Evaluation of WRF Performance in Simulating an Extreme Precipitation Event over the South of Minas Gerais, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Data
2.2. Numerical Experiments Design
2.3. Performance Analysis
3. Results
3.1. Rainy Period Overview
3.2. WRF Evaluation
3.2.1. Domain D-01
3.2.2. Domain D-02
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcântara, E.; Marengo, J.A.; Mantovani, J.; Londe, L.; San, R.L.Y.; Park, E.; Lin, Y.N.; Mendes, T.; Cunha, A.P.; Pampuch, L.; et al. Deadly disasters in Southeastern South America: Flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro. Nat. Hazards Earth Syst. Sci. 2022, 23, 1157–1175. [Google Scholar] [CrossRef]
- Haddad, E.A.; Teixeira, E. Economic impacts of natural disasters in megacities: The case of floods in São Paulo, Brazil. Habitat Intern. 2015, 45, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.D.; Santos e Silva, C.M.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theor. Appl. Clim. 2017, 130, 77–90. [Google Scholar] [CrossRef]
- Lima, S.S.; Armond, N.B. Rainfall in Metropolitan Region of Rio de Janeiro: Characterization, extreme events and trends. Soc. Nat. 2022, 34, 1–19. [Google Scholar] [CrossRef]
- Marengo, J.A.; Seluchi, M.E.; Cunha, A.P.; Cuartas, L.A.; Goncalves, D.; Sperling, V.B.; Ramos, A.M.; Dolif, G.; Saito, S.; Bender, F.; et al. Heavy rainfall associated with floods in southeastern Brazil in November–December 2021. Nat. Haz. 2023, 116, 3617–3644. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyzes and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F. Observed variability and trends in global precipitation during 1979–2020. Clim. Dyn. 2022, 61, 131–150. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Souza, C.A.D.; Baldoni, T.C.; Silva, P.L.L.D.S.; Ferreira, G.W.S. Future projections of extreme precipitation climate indices over South America based on CORDEX-CORE multimodel ensemble. Atmos 2022, 13, 1463. [Google Scholar] [CrossRef]
- Zilli, M.T.; Carvalho, L.M.; Liebmann, B.; Silva Dias, M.A. A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. Int. J. Clim. 2017, 37, 2269–2279. [Google Scholar] [CrossRef]
- Silva, P.L.L.; Baldoni, T.C.; Ribeiro, G.T.S.; Reboita, M.S. Ambiente em escala sinótica associado ao extremo de chuva no litoral de São Paulo nos dias 18 e 19 de fevereiro de 2023. In Proceedings of the IX Seminário de Recursos Naturais, Itajubá, Brazil, 5–7 June 2023. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística—IBGE. Censo Demográfico 2022. 2023. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/22827-censo-demografico-2022.html?=&t=resultados (accessed on 15 February 2023).
- Bartolomei, F.R.; Ribeiro, J.G.M.; Reboita, M.S. Eventos Extremos de Precipitação no Sudeste do Brasil: Verão 2021/2022. Rev. Bras. Geogr. Fis. 2023. (accepted). [Google Scholar]
- Silveira, G.L.; Xavier, R.G.; Reboita, M.S.; Reis, A.L. Análise do Evento Extremo de Precipitação ocorrido em Petrópolis-RJ no dia 15 de fevereiro de 2022. In Proceedings of the IX Seminário de Recursos Naturais 2023, Itajubá, Brazil, 5–7 June 2023. [Google Scholar]
- Instituto Nacional de Meteorologia—INMET. Normais Climátológicas—Gráficos Climatológicos. 2023. Available online: https://clima.inmet.gov.br/GraficosClimatologicos/DF/83377 (accessed on 15 February 2023).
- Teodoro, T.A.; Reboita, M.S.; Llopart, M.; Da Rocha, R.P.; Ashfaq, M. Climate change impacts on the South American monsoon system and its surface–atmosphere 564 processes through RegCM4 CORDEX-CORE projections. Earth Syst. Env. 2021, 5, 825–847. [Google Scholar] [CrossRef]
- Almeida Dantas, V.; Silva Filho, V.P.; Santos, E.B.; Gandu, A.W. Testando diferentes esquemas da Parametrização Cumulus do modelo WRF; para a região norte Nordeste do Brasileiro (Testing different WRF Cumulus parameterization schemes for the north-eastern region of Brazil). Rev. Bras. Geogr. Fis. 2019, 12, 754–767. [Google Scholar] [CrossRef]
- Campos, B. Sensibilidade de Parametrizações de Convecção Cumulus e Microfísica de Nuvens em Eventos Extremos de Precipitação na Bacia do Rio Paraíba do Sul. Master’s Thesis, (Mestrado em Meio Ambiente e Recursos Hídricos), Universidade Federal de Itajubá, Itajubá, Brazil, 2023. [Google Scholar]
- Jeworrek, J.; West, G.; Stull, R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather. Forecast. 2019, 34, 1097–1115. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliland, E.K.; Rowe, C.M. A comparison of cumulus parameterization schemes in the WRF model. In Proceedings of the 87th AMS Annual Meeting & 21th Conference on Hydrology, San Antonio, TX, USA, 13–18 January 2007; Volume 2. [Google Scholar]
- Pennelly, C.; Reuter, G.; Flesch, T. Verification of the WRF model for simulating heavy precipitation in Alberta. Atmos. Res. 2014, 135, 172–192. [Google Scholar] [CrossRef]
- Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-E.P. Sensitivity Assessment of WRF Parameterizations over Europe. Proceedings 2017, 1, 119. [Google Scholar]
- Hasan, M.A.; Islam, A.S. Evaluation of microphysics and cumulus schemes of WRF for forecasting of heavy monsoon rainfall over the southeastern hilly region of Bangladesh. Pure Appl. Geophys. 2018, 175, 4537–4566. [Google Scholar] [CrossRef]
- Otieno, G.; Mutemi, J.N.; Opijah, F.J.; Ogallo, L.A.; Omondi, M.H. The sensitivity of rainfall characteristics to cumulus parameterization schemes from a WRF model. Part I: A case study over East Africa during wet years. Pure Appl. Geophys. 2020, 177, 1095–1110. [Google Scholar] [CrossRef]
- Nasrollahi, N.; AghaKouchak, A.; Li, J.; Gao, X.; Hsu, K.; Sorooshian, S. Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather. Forecast. 2012, 27, 1003–1016. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Moreira, D.S.; de Goncalves, L.G.G.; Vila, D.A. Combining TRMM and surface observations of precipitation: Technique and validation over South America. Weather. Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4. NCAR Tech Note. NCAR/TN–556+ STR; National Center for Atmospheric Research: Boulder, Colorado, USA, 2021. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Araújo, A.A.; Garcia, D.W.; Monteiro, J.R.; Miguel, T.V.; Campos, B.; Carvalho, V.S.B.; Reboita, M.S. Avaliação do modelo Weather Research and Forecasting (WRF) na simulação operacional de um evento de frente fria no sudeste do Brasil. Rev. Bras. Geogr. Fis. 2023, 16, 805–817. [Google Scholar] [CrossRef]
- Campos, B.; Carvalho, V.S.B.; Reboita, M.S. The numeric-operational weather forecast system for the southern region of the Minas Gerais state: Comparisons with observed data. Rev. Bras. Geogr. Fis. 2016, 9, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Dudhia, J.; Chen, S. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Mukul Tewari, N.C.A.R.; Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; et al. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, Seattle, WA, USA, 10–15 January 2004; pp. 11–15. [Google Scholar]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, J.E.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Weisman, M.L.; Skamarock, W.C.; Klemp, J.B. The resolution dependence of explicitly modeled convective systems. Mon. Weather. Rev. 1997, 125, 527–548. [Google Scholar] [CrossRef]
- Kain, J. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Kain, J.; Fritsch, J. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Kain, J.; Fritsch, J. Convective parameterization for mesoscale models: The Kain–Fritsch scheme. In The Representation of Cumulus Convection in Numerical Models; American Meteorological Society: Boston, MA, USA, 1993; pp. 165–170. [Google Scholar]
- Janjic, Z.I. The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather. Rev. 1993, 122, 927–945. [Google Scholar] [CrossRef]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Y. Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Saldanha, C.B.; Radin, B.; Cardoso, M.A.G.; Rippel, M.L.; Fonseca, L.L.D.; Rodriguez, F. Comparação dos dados de precipitação gerados pelo GPCP vs Observados para o estado do Rio Grande do Sul. Rev. Bras. Meteorol. 2015, 30, 415–422. [Google Scholar] [CrossRef]
- dos Reis, A.L.; Silva, M.S.; Regis, M.V.; da Silveira, W.W.; de Souza, A.C.; Reboita, M.S.; Silveira, V. Climatologia e eventos extremos de precipitação no estado de Minas Gerais (Climatology and extreme rainfall events in the state of Minas Gerais). Rev. Bras. Geogr. Fis. 2018, 11, 652–660. [Google Scholar] [CrossRef]
- Munar, A.; Collischonn, W. Simulação Hidrológica na Bacia do rio Piratini, Rio Grande do Sul, a partir de dados de chuva observada e dados de chuva derivados do produto MERGE. 2014. Available online: https://www.researchgate.net/publication/324216200_Simulacao_Hidrologica_na_Bacia_do_rio_Piratini_Rio_Grande_do_Sul_a_partir_de_dados_de_chuva_observada_e_dados_de_chuva_derivados_do_produto_MERGE#fullTextFileContent (accessed on 22 May 2023).
- Torres, F.; Ferreira, G.W.S.; Kuki, C.A.C.; Vasconcellos, B.T.C.; Freitas, A.A.; Silva, P.N.; Souza, C.A.; Reboita, M.S. Validação de diferentes bases de dados de precipitação nas bacias hidrográficas do Sapucaí e São Francisco. Rev. Bras. Clim. 2020, 27, 368–404. [Google Scholar]
- BATISTA, P.D.S. Validação dos dados de precipitação pluvial do produto Merge para a Amazônia Central. Ph.D. Dissertation, Universidade Federal do Oeste do Pará, Santarém, Portugal, 2019. [Google Scholar]
- Salviano, M.F. Comparação entre Estimativas de Precipitação com Satélite e Dados Observados para o Evento de Janeiro de 2020 em Bacias no Sudeste do Brasil. In Proceedings of the II Encontro Nacional de Desastres Hídricos, Online, 15–18 December 2020. [Google Scholar]
- Vila, D.A.; Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Gochis, D.J.; Shuttleworth, W.J.; Yang, Z.L. Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Weather. Rev. 2002, 130, 1282–1298. [Google Scholar] [CrossRef]
- Campetella, C.M.; Possia, N.E. Upper-level cut-off lows in southern South America. Met. Atmos. Phys. 2007, 96, 181–191. [Google Scholar] [CrossRef]
- Reboita, M.S.; Krusche, N.; Ambrizzi, T.; Rocha, R.P. Entendendo o Tempo e o Clima na América do Sul. Available online: https://periodicos.sbu.unicamp.br/ojs/index.php/td/article/view/8637425 (accessed on 9 April 2023). [CrossRef] [Green Version]
- Oliveira Filho, R.A.; Carvalho, V.S.B.; Reboita, M.S. Evaluating the Global Forecast System (GFS) for energy management over Minas Gerais State (Brazil) against in-situ observations. Atmósfera 2022, 35, 357–376. [Google Scholar] [CrossRef]
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 2019, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Rauber, R.M.; Geerts, B.; Xue, L.; French, J.; Friedrich, K.; Rasmussen, R.M.; Tessendorf, S.A.; Blestrud, D.R.; Kunkel, M.L.; Parkinson, S. Wintertime orographic cloud seeding—A review. J. Appl. Meteor. 2019, 58, 2117–2140. [Google Scholar] [CrossRef]
- Wiersema, D.J.; Lundquist, K.A.; Chow, F.K. Development of a Multiscale Modeling Framework for Urban Simulations in the Weather Research and Forecasting Model; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2018. [Google Scholar]
- Wiersema, D.J.; Lundquist, K.A.; Chow, F.K. Mesoscale to microscale simulations over complex terrain with the immersed boundary method in the Weather Research and Forecasting Model. Mon. Weather. Rev. 2020, 148, 577–595. [Google Scholar] [CrossRef]
- Jeworrek, J.; West, G.; Stull, R. WRF precipitation performance and predictability for systematically varied parameterizations over complex terrain. Weather. Forecast. 2021, 36, 893–913. [Google Scholar] [CrossRef]
- Sikder, S.; Hossain, F. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins. J. Adv. Model. Earth Syst. 2016, 8, 1210–1228. [Google Scholar] [CrossRef] [Green Version]
- Merino, A.; García-Ortega, E.; Navarro, A.; Sánchez, J.L.; Tapiador, F.J. WRF hourly evaluation for extreme precipitation events. Atmos. Res. 2022, 274, 106215. [Google Scholar] [CrossRef]
- Choubin, B.; Malekian, A.; Golshan, M. Application of several data-driven techniques to predict a standardized precipitation index. Atmósfera 2016, 29, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Calado, R.N.; Dereczynski, C.P.; Chou, S.C.; Suei, G.; Oliveira Moura, J.D.; Silva Santos, V.R. Avaliação do Desempenho das Simulações por Conjunto do Modelo Eta-5km para o Caso de Chuva Intensa na Bacia do Rio Paraíba do Sul em janeiro de 2000. Rev. Bras. Meteor. 2018, 33, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Zhou, Y.; Peng, L.; He, Y. Numerical rainfall simulation of different WRF parameterization schemes with different spatiotemporal rainfall evenness levels in the Ili region. Water 2019, 11, 2569. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Dudhia, J.; Ray, P.; Miao, S.; Nikolopoulos, E.; Treinish, L. Understanding the sensitivity of WRF hindcast of Beijing extreme rainfall of 21 July 2012 to microphysics and model initial time. Atmos. Res. 2022, 271, 106085. [Google Scholar] [CrossRef]
- Glisan, J.M.; Jones, R.; Lennard, C.; Castillo Pérez, N.I.; Lucas-Picher, P.; Rinke, A.; Solman, S.; Gutowski, W.J., Jr. A metrics-based analysis of seasonal daily precipitation and near-surface temperature within seven Coordinated Regional Climate Downscaling Experiment domains. Atmos. Sci. Lett. 2019, 20, e897. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Geerts, B.; Wang, Y.; Liu, C. Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeorol. 2017, 18, 2541–2558. [Google Scholar] [CrossRef]
Reference | Area of Interest | Tested CC Schemes | Main Conclusions |
---|---|---|---|
[20] | South Dakota and Nebraska, USA | Several cumulus parameterization schemes (CPS), Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ), Grell–Devenyi (GD) | When using a spatial resolution of 4 km, CPS and BMJ were not able to indicate any precipitation value for the studiedevent due to lack of moisture in the atmospheric column. KF effectively simulated precipitation, with good representation of CAPE values and the presence of updrafts, and GD satisfactorily represented the convective cells that resulted in precipitation. |
[25] | Hurricane Rita, U.S. Gulf Coast | No cumulus parameterization (NCP), KF, BMJ, GD | This study carried out 20 simulations using different combinations of CC and microphysical parameters. Three combinations presented the best representation of the accumulated precipitation values: LIN (Purdue Lin)—GD, WSM5 (WRF single—moment five—class microphysics scheme)—BMJ and WSM5—GD. Simulations without cumulus parameters presented a cumulative precipitation bias higher than other experiments. |
[21] | Alberta, Canadá | KF, BMJ, GD, Grell, and 3D Explicit | Simulations using the KF option obtained the most accurate results when simulating precipitation for three summer events. In general, KF overestimated the precipitation values, resulting in a high Probability of Detection (POD) rate. |
[22] | Europe | All available in Version 3.7.1 | In general, KF and OSAS (Old Simplified Arakawa–Schubert) presented very similar results. However, KF was chosen as the most appropriate parameterization because it better simulated precipitation for the month of January. |
[23] | Southeastern of Bangladesh | KF, BMJ, New Grell (NG), and Tiedke (TK). | The simulation using TK obtained the best results for the meteorological event that occurred in 2012 in Southeast Bangladesh when compared with the other parameterization options. |
[16] | North-Eastern of Brazil | KF, BMJ, Grell–Freitas (GF), GD, and TK | The KF scheme performed better compared to the other cumulus parameterization options, while TK represented values different from observations. |
[17] | U.S.A. Southern Great Plains | KF, BMJ, GF, TK, and Multiscale Kain–Fritsch (MKF) | GF obtained the best results for this study; however, it took the longest to complete. KF, for instance, was 17% faster than GF simulations. The experiment using the MKF scheme showed better results compared to KF when using higher spatial resolutions. |
[24] | East Africa region. | KF, BMJ, GD, and, KF with a moisture advection-based trigger function (KFT) | Heavy rains were simulated satisfactorily for all CC parameterizations, while light rains usually were overestimated. KF obtained wetter biases compared to KFT, which is explained by the fact that the KFT simulation has a delay in the onset of convection and consequent decrease in convective rainfall. GD parameterization has a lower rainfall bias; BMJ could not be used for a meaningful explanation. |
[17] | Paraíba do Sul River Basin, Southeastern of Brazil. | KF and GF | This paper suggests the use of cumulus parameterization options capable of simulating very convective environments without incorporating artificial diffusion to control numerical stability, such as in the GF scheme. |
Parameters | Grid D-01 | Grid D-02 |
---|---|---|
Points in X-Direction | 190 | 153 |
Points in Y-Direction | 240 | 181 |
Points in Z-Direction | 42 | 42 |
Horizontal Resolution | 12 km | 3km |
Time Step | 60 s | 15 s |
Central Point Latitude | 22.4255° S | |
Central Point Longitude | 45.4527° W | |
Microphysics | WSM3 [31] | |
Planetary Boundary Layer | Yonsei University Scheme [32] | |
Surface Layer | Revised-MM5 [33] | |
Soil-surface Interaction | Noah-LSM [34] | |
Short Wave Radiation | MM5 [35] | |
Long Wave Radiation | RRTM [36] |
Parameters | Main Characteristics |
---|---|
KF [38,39,40] | If the atmosphere is unstable and reaches a certain threshold, convection is initiated. This instability is determined by comparing the difference in potential temperature between a reference level and the model’s lowest atmospheric layer. As this scheme employs the idea of updraft mass flux to represent convective transport, vertical transport is represented by updraft and downdraft parcels. It includes an entrainment/detrainment process to account for mixing between convective and environmental air. |
BMJ [41] | Represents convective transport through a mass flux approach, similar to the Kain–Fritsch scheme. This scheme uses an entraining/detraining plume model to simulate the vertical transport of heat, moisture, and momentum. |
GD [42] | Based on the Kain–Fritsch scheme with modifications to improve the simulation of convective precipitation. Includes a convective trigger mechanism based on a convective available potential energy (CAPE) threshold. |
GF [43] | This scheme is an extension of the GD scheme and introduces stochastic perturbations to the ensemble of convective updrafts to account for subgrid-scale variability. |
NT [44] | A simplified parameterization which represents the convective transport based on the concept of entraining plumes; it does not explicitly simulate downdrafts and focuses on the updraft aspect of convection. |
City-Lambari | |||||
---|---|---|---|---|---|
Date | Observed Rain | Experiments | Simulated Rain | ||
Rate (mm/day) | Class | Rate (mm/day) | Class | ||
31 December 2021 | 93.8 | Very Heavy Rain | BMJ | 29.71 | Moderate Rain |
GD | 11.72 | Moderate Rain | |||
GF | 11.27 | Moderate Rain | |||
KF | 3.20 | Light Rain | |||
NT | 41.61 | Heavy Rain | |||
1 January 2022 | 35.2 | Heavy Rain | BMJ | 10.59 | Light Rain |
GD | 4.42 | Light Rain | |||
GF | 29.43 | Moderate Rain | |||
KF | 2.85 | Light Rain | |||
NT | 9.92 | Light Rain | |||
2 January 2022 | 9.2 | Light Rain | BMJ | 53.42 | Very Heavy Rain |
GD | 40.12 | Heavy Rain | |||
GF | 56.23 | Very Heavy Rain | |||
KF | 58.94 | Very Heavy Rain | |||
NT | 109.20 | Very Heavy Rain |
City—Poços de Caldas | |||||
---|---|---|---|---|---|
Date | Observed Rain | Experiments | Simulated Rain | ||
Rate (mm/day) | Class | Rate (mm/day) | Class | ||
31 December 2021 | 96.6 | Very Heavy Rain | BMJ | 4.02 | Light Rain |
GD | 17.33 | Moderate Rain | |||
GF | 6.24 | Light Rain | |||
KF | 1.68 | Light Rain | |||
NT | 7.88 | Light Rain | |||
1 January 2022 | 8.0 | Light Rain | BMJ | 2.49 | Light Rain |
GD | 6.50 | Light Rain | |||
GF | 4.63 | Light Rain | |||
KF | 0.31 | Light Rain | |||
NT | 4.71 | Light Rain | |||
2 January 2022 | 2.2 | Light Rain | BMJ | 72.03 | Very Heavy Rain |
GD | 49.04 | Heavy Rain | |||
GF | 51.76 | Very Heavy Rain | |||
KF | 41.92 | Heavy Rain | |||
NT | 47.21 | Heavy Rain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, D.W.; Reboita, M.S.; Carvalho, V.S.B. Evaluation of WRF Performance in Simulating an Extreme Precipitation Event over the South of Minas Gerais, Brazil. Atmosphere 2023, 14, 1276. https://doi.org/10.3390/atmos14081276
Garcia DW, Reboita MS, Carvalho VSB. Evaluation of WRF Performance in Simulating an Extreme Precipitation Event over the South of Minas Gerais, Brazil. Atmosphere. 2023; 14(8):1276. https://doi.org/10.3390/atmos14081276
Chicago/Turabian StyleGarcia, Denis William, Michelle Simões Reboita, and Vanessa Silveira Barreto Carvalho. 2023. "Evaluation of WRF Performance in Simulating an Extreme Precipitation Event over the South of Minas Gerais, Brazil" Atmosphere 14, no. 8: 1276. https://doi.org/10.3390/atmos14081276
APA StyleGarcia, D. W., Reboita, M. S., & Carvalho, V. S. B. (2023). Evaluation of WRF Performance in Simulating an Extreme Precipitation Event over the South of Minas Gerais, Brazil. Atmosphere, 14(8), 1276. https://doi.org/10.3390/atmos14081276