How Well Does Weather Research and Forecasting (WRF) Model Simulate Storm Rashmi (2008) Itself and Its Associated Extreme Precipitation over the Tibetan Plateau at the Same Time?
Abstract
:1. Introduction
2. Model Description and Data Used
3. Rashmi’s Activity and Precipitation in TP
4. Results
4.1. Simulations of the Track and Strength of Rashmi
4.2. Simulation of Rashmi’s Cloud System Structure
4.3. Simulation of Rashmi’s Background Circulation Field
4.4. Variations in Rashmi’s Structure and Their Influence on Precipitation over TP
4.4.1. Thermal Structure
4.4.2. The Process of Frontogenesis
5. Evaluation of the Simulation Capabilities for Rashmi-Induced Severe Precipitation in the TP
5.1. Cumulative Precipitation Distribution
5.2. Simulation of Precipitation at and around Meteorological Stations on the TP
6. Conclusions
- (i)
- Overall, the Rashmi’s track error, velocity, and precipitation on the TP simulated in ERA5 experiments are slightly higher than FNL, but the former simulates the intensity of Rashmi better than the latter. The GF and KF cumulus convection schemes tend to overestimate Rashmi’s intensity. The FNL SAS and ERA5 TDK schemes are the best of the two experiments, while FNL KF and ERA5 KF schemes perform the worst in both experiments, respectively.
- (ii)
- All schemes simulate to some extent the cloud characteristics of the Rashmi and the water vapor conveyor belt to the TP, with the FNL SAS and ERA5 TDK schemes simulating cloud patterns of Rashmi that most approach reality. The velocity and track of Rashmi are adjusted by the steering flow, which is affected by the simulated pattern of the SBT and WPSH. A northerly or easterly SBT and a westerly WPSH guide Rashmi to the northeast, and a westerly SBT is detrimental to the northward movement of Rashmi.
- (iii)
- The four representative schemes, FNL KF, FNL SAS, ERA5 TDK, and ERA5 BMJ, all reproduce the vertical deep convection at sea before landfall and the northerly cloud mass after landfall. Precipitation in the TP is closely related to the intensity of Rashmi and its warm moist air masses to the north of the TP, the ERA5 TDK scheme simulation results being closer to the actual situation.
- (iv)
- The comparison between the simulation results and daily precipitation at (extreme) stations shows that WRF can distinguish between sunniness and rain well and has some ability to identify extreme precipitation on the TP. The excellent combinations of parametric schemes, such as the ERA5 GF and ERA5 TDK with 24 h cumulative precipitation standard deviations, are generally consistent with reality, with correlation coefficients of 0.84 or more.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gray, W. Global View of the Origin of Tropical Disturbances and Storms. Mon. Weather. Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Chutia, L.; Pathak, B.; Parottil, A.; Bhuyan, P.K. Impact of Microphysics Parameterizations and Horizontal Resolutions on Simulation of “MORA” Tropical Cyclone over Bay of Bengal Using Numerical Weather Prediction Model. Meteorol. Atmos. Phys. 2019, 131, 1483–1495. [Google Scholar] [CrossRef]
- Lin, Z.; Biania, Z.; Wen, S.; Zhou, Z. Objective classification of the tracks of tropical storms in the bay of bengal. J. Trop. Meteorol. 2015, 21, 222–231. [Google Scholar]
- Fan, X.; Li, Y.; Lyu, A.; Liu, L. Statistical and Comparative Analysis of Tropical Cyclone Activity over the Arabian Sea and Bay of Bengal (1977–2018). J. Trop. Meteorol. 2020, 26, 441–452. [Google Scholar] [CrossRef]
- Xiao, Z.; Duan, A. Can the Tropical Storms Originated from the Bay of Bengal Impact the Precipitation and Soil Moisture over the Tibetan Plateau? Sci. China Earth Sci. 2015, 58, 915–928. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.-L.; Yau, M. A Multiscale Numerical Study of Hurricane Andrew (1992). Part I: Explicit Simulation and Verification. Mon. Weather Rev. 1997, 125, 3073–3093. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations. Mon. Weather. Rev. 2008, 136, 4819–4838. [Google Scholar] [CrossRef]
- Zambon, J.; He, R.; Warner, J. Tropical to Extratropical: Marine Environmental Changes Associated with Superstorm Sandy Prior to Its Landfall. Geophys. Res. Lett. 2014, 41, 8935–8943. [Google Scholar] [CrossRef]
- Nasrollahi, N.; AghaKouchak, A.; Li, J.; Gao, X.; Hsu, K.; Sorooshian, S. Assessing the Impacts of Different WRF Precipitation Physics in Hurricane Simulations. Weather. Forecast. 2012, 27, 1003–1016. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Lu, W.; Hu, Y. Why Are Tropical Cyclone Tracks over the Western North Pacific Sensitive to the Cumulus Parameterization Scheme in Regional Climate Modeling? A Case Study for Megi (2010). Mon. Weather. Rev. 2014, 142, 1240–1249. [Google Scholar] [CrossRef]
- Parker, C.; Lynch, A.; Mooney, P. Factors Affecting the Simulated Trajectory and Intensification of Tropical Cyclone Yasi (2011). Atmos. Res. 2017, 194, 27–42. [Google Scholar] [CrossRef]
- Islam, T.; Srivastava, P.; Rico-Ramirez, M.; Dai, Q.; Gupta, M.; Singh, S. Tracking a Tropical Cyclone through WRF-ARW Simulation and Sensitivity of Model Physics. Nat. Hazards 2015, 76, 1473–1495. [Google Scholar] [CrossRef]
- Delfino, R.; Bagtasa, G.; Hodges, K.; Vidale, P. Sensitivity of Simulating Typhoon Haiyan (2013) Using WRF: The Role of Cumulus Convection, Surface Flux Parameterizations, Spectral Nudging, and Initial and Boundary Conditions. Nat. Hazards Earth Syst. Sci. 2022, 22, 3285–3307. [Google Scholar] [CrossRef]
- Pattanayak, S.; Mohanty, U. A Comparative Study on Performance of MM5 and WRF Models in Simulation of Tropical Cyclones over Indian Seas. Curr. Sci. 2008, 95, 923–936. [Google Scholar]
- Xalxo, K.; Mahala, B.; Mohanty, P.; Routray, A.; Mishra, B. Performance Assessment of WRF Model Radiation Schemes in Simulating the Track and Intensity of the Super Cyclonic Storm “Amphan”. Nat. Hazards 2022, 114, 1741–1762. [Google Scholar] [CrossRef]
- Raju, P.V.S.; Potty, J.; Mohanty, U.C. Sensitivity of Physical Parameterizations on Prediction of Tropical Cyclone Nargis over the Bay of Bengal Using WRF Model. Meteorol. Atmos. Phys. 2011, 113, 125–137. [Google Scholar] [CrossRef]
- Mohan, P.R. Convection-Permitting WRF Simulations of Tropical Cyclones over the North Indian Ocean. Pure Appl. Geophys. 2022, 179, 31. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L. Numerical Study on Impact of the Boundary Layer Fluxes over Wetland on Sustention and Rainfall of Landfalling Tropical Cyclones. Acta Meteorol. Sin. 2007, 21, 34–46. [Google Scholar]
- Nellipudi, N.; Ramakrishna, S.; Podeti, S.; Rao, B.; Yesubabu, V.; Rao, V. Impact of the Moisture and Land Surface Processes on the Sustenance of the Cyclonic Storm Yemyin over Land Using the WRF-ARW Model. Nat. Hazards 2022, 114, 495–519. [Google Scholar] [CrossRef]
- Mohanty, U.; Osuri, K.; Routray, A.; Mohapatra, M.; Pattanayak, S. Simulation of Bay of Bengal Tropical Cyclones with WRF Model: Impact of Initial and Boundary Conditions. Mar. Geod. 2010, 33, 294–314. [Google Scholar] [CrossRef]
- Mandal, M.; Singh, K.; Balaji, M.; Mohapatra, M. Performance of WRF-ARW Model in Real-Time Prediction of Bay of Bengal Cyclone “Phailin”. Pure Appl. Geophys. 2016, 173, 1783–1801. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Balaji, C. Impact of Physics Parameterization and 3DVAR Data Assimilation on Prediction of Tropical Cyclones in the Bay of Bengal Region. Nat. Hazards 2016, 80, 223–247. [Google Scholar] [CrossRef]
- Rajeswari, J.; Srinivas, C.; Mohan, P.; Venkatraman, B. Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model. Pure Appl. Geophys. 2020, 177, 5523–5550. [Google Scholar] [CrossRef]
- Mahala, B.; Mohanty, P.; Xalxo, K.; Routray, A.; Misra, S. Impact of WRF Parameterization Schemes on Track and Intensity of Extremely Severe Cyclonic Storm “Fani”. Pure Appl. Geophys. 2021, 178, 245–268. [Google Scholar] [CrossRef]
- Osuri, K.; Mohanty, U.; Routray, A.; Kulkarni, M.; Mohapatra, M. Customization of WRF-ARW Model with Physical Parameterization Schemes for the Simulation of Tropical Cyclones over North Indian Ocean. Nat. Hazards 2012, 63, 1337–1359. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Q.; Zou, X.; Wu, G. The Simulation Analysis of the Precipitation over the Southern Slopes of the Tibetan Plateau Based on WRF Model. Acta Meteorol. Sin. 2016, 74, 744–756. (In Chinese) [Google Scholar]
- Mao, Z.; Zhu, Z.; Zhang, R.; Zhou, L. The Impact of Different Cloud Microphysics Parameterization Schemes on the Simulation of a Heavy Rainfall Event over the Tibetan Plateau. J. Trop. Meteorol. 2022, 38, 81–90. (In Chinese) [Google Scholar] [CrossRef]
- Shirai, T.; Enomoto, Y.; Watanabe, M.; Arikawa, T. Sensitivity Analysis of the Physics Options in the Weather Research and Forecasting Model for Typhoon Forecasting in Japan and Its Impacts on Storm Surge Simulations. Coast. Eng. J. 2022, 64, 506–532. [Google Scholar] [CrossRef]
- Singh, K.; Bhaskaran, P. Impact of PBL and Convection Parameterization Schemes for Prediction of Severe Land-Falling Bay of Bengal Cyclones Using WRF-ARW Model. J. Atmos. Sol. Terr. Phys. 2017, 165, 10–24. [Google Scholar] [CrossRef]
- Davis, C.; Bosart, L. Numerical Simulations of the Genesis of Hurricane Diana (1984). Part II: Sensitivity of Track and Intensity Prediction. Mon. Weather. Rev. 2002, 130, 1100–1124. [Google Scholar] [CrossRef]
- Srinivas, C.; Rao, D.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Tropical Cyclone Predictions over the Bay of Bengal Using the High-Resolution Advanced Research Weather Research and Forecasting (ARW) Model. Q. J. R. Meteorol. Soc. 2013, 139, 1810–1825. [Google Scholar] [CrossRef]
- Mohandas, S.; Ashrit, R. Sensitivity of Different Convective Parameterization Schemes on Tropical Cyclone Prediction Using a Mesoscale Model. Nat. Hazards 2014, 73, 213–235. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. In NCAR Technical Note NCAR/TN-475+STR. June 2008; Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research: Boulder, CO, USA, 2008; Volume 475, p. 1. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Janjic, Z. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-Km-Mesh Regional Climate Model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Kain, J. The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Han, J.; Pan, H. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System. Weather. Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, D. Datasets of the Boundary and Area of the Tibetan Plateau. Digit. J. Glob. Chang. Data Repos. 2014, 69, 164–168. [Google Scholar] [CrossRef]
- Zheng, J. RASHMI Made Landfall in Bangladesh and Affected Areas Such as Tibet and Yunnan in China. 2008. Available online: http://news.sohu.com/20081027/n260269004.shtml (accessed on 24 August 2023). (In Chinese).
- Ye, W.; Li, Y.; Zhang, D. Generation of Extreme Precipitation over the Southeastern Tibetan Plateau Associated with TC Rashmi (2008). Weather. Forecast. 2022, 37, 2223–2238. [Google Scholar] [CrossRef]
- Ma, W.D.; Liu, F.G.; Zhou, Q.; Chen, Q.; Liu, F.; Chen, Y.P. Characteristics of Extreme Precipitation over the Tibetan Plateau during 1961–2017. J. Nat. Resour. 2019, 35, 3039–3050. (In Chinese) [Google Scholar]
- Holland, G.J. Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect. J. Atmos. Sci. 1983, 40, 328–342. [Google Scholar] [CrossRef]
- Suo, M. Formation, Propagation and Evolution Characteristics of Wintertime Southern Branch Trough in the Subtropical Westerlies and Its Impacts on the Weather and Climate in China. Ph.D. Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2009. (In Chinese). [Google Scholar]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 Reanalysis Precipitation Dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Nogueira, M. Inter-Comparison of ERA-5, ERA-Interim and GPCP Rainfall over the Last 40 Years: Process-Based Analysis of Systematic and Random Differences. J. Hydrol. 2020, 583, 124632. [Google Scholar] [CrossRef]
- Winterrath, T.; Rosenow, W. A New Module for the Tracking of Radar-Derived Precipitation with Model-Derived Winds. Adv. Geosci. 2007, 10, 77–83. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
Domain | D01 | D02 |
---|---|---|
Grid points (x,y) | 200 × 205 | 451 × 451 |
Grid size (km) | 27 km | 9 km |
Vertical layers | 65 | 65 |
Initial-boundary conditions | FNL, ERA5 reanalysis data | |
Microphysics scheme | Purdue Lin | |
Cumulus parameterization scheme | Betts–Miller–Janjic, New Tiedtke, Grell–Freitas, Kain–Fritsch, New SAS | |
Shortwave radiation scheme | Dudhia | |
Longwave radiation scheme | RRTM | |
Boundary layer scheme | YSU | |
Land surface scheme | Noah | |
10 experiments | FNL BMJ, FNL TDK, FNL GF, FNL KF, FNL SAS ERA5 BMJ, ERA5 TDK, ERA5 GF, ERA5 KF, ERA5 SAS |
FNL BMJ | FNL TDK | FNL GF | FNL KF | FNL SAS | ERA5 BMJ | ERA5 TDK | ERA5 GF | ERA5 KF | ERA5 SAS | |
---|---|---|---|---|---|---|---|---|---|---|
Track Errors (km) | 219.0 | 160.3 | 125.7 | 100.7 | 91.9 | 150.3 | 68.5 | 183.1 | 108.2 | 108.7 |
SLP Errors (hPa) | 4.96 | 3.5 | 4.45 | 7.21 | 3.55 | 2.94 | 2.5 | 6.25 | 4.34 | 2.6 |
10 m-MWS Errors (m/s) | 5.32 | 4.00 | 4.71 | 5.36 | 3.19 | 2.44 | 1.83 | 6.28 | 3.3 | 2.1 |
Simulation | Observation | Total | |
---|---|---|---|
Yes | No | ||
Yes | Hit (a) | False alarm (b) | a + b |
No | Miss (c) | Correct rejection (d) | c + d |
Total | a + c | b + d | a + b + c + d (n) |
TS | |
ETS | |
BIAS | |
HSS | (Appendix A) |
POD | |
FAR | |
MAR |
FNL BMJ | FNL TDK | FNL GF | FNL KF | FNL SAS | ERA5 BMJ | ERA5 TDK | ERA5 GF | ERA5 KF | ERA5 SAS | ||
---|---|---|---|---|---|---|---|---|---|---|---|
MEAN | 10.683 | 13.474 | 13.509 | 14.460 | 13.497 | 12.180 | 13.181 | 12.496 | 15.924 | 12.555 | |
Cona | 98 mm | 69.60 | 80.18 | 128.83 | 82.85 | 70.41 | 62.01 | 112.99 | 70.05 | 117.65 | 58.46 |
Bomi | 87 mm | 47.65 | 74.17 | 93.05 | 110.72 | 67.31 | 55.03 | 100.53 | 109.14 | 132.68 | 69.08 |
Zayu | 57 mm | 31.06 | 37.38 | 22.41 | 24.06 | 49.48 | 34.59 | 29.66 | 42.46 | 41.78 | 44.32 |
>0.1 | TS | 0.959 | 0.949 | 0.949 | 0.959 | 0.917 | 0.927 | 0.959 | 0.900 | 0.949 | 0.887 |
mm/d | ETS | 0.531 | 0.419 | 0.356 | 0.480 | 0.387 | 0.423 | 0.480 | 0.133 | 0.419 | 0.266 |
HSS | 0.694 | 0.591 | 0.525 | 0.648 | 0.558 | 0.595 | 0.648 | 0.234 | 0.591 | 0.420 | |
OSN | BIAS | 1.021 | 1.032 | 1.053 | 1.043 | 0.957 | 0.968 | 1.043 | 1.021 | 1.032 | 0.947 |
94 | POD | 0.989 | 0.989 | 1.000 | 1.000 | 0.936 | 0.947 | 1.000 | 0.957 | 0.989 | 0.915 |
FAR | 0.031 | 0.041 | 0.051 | 0.041 | 0.022 | 0.022 | 0.041 | 0.063 | 0.041 | 0.034 | |
MAR | 0.011 | 0.011 | 0.000 | 0.000 | 0.064 | 0.053 | 0.000 | 0.043 | 0.011 | 0.085 | |
0.1–10 | TS | 0.575 | 0.667 | 0.676 | 0.641 | 0.493 | 0.574 | 0.706 | 0.629 | 0.627 | 0.543 |
mm/d | ETS | 0.236 | 0.396 | 0.367 | 0.383 | 0.176 | 0.277 | 0.429 | 0.319 | 0.342 | 0.230 |
HSS | 0.382 | 0.567 | 0.537 | 0.554 | 0.300 | 0.434 | 0.600 | 0.483 | 0.510 | 0.374 | |
OSN | BIAS | 0.983 | 0.897 | 1.052 | 0.810 | 0.828 | 0.845 | 1.000 | 0.966 | 0.879 | 0.862 |
58 | POD | 0.724 | 0.759 | 0.828 | 0.707 | 0.603 | 0.672 | 0.828 | 0.759 | 0.724 | 0.655 |
FAR | 0.263 | 0.154 | 0.213 | 0.128 | 0.271 | 0.204 | 0.172 | 0.214 | 0.176 | 0.240 | |
MAR | 0.276 | 0.241 | 0.172 | 0.293 | 0.397 | 0.328 | 0.172 | 0.241 | 0.276 | 0.345 | |
10–25 | TS | 0.244 | 0.425 | 0.297 | 0.405 | 0.233 | 0.317 | 0.400 | 0.417 | 0.308 | 0.316 |
mm/d | ETS | 0.090 | 0.283 | 0.172 | 0.256 | 0.086 | 0.173 | 0.279 | 0.291 | 0.172 | 0.185 |
HSS | 0.165 | 0.442 | 0.293 | 0.407 | 0.159 | 0.295 | 0.437 | 0.451 | 0.294 | 0.312 | |
OSN | BIAS | 1.154 | 1.192 | 0.846 | 1.269 | 1.038 | 1.077 | 0.885 | 0.962 | 0.962 | 0.923 |
26 | POD | 0.423 | 0.654 | 0.423 | 0.654 | 0.385 | 0.500 | 0.538 | 0.577 | 0.462 | 0.462 |
FAR | 0.633 | 0.452 | 0.500 | 0.485 | 0.630 | 0.536 | 0.391 | 0.400 | 0.520 | 0.500 | |
MAR | 0.577 | 0.346 | 0.577 | 0.346 | 0.615 | 0.500 | 0.462 | 0.423 | 0.538 | 0.538 | |
>25 | TS | 0.357 | 0.353 | 0.316 | 0.350 | 0.263 | 0.278 | 0.389 | 0.500 | 0.318 | 0.333 |
mm/d | ETS | 0.314 | 0.300 | 0.258 | 0.291 | 0.206 | 0.223 | 0.335 | 0.453 | 0.255 | 0.278 |
HSS | 0.478 | 0.462 | 0.411 | 0.451 | 0.341 | 0.364 | 0.501 | 0.624 | 0.407 | 0.435 | |
OSN | BIAS | 0.900 | 1.300 | 1.500 | 1.700 | 1.400 | 1.300 | 1.500 | 1.400 | 1.900 | 1.400 |
10 | POD | 0.500 | 0.600 | 0.600 | 0.700 | 0.500 | 0.500 | 0.700 | 0.800 | 0.700 | 0.600 |
FAR | 0.444 | 0.538 | 0.600 | 0.588 | 0.643 | 0.615 | 0.533 | 0.429 | 0.632 | 0.571 | |
MAR | 0.500 | 0.400 | 0.400 | 0.300 | 0.500 | 0.500 | 0.300 | 0.200 | 0.300 | 0.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, P.; Li, Y.; Ye, W.; Fan, X. How Well Does Weather Research and Forecasting (WRF) Model Simulate Storm Rashmi (2008) Itself and Its Associated Extreme Precipitation over the Tibetan Plateau at the Same Time? Atmosphere 2023, 14, 1479. https://doi.org/10.3390/atmos14101479
An P, Li Y, Ye W, Fan X. How Well Does Weather Research and Forecasting (WRF) Model Simulate Storm Rashmi (2008) Itself and Its Associated Extreme Precipitation over the Tibetan Plateau at the Same Time? Atmosphere. 2023; 14(10):1479. https://doi.org/10.3390/atmos14101479
Chicago/Turabian StyleAn, Pengchao, Ying Li, Wei Ye, and Xiaoting Fan. 2023. "How Well Does Weather Research and Forecasting (WRF) Model Simulate Storm Rashmi (2008) Itself and Its Associated Extreme Precipitation over the Tibetan Plateau at the Same Time?" Atmosphere 14, no. 10: 1479. https://doi.org/10.3390/atmos14101479
APA StyleAn, P., Li, Y., Ye, W., & Fan, X. (2023). How Well Does Weather Research and Forecasting (WRF) Model Simulate Storm Rashmi (2008) Itself and Its Associated Extreme Precipitation over the Tibetan Plateau at the Same Time? Atmosphere, 14(10), 1479. https://doi.org/10.3390/atmos14101479