Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF-AERMOD Coupled Model
2.1.1. Weather Research and Forecasting Model (WRF)
2.1.2. Air Dispersion Model (AERMOD)
2.2. Data Collection
2.3. Domain Setup
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Loomis, D.; Huang, W.; Chen, G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chin. J. Cancer 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; He, Z.; Li, C.; Chen, Z. Investigation of yearly indoor/outdoor PM2.5 levels in the perspectives of health impacts and air pollution control: Case study in Changchun, in the northeast of China. Sustain. Cities Soc. 2020, 53, 101871. [Google Scholar] [CrossRef]
- Li, W.; Lin, G.; Xiao, Z.; Zhang, Y.; Li, B.; Zhou, Y.; Ma, Y.; Chai, E. A review of respirable fine particulate matter (PM2.5)-induced brain damage. Front. Mol. Neurosci. 2022, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- IQAir. Almaty Air Quality Index (AQI) and Kazakhstan Air Pollution|AirVisual. 2021. Available online: https://www.iqair.com/kazakhstan/almaty-qalasy/almaty (accessed on 25 June 2023).
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Saffari, A.; Ataei, M.; Sereshki, F.; Naderi, M. Environmental impact assessment (EIA) by using the Fuzzy Delphi Folchi (FDF) method (case study: Shahrood cement plant, Iran). Environ. Dev. Sustain. 2019, 21, 817–860. [Google Scholar] [CrossRef]
- Agency, I.E. Kazakhstan 2022 Energy Sector Review. 2022. Available online: https://iea.blob.core.windows.net/assets/fc84229e-6014-4400-a963-bccea29e0387/Kazakhstan2022.pdf (accessed on 23 May 2023).
- United States Environmental Protection Agency. CHP Benefits. Available online: https://www.epa.gov/chp/chp-benefits (accessed on 2 December 2022).
- Chio, C.-P.; Lo, W.-C.; Tsuang, B.-J.; Hu, C.-C.; Ku, K.-C.; Chen, Y.-J.; Lin, H.-H.; Chan, C.-C. Health impact assessment of PM2.5 from a planned coal-fired power plant in Taiwan. J. Formos. Med. Assoc. 2019, 118, 1494–1503. [Google Scholar] [CrossRef]
- Zakarin, E.A.; Baklanov, A.A.; Balakay, L.A.; Dedova, T.V.; Bostanbekov, K.A. Simulation of air pollution in Almaty City under adverse weather conditions. Russ. Meteorol. Hydrol. 2021, 46, 121–128. [Google Scholar] [CrossRef]
- Bekbossynova, A.; Duvanova, D.; Jones, N.; Lyden, K.; McGinley, T.; Moss, H. How Attitudes towards Air Pollution May Impact Public Health: A Case Study of Almaty, Kazakhstan. J. Environ. Prot. 2023, 14, 583–601. [Google Scholar] [CrossRef]
- Afzali, A.; Rashid, M.; Afzali, M.; Younesi, V. Prediction of air pollutants concentrations from multiple sources using AERMOD coupled with WRF prognostic model. J. Clean. Prod. 2017, 166, 1216–1225. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Managing Air Quality—Air Quality Modeling. Available online: https://www.epa.gov/air-quality-management-process/managing-air-quality-air-quality-modeling (accessed on 11 July 2023).
- Assanov, D.; Zapasnyi, V.; Kerimray, A. Air Quality and Industrial Emissions in the Cities of Kazakhstan. Atmosphere 2021, 12, 314. [Google Scholar] [CrossRef]
- NCAR. Weather Research & Forecasting Model (WRF). Available online: https://www.mmm.ucar.edu/models/wrf (accessed on 23 May 2022).
- Xu, H.; Chen, H. Impact of urban morphology on the spatial and temporal distribution of PM2.5 concentration: A numerical simulation with WRF/CMAQ model in Wuhan, China. J. Environ. Manag. 2021, 290, 112427. [Google Scholar] [CrossRef]
- Mölders, N.; Tran, H.N.; Quinn, P.; Sassen, K.; Shaw, G.E.; Kramm, G. Assessment of WRF/Chem to simulate sub–Arctic boundary layer characteristics during low solar irradiation using radiosonde, SODAR, and surface data. Atmos. Pollut. Res. 2011, 2, 283–299. [Google Scholar] [CrossRef]
- AirNow. US Embassies and Consulates|AirNow.gov. 2021. Available online: https://www.airnow.gov/international/us-embassies-and-consulates/#Kazakhstan$Almaty (accessed on 23 May 2023).
- Karatayev, M.; Clarke, M.L. A review of current energy systems and green energy potential in Kazakhstan. Renew. Sustain. Energy Rev. 2016, 55, 491–504. [Google Scholar] [CrossRef]
- Rahul, B.; Kumar, R.Y.; Ramachandra, P.V. Air Pollution Dispersion Using Coupled AERMOD-WRF Modeling System and Generation of Gridded Emission Inventory of NOX over Nagpur. In Boundary Layer Flows; Ramachandra, P.V., Valter, S., João, C., Eds.; IntechOpen: Rijeka, Croatia, 2022; p. 10. [Google Scholar]
- Shahin, M.A.; Jaksa, M.B.; Maier, H.R. State of the art of artificial neural networks in geotechnical engineering. Electron. J. Geotech. Eng. 2008, 8, 1–26. [Google Scholar]
- Hallaji, H.; Bohloul, M.R.; Peyghambarzadeh, S.M.; Azizi, S. Measurement of air pollutants concentrations from stacks of petrochemical company and dispersion modeling by AERMOD coupled with WRF model. Int. J. Environ. Sci. Technol. 2023, 20, 7217–7236. [Google Scholar] [CrossRef]
- Duan, W.; Wang, X.; Cheng, S.; Wang, R.; Zhu, J. Influencing factors of PM2.5 and O3 from 2016 to 2020 based on DLNM and WRF-CMAQ. Environ. Pollut. 2021, 285, 117512. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, J.; Ying, Q.; Zhang, H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos. Meas. Technol. 2016, 16, 10333–10350. [Google Scholar] [CrossRef]
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef]
- Assembayeva, M.; Egerer, J.; Mendelevitch, R.; Zhakiyev, N. A spatial electricity market model for the power system: The Kazakhstan case study. Energy 2018, 149, 762–778. [Google Scholar] [CrossRef]
- Benchrif, A.; Wheida, A.; Tahri, M.; Shubbar, R.M.; Biswas, B. Air quality during three COVID-19 lockdown phases: AQI, PM2.5 and NO2 assessment in cities with more than 1 million inhabitants. Sustain. Cities Soc. 2021, 74, 103170. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, C.G.; Bowden, J.; Arunachalam, S. Aircraft landing and takeoff emission impacts on surface O3 and PM2.5 through aerosol direct feedback effects estimated by the coupled WRF-CMAQ model. Atmos. Environ. 2020, 243, 117859. [Google Scholar] [CrossRef]
- Almeida, S.; Manousakas, M.; Diapouli, E.; Kertesz, Z.; Samek, L.; Hristova, E.; Šega, K.; Alvarez, R.P.; Belis, C.; Eleftheriadis, K. Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115199. [Google Scholar] [CrossRef]
- Li, P.; Nord, N.; Ertesvåg, I.S.; Ge, Z.; Yang, Z.; Yang, Y. Integrated multiscale simulation of combined heat and power based district heating system. Energy Convers. Manag. 2015, 106, 337–354. [Google Scholar] [CrossRef]
- Ma, W.; Fan, J.; Fang, S.; Hassan NM, S.; Zhang, Y.; Wu, X.; Li, Y.; Hu, R.; Liu, G. Energy efficiency indicators for combined cooling, heating and power systems. Energy Convers. Manag. 2021, 239, 114187. [Google Scholar] [CrossRef]
- C. D. o. E. A. I. Division and D. Fleming. Organization for Economic Co-operation and Development. 1961. Available online: https://www.cambridge.org/core/journals/international-organization/article/abs/organization-for-economic-cooperation-and-development/84F3EBC868646D21139731082D2049F2 (accessed on 23 May 2023).
- Choi, M.-W.; Lee, J.-H.; Woo, J.-W.; Kim, C.-H.; Lee, S.-H. Comparison of PM2.5 chemical components over East Asia simulated by the WRF-Chem and WRF/CMAQ models: On the models’ prediction inconsistency. Atmosphere 2019, 10, 618. [Google Scholar] [CrossRef]
Vertical Coordinate | Terrain—Following Hydrostatic Pressure |
---|---|
Covered area | 43.239° N, 76.889° E |
WRF Core | ARW |
Interval | 6 h |
Map Projection | Mercator |
Integration time step | 90 s |
Data | NCEP FNL |
Grid size | (112 × 112) × 27 |
Horizontal grid system | Arakawa—C Grid |
No. of Domain | 1 |
Start date and time | 2021-01-01_00:00:00 |
End date and time | 2021-01-15_00:00:00 |
Dynamics | Non-hydration |
Resolution | 10 km × 10 km |
Station 1 *—Daily Average (µg/m3) | Station 2 *—Daily Average (µg/m3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Observed Conc. | Controlled | Uncontrolled | Observed Conc. | Controlled | Uncontrolled | |||||
Day | Simulated Conc. | % Contribution | Simulated Conc. | % Contribution | Simulated Conc. | % Contribution | Simulated Conc. | % Contribution | ||
1 | 148.50 | 0.02 | 0.01 | 1.55 | 1.05 | 170.30 | 0.06 | 0.04 | 4.46 | 2.62 |
2 | 84.92 | 0.01 | 0.01 | 0.84 | 0.99 | 115.04 | 0.04 | 0.03 | 2.52 | 2.19 |
3 | 106.85 | 0.00 | 0.00 | 0.20 | 0.18 | 140.18 | 0.07 | 0.05 | 4.71 | 3.36 |
4 | 133.78 | 0.03 | 0.02 | 2.03 | 1.52 | 155.43 | 0.02 | 0.01 | 1.04 | 0.67 |
5 | 130.36 | 0.03 | 0.02 | 2.21 | 1.70 | 138.46 | 0.04 | 0.03 | 3.09 | 2.23 |
6 | 152.96 | 0.08 | 0.05 | 5.43 | 3.55 | 141.71 | 0.07 | 0.05 | 4.26 | 3.00 |
7 | 140.83 | 0.12 | 0.08 | 8.46 | 6.00 | 174.42 | 0.11 | 0.06 | 7.93 | 4.55 |
8 | 173.43 | 0.06 | 0.04 | 4.55 | 2.62 | 162.42 | 0.06 | 0.04 | 4.38 | 2.69 |
9 | 153.87 | 0.03 | 0.02 | 2.05 | 1.33 | 138.28 | 0.03 | 0.02 | 2.08 | 1.50 |
10 | 176.13 | 0.09 | 0.05 | 6.74 | 3.82 | 107.30 | 0.10 | 0.09 | 6.86 | 6.30 |
11 | 100.82 | 5.50 | 5.45 | 392.63 | 389.42 | 74.27 | 2.63 | 3.53 | 0.35 | 0.48 |
12 | 79.80 | 0.01 | 0.01 | 0.18 | 0.23 | 46.59 | 0.01 | 0.02 | 0.29 | 0.62 |
13 | 32.87 | 0.01 | 0.03 | 0.07 | 0.21 | 62.58 | 0.01 | 0.02 | 0.15 | 0.23 |
14 | 29.22 | 0.05 | 0.17 | 3.47 | 11.86 | 65.23 | 0.05 | 0.09 | 3.92 | 6.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogbuabia, T.B.; Guney, M.; Baimatova, N.; Ulusoy, I.; Karaca, F. Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification. Atmosphere 2023, 14, 1554. https://doi.org/10.3390/atmos14101554
Ogbuabia TB, Guney M, Baimatova N, Ulusoy I, Karaca F. Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification. Atmosphere. 2023; 14(10):1554. https://doi.org/10.3390/atmos14101554
Chicago/Turabian StyleOgbuabia, Theophilus Bright, Mert Guney, Nassiba Baimatova, Ismail Ulusoy, and Ferhat Karaca. 2023. "Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification" Atmosphere 14, no. 10: 1554. https://doi.org/10.3390/atmos14101554
APA StyleOgbuabia, T. B., Guney, M., Baimatova, N., Ulusoy, I., & Karaca, F. (2023). Assessing the Impact of Combined Heat and Power Plants (CHPPs) in Central Asia: A Case Study in Almaty for PM2.5 Simulations Using WRF-AERMOD and Ground Level Verification. Atmosphere, 14(10), 1554. https://doi.org/10.3390/atmos14101554