Variation of Electron Density in the D-Region Using Kunming MF Radar under Low Solar Activity
Abstract
:1. Introduction
2. MF Radar and Data Processing
3. Results and Comparison
4. Discussion
5. Conclusions
- i.
- The diurnal variation in the Ne was larger around noon and smaller around sunrise and sunset. Meanwhile, the Ne had a strong negative correlation with the solar zenith angles, which was also presented in the simulation results by IRI2016. But the Ne observed by Kunming MF radar showed significant diurnal asymmetry, which existed in all the seasons. Moreover, in summer and spring, the Ne reached a maximum of about 2 h before noon, while the maximum occurred about 1 h after noon in winter and 2 h after noon in fall. This asymmetry phenomenon cannot be seen in the simulated Ne by IRI2016.
- ii.
- The seasonal feature was different below and above 74 km. Below 74 km, the Ne value was largest in fall, followed by summer, but the Ne value was largest in summer, followed by fall above 76 km, which may be attributed to the main ionization source being solar radiation above 76 km and Lyman-α rays.
- iii.
- The results of the IRI2016 are 1–2 times larger than the measured data, and show a completely negative correlation with the solar zenith angle. The difference between them shows that the closest magnitude occurred in the height range of 66–70 km, and the maximum of difference was as high as 350 electrons/cm3, appearing around 78 km and 64 km. The IRI2016 model cannot perfectly describe the changes in the D-region ionosphere.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fejer, J.A.; Vice, R.W. An investigation of the ionospheric D region. J. Atmos. Terrest. Phys. 1955, 16, 7322. [Google Scholar] [CrossRef]
- Thomas, L. Recent developments and outstanding problems in the theory of the D region. Radio Sci. 1974, 9, 121–136. [Google Scholar] [CrossRef]
- Zhulina, E.M. Calculation of short-radio-wave absorption in the ionosphere on the basis of different empirical models of electron density and collision frequency. Ionos. Issled. 1978, 26, 85–88. [Google Scholar]
- Beharrell, M.; Honary, F. A new method for deducing the effective collision frequency profile in the D-region. J. Geophys. Res. Space Phys. 2008, 113, A05303. [Google Scholar] [CrossRef]
- Chakrabarty, D.K.; Chakrabarty, P. Some studies on D-region Ne profiles. Indian J. Radio Space Phys. 1973, 2, 211. [Google Scholar]
- Chakrabarty, D.K.; Chakrabarty, P.; Witt, G. A theoretical attempt to explain some observed features of the D region. J. Geophys. Res. 1978, 83, 5763–5767. [Google Scholar] [CrossRef]
- Mechtly, E.A. Accuracy of rocket measurements of lower ionosphere electron concentrations. Radio Sci. 1974, 9, 373–378. [Google Scholar] [CrossRef]
- Ishisaka, K.; Okada, T.; Hawkins, J.; Murakami, S.; Miyake, T.; Murayama, Y.; Nagano, I.; Matsumoto, H. Investigation of Ne profile in the lower ionosphere by SRP-4 rocket experiment. Earth Planets Space 2005, 57, 879–884. [Google Scholar] [CrossRef]
- Friedrich, M.; Torkar, K.M.; Lehmacher, G.A.; Croskey, C.L.; Mitchell, J.D.; Kudeki, E.; Milla, M. Rocket and incoherent scatter radar common-volume electron measurements of the equatorial lower ionosphere. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mathews, J.D. Incoherent scatter radar probing of the 60–100 km atmosphere and ionosphere. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 765–776. [Google Scholar]
- Arrington, R.E.; Thrane, E. The determination of D-region electron densities from the observations of cross modulation. J. Atmos. Terrest. Phys. 1962, 24, 31–42. [Google Scholar] [CrossRef]
- Friedrich, M.; Torkar, K.M.; Hoppe, U.P.; Bekkeng, T.-A.; Barjatya, A.; Rapp, M. Multi-instrument comparisons of D-region plasma measurements. Ann. Geophys. 2013, 31, 135–144. [Google Scholar] [CrossRef]
- Bainbridge, G.; Inan, U.S. Ionospheric D region Ne profiles derived from the measured interference pattern of VLF waveguide modes. Radio Sci. 2003, 38, 1077. [Google Scholar] [CrossRef]
- Žigman, V.; Grubor, D.; Šulić, D. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Sol. Terr. Phys. 2007, 69, 775–792. [Google Scholar] [CrossRef]
- Singh, A.K. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements. Astrophys. Space Sci. 2014, 350, 1–9. [Google Scholar] [CrossRef]
- Gasdia, F.; Marshall, R.A. Assimilating VLF Transmitter Observations with an LETKF for Spatial Estimates of the D-Region Ionosphere. IEEE Trans. Geosci. Remote Sens. 2019, 99, 1–18. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; Technical Note 300; Bureau of Standards: Boulder, CO, USA, 1965. [Google Scholar]
- Gardner, F.F.; Pawsey, J.L. Study of the ionospheric D region using partial reflections. J. Atmos. Terrest. Phys. 1953, 7, 321–344. [Google Scholar] [CrossRef]
- Fritts, D.C.; Isler, J.R. First observations of mesospheric dynamics with a partial reflection radar. Geophys. Res. Lett. 1992, 19, 409–412. [Google Scholar] [CrossRef]
- Reid, I.M. Radar observations of stratified layers in the mesosphere and lower thermosphere (50 km–100 km). Adv. Space Res. 1990, 10, 7–19. [Google Scholar] [CrossRef]
- Cervera, M.A.; Reid, I.M. Comparison of simultaneous wind measurements using collocated VHF meteor radar and MF spaced antenna radar systems. Radio Sci. 1995, 30, 1245–1261. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Reid, I.M. A Simple model of atmospheric radar backscatter description and application to the fall Correlation Analysis of spaced antenna data. Radio Sci. 1995, 30, 1263–1280. [Google Scholar] [CrossRef]
- Rupa, V. Mid-Latitude D-Region MF Radar Ne Observation. Ph.D. Thesis, Adelaide University, Adelaide, Australia, 2003. [Google Scholar]
- Igarashi, K.; Murayama, Y.; Nagayama, M.; Kawana, S. D-region electron density measurements by MF radar in the middle and high latitudes. Adv. Space Res. 2000, 25, 25–32. [Google Scholar] [CrossRef]
- Zhang, D.H.; Xiao, Z.; Wu, J.; Gong, J.C.; Liu, S.Q. The study of the Ne in ionospheric D region using MF radar during flares period. Chin. J. Space Sci. 2003, 23, 334–342. [Google Scholar] [CrossRef]
- Venkatesham, K.; Singh, R.; Maurya, A.K.; Dube, A.; Kumar, S.; Phanikumar, D.V. The 22 July 2009 total solar eclipse: Modeling D region ionosphere using narrowband VLF observations. J. Geophys. Res. Space Phys. 2019, 124, 616–627. [Google Scholar] [CrossRef]
- da Silva, C.L.; Salazar, S.D.; Brum, C.G.M.; Terra, P. Survey of electron density changes in the daytime ionosphere over the Arecibo Observatory due to lightning and solar flares. Sci. Rep. 2021, 11, 10250. [Google Scholar] [CrossRef]
- Baumann, C.; Kero, A.; Raizada, S.; Rapp, M.; Sulzer, M.P.; Verronen, P.T.; Vierinen, J. Arecibo Measurements of D-Region Electron. Densities during Sunset and Sunrise in August 2016 [dataset]. Ann. Geophys. 2022, 40, 519–530. [Google Scholar] [CrossRef]
- Li, N.; Lei, J.; Lei, J.; Luan, X.; Chen, J.; Zhong, J.; Wu, Q.; Xu, Z.; Lin, L. Responses of the D region ionosphere to solar flares revealed by MF radar measurements. J. Atmos. Sol. Terr. Phys. 2019, 182, 211–216. [Google Scholar] [CrossRef]
- Ding, Z.H.; Dai, L.D.; Yang, S.; Miao, J.; Wu, J. Preliminary analysis of daytime electron density in the ionospheric E-F valley based on the Qujing incoherent scatter radar observations. Chin. J. Radio Sci. 2022, 37, 357–363. (In Chinese) [Google Scholar] [CrossRef]
- Shi, Y.; Yang, C.; Wang, J.; Zheng, Y.; Meng, F.; Chernogor, L.F. A Hybrid Deep Learning-Based Forecasting Model for the Peak Height of Ionospheric F2 Layer. Space Weather 2023, 21, 2023sw003581. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Yang, C.; Zhang, Z.; Zhao, L. A Short-term Forecast Method of Maximum Usable Frequency for HF Communication. IEEE Trans. Antennas Propag. 2023, 71, 5189–5198. [Google Scholar] [CrossRef]
- Weng, J.; Liu, Y.; Wang, J. A Model-Assisted Combined Machine Learning Method for Ionospheric TEC Prediction. Remote Sens. 2023, 15, 2953. [Google Scholar] [CrossRef]
- Li, F.Q.; Hu, X.; Zhang, X.X. Mesospheric MF radar in Wuhan and its preliminary observation results. Chin. J. Space Sci. 2002, 22, 65–71. [Google Scholar] [CrossRef]
- Hu, X.; Zeng, Z.; Zhang, D.Y. Observation of the mesosphere and lower thermosphere angular spectrum with an MF radar at Wuhan. Chin. J. Space Sci. 2003, 23, 256–261. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Hu, X.; Zhang., X.X. Observations of the Mesospheric and Lower Thermospheric Mean Winds at 30° N With MF radars. Chin. J. Space Sci. 2005, 25, 267–272. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Yi, F.; Hu, X. MF radar observation of tides and their interactions over Wuhan (30° N, 114° E). Chin. J. Space Sci. 2003, 23, 430–435. [Google Scholar] [CrossRef]
- Zhang, X.C.; Yi, F. MF Radar Observations of Mesospheric Tides Over Wuhan. Chin. J. Space Sci. 2007, 27, 29–34. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.S.; Zhao, L.; Zhao, Z.W. The study of eclipse effects in D region based on MF radar measurement. Chin. J. Geophys. 2011, 54, 942–949. (In Chinese) [Google Scholar]
- Zhao, L.; Chen, J.S.; Li, N.; Zhao, Z.W. MF radar in Kunming and its preliminary observation results. Chin. J. Space Sci. 2011, 31, 27–33. [Google Scholar] [CrossRef]
- Ding, Z.H.; Yu, L.; Dai, L.D.; Xu, Z.W.; Wu, J. The preliminary measurement and analysis of the power profiles by the Qujing incoherent scatter radar. Chin. J. Geophys. 2014, 57, 3564–3569. (In Chinese) [Google Scholar] [CrossRef]
- Mechtly, E.A.; Smith, L.G. Changes of lower ionosphere electron densities with solar zenith angle. Radio Sci. 1970, 5, 1407–1412. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, J.; Li, N.; Zhao, Z.; Jian, W. ST radar in Kunming and its preliminary observation results. Chin. J. Space Sci. 2014, 29, 1165–1170. [Google Scholar] [CrossRef]
- Siskind, D.E.; Bacmeister, J.; Summers, T.; Russell, J.M., III. Two dimensional model calculations of nitric oxide transport in the middle atmosphere and comparison with Halogen Occultation Experiment data. J. Geophys. Res. 1997, 102, 3527–3545. [Google Scholar] [CrossRef]
- Chakrabarty, D.K.; Meek, C.E.; Manson, A.H. Asymmetry in the diurnal variation of temperature and electron loss coefficient in the mesosphere. J. Atmos. Terr. Phys. 1983, 45, 309–314. [Google Scholar] [CrossRef]
- Larsen, T.R.; Reagan, J.B.; Imhof, W.L.; Montbriand, L.E.; Belrose, J.S. A coordinated study of energetic electron precipitation and D region electron concentrations over Ottawa during disturbed conditions. J. Geophys. Res. Atmos. 1976, 81, 2200–2212. [Google Scholar] [CrossRef]
- Bilitza, D. International Reference Ionosphere 2000. Radio. Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef]
- Bilitza, D.; Rawer, A.K. International Reference Ionosphere 2012. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather Int. J. Res. Appl. 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Haug, A.; Jespersen, M.; Kane, J.A.; Thrane, E.V. Electron densities measured by the partial reflection method compared with simultaneous rocket measurements. J. Atmos. Terr. Phys. 1970, 32, 1139–1142. [Google Scholar] [CrossRef]
- Wratt, D.S. Variations in Ne in the middle latitude D-region above Urbana, Illinois. J. Atmos. Terr. Phys. 1977, 39, 607–617. [Google Scholar] [CrossRef]
- Manson, A.H.; Gregory, J.B.; Stephenson, D.G. The effect of atmospheric gravity waves upon wind determinations in the lower thermosphere (80–100 km). Planet. Space Sci. 1974, 22, 181–183. [Google Scholar] [CrossRef]
- Liu, X.; Yue, J.; Xu, J.; Garcia, R.R.; Russell, J.M., III; Mlynczak, M.; Wu, D.L.; Nakamura, T. Variations of globalgravity waves derived from 14 years ofSABER temperature observations. J. Geophys. Res. Atmos. 2017, 122, 6231–6249. [Google Scholar] [CrossRef]
- Qin, Z.L.; Zhu, B.Y.; Lv, F.C. Using time domain waveforms of return strokes to retrieve the daytime fluctuation of ionospheric D layer. Chin. Sci. Bull. 2015, 60, 654–663. [Google Scholar]
- Xu, W.; Marshall, R.A.; Bortnik, J.; Bonnell, J.W. An Ne Model of the D- and E-Region Ionosphere for Transionospheric VLF Propagation. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029288. [Google Scholar] [CrossRef]
Parameter | Daytime | Nighttime |
---|---|---|
Height Resolution | 2 km | 2 km |
Start Range | 50 km | 50 km |
Polarization | O-mode | X-mode |
PRF (Hz) | 80 | 40 |
Related Overlays | 16 | 8 |
Sampling Points | 285 | 285 |
Record Length (s) | 57 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Li, N.; Wang, J.; Ding, Z.; Dai, L.; Zhao, L.; Chen, J. Variation of Electron Density in the D-Region Using Kunming MF Radar under Low Solar Activity. Atmosphere 2023, 14, 1764. https://doi.org/10.3390/atmos14121764
Tang Z, Li N, Wang J, Ding Z, Dai L, Zhao L, Chen J. Variation of Electron Density in the D-Region Using Kunming MF Radar under Low Solar Activity. Atmosphere. 2023; 14(12):1764. https://doi.org/10.3390/atmos14121764
Chicago/Turabian StyleTang, Zhimei, Na Li, Jianyuan Wang, Zonghua Ding, Liandong Dai, Lei Zhao, and Jinsong Chen. 2023. "Variation of Electron Density in the D-Region Using Kunming MF Radar under Low Solar Activity" Atmosphere 14, no. 12: 1764. https://doi.org/10.3390/atmos14121764
APA StyleTang, Z., Li, N., Wang, J., Ding, Z., Dai, L., Zhao, L., & Chen, J. (2023). Variation of Electron Density in the D-Region Using Kunming MF Radar under Low Solar Activity. Atmosphere, 14(12), 1764. https://doi.org/10.3390/atmos14121764