2 | 0.0987 |
7 | 0.2222 | 17 | 0.0981 |
11 | 0.2222 | 1 | 0.0751 |
13 | 0.2222 | 7 | 0.0551 |
14 | 0.2222 | 14 | 0.0499 |
18 | 0.2222 | 13 | 0.0484 |
2 | 0.1666 | 18 | 0.0366 |
3 | 0.1666 | 3 | 0.0294 |
6 | 0.1666 | 11 | 0.0202 |
9 | 0.1111 | 6 | 0.0007 |
10 | 0.1111 | 5 | 0 |
17 | 0.1111 | 9 | 0 |
5 | 0.0555 | 10 | 0 |
16 | 0.0555 | 16 | 0 |
19 | 0.0555 | 19 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, E.; Kim, R.; Chae, J.; Yang, A.-R.; Jang, E.; Lee, K.Y. Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change. Atmosphere 2023, 14, 1775. https://doi.org/10.3390/atmos14121775
Choi E, Kim R, Chae J, Yang A-R, Jang E, Lee KY. Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change. Atmosphere. 2023; 14(12):1775. https://doi.org/10.3390/atmos14121775
Chicago/Turabian StyleChoi, Eunho, Raehyun Kim, Jeongyeon Chae, A-Ram Yang, Eunjo Jang, and Ki Yong Lee. 2023. "Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change" Atmosphere 14, no. 12: 1775. https://doi.org/10.3390/atmos14121775
APA StyleChoi, E., Kim, R., Chae, J., Yang, A. -R., Jang, E., & Lee, K. Y. (2023). Analysis of Nature-Based Solutions Research Trends and Integrated Means of Implementation in Climate Change. Atmosphere, 14(12), 1775. https://doi.org/10.3390/atmos14121775