Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Identification of the Nocturnal Rainstorm in Western SCB
2.3. HYSPLIT Model Simulation Scheme
2.4. The Calculation Method of the Creeping Flow and the Circumfluence Flow
2.5. Calculation of the Moisture Flux, Moisture Flux Divergence, and Moisture Budget
3. Characteristics of Nocturnal Rainstorms
3.1. The Temporal and Spatial Distribution of Rainstorms
3.2. Moisture Sources and Transport Paths of Rainstorms
4. Characteristics of the Moisture Transport
4.1. Diurnal Variations of the Boundary Layer Low-Level Jet
4.1.1. Diurnal Variations of Low-Level Geostrophic Winds and Ageostrophic Winds
4.1.2. The Creeping Flows and Circumfluence Flows Caused by Geostrophic and Ageostrophic Winds
4.1.3. The Total Vertical Velocity and Forced Vertical Velocity Generated by Creeping Flows
4.2. Diurnal Variations of the Moisture Flux and the Moisture Flux Divergence
4.3. Diurnal Variations of the Moisture Budget
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Deng, L.J. Quantitative structural analysis of land use and study on land sustainable utilization in Sichuan Province. JSAU 2006, 24, 194–200. (In Chinese) [Google Scholar]
- Zhou, Q.X.; Liu, Y.; Feng, L.M.; Niu, J.L. Analysis on temporal and spatial distribution characteristics of strong hour rainfall intensity in Sichuan during 2008–2012. Plateau Meteorol. 2015, 34, 1261–1269. (In Chinese) [Google Scholar]
- Chen, Y.R.; Li, Y.Q. Convective characteristics and formation conditions in an extreme rainstorm on the eastern edge of the Tibetan plateau. Atmosphere 2021, 12, 381. [Google Scholar] [CrossRef]
- Huang, C.H.; Li, G.P.; Zhang, F.L.; Gao, Y.Z.; Wang, M.Y.; Guo, S.Y. Evolution characteristics of mountain rainstorms over Sichuan Province in the past ten years under the influence of climate change. Torrential Rain Disasters 2020, 39, 335–343. (In Chinese) [Google Scholar]
- Liu, C.; Nie, R.H.; Liu, X.N.; Xu, W.L. Research conception and achievement prospect of key technologies for forecast and early warning of flash flood and sediment disasters in mountainous rainstorm. Adv. Eng. Sci. 2020, 52, 1–8. (In Chinese) [Google Scholar]
- Brimelow, J.C.; Reuter, G.W. Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River basin. J. Hydrometeorol. 2005, 6, 423–440. [Google Scholar] [CrossRef]
- Draxler, R.R.; Stunde, G.D.; Rolph, G. Hysplit_4 User’s Guide; NOAA Tech. Memo. ERL ARL-224; NOAA Air Resources Laboratory: Silver Spring, MD, USA, 2005. [Google Scholar]
- Shi, Y.; Jiang, Z.H.; Liu, Z.Y.; Laurent, L. A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. J. Clim. 2020, 33, 977–992. [Google Scholar] [CrossRef]
- Guo, L.Y.; Shi, Y.; Jiang, H.R. Comparison of impact and water vapor characteristics between two types of floods in Eastern China. Environ. Res. Lett. 2022, 17, 024039. [Google Scholar] [CrossRef]
- Yang, H.; Xu, G.Y.; Mao, H.X.; Wang, Y. Spatiotemporal variation in precipitation and water vapor transport over central Asia in winter and summer under global warming. Front. Earth Sci. 2020, 8, 297. [Google Scholar] [CrossRef]
- Saulo, A.C.; Ruiz, J.; Skabar, Y.G. Synergism between the low-level jet and organized convection at its exit region. Mon. Weather Rev. 2007, 135, 1310–1326. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G.X. Climatology of low-level jets and their impact on rainfall over southern China during early-summer rainy season. J. Clim. 2019, 32, 8813–8833. [Google Scholar] [CrossRef]
- Blackadar, A.K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Meteorol. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R. The diurnal boundary layer wind oscillation above sloping terrain. Tellus 1967, 19, 199–205. [Google Scholar] [CrossRef]
- Du, Y.; Rotunno, R. A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci. 2014, 71, 3674–3683. [Google Scholar] [CrossRef]
- Shapiro, A.; Fedorovich, E.; Rahimi, S. A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci. 2016, 73, 3037–3057. [Google Scholar] [CrossRef]
- Higgins, R.W.; Yao, Y.; Yarosh, E.S.; Janowiak, J.E.; Mo, K.C. Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Clim. 1997, 10, 481–507. [Google Scholar] [CrossRef]
- Weaver, S.J.; Schubert, S.; Wang, H. Warm season variations in the low-level circulation and precipitation over the central United States in observations. AMIP simulations, and idealized SST experiment. J. Clim. 2009, 22, 5401–5420. [Google Scholar] [CrossRef]
- He, M.Y.; Liu, H.B.; Wang, B.; Zhang, D.L. A modeling study of a low-level jet along the Yun-Gui Plateau in south China. J. Appl. Meteor. 2016, 55, 41–60. [Google Scholar] [CrossRef]
- Xue, M.; Luo, X.; Zhu, K.F.; Sun, Z.Q.; Fei, J.F. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China. J. Geophys. Res. Atmos. 2018, 123, 5090–5115. [Google Scholar] [CrossRef]
- Du, Y.; Chen, G.X. Heavy rainfall associated with double low-level jets over southern China. Part I: Ensemble-based analysis. Mon. Weather Rev. 2018, 146, 3827–3844. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xue, M.; Zhu, K.F.; Zhou, B.W. What is the main cause of diurnal variations and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations. J. Geophys. Res. Atmos. 2019, 124, 2643–2664. [Google Scholar] [CrossRef]
- Li, G.P. Progress and prospects in research of mountain meteorology in China during the past 25 years. Meteorol. Sci. Technol. 2016, 6, 115–122. (In Chinese) [Google Scholar]
- Fu, P.L.; Zhu, K.F.; Zhao, K.; Zhou, B.W.; Xue, M. Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains. Adv. Atmos. Sci. 2019, 36, 15–28. [Google Scholar] [CrossRef]
- Jin, Y.; Li, G.P. Impact of flow around and flow over in a sudden rainstorm on Mountains. Plateau Meteorol. 2021, 40, 314–323. (In Chinese) [Google Scholar]
- Li, F.; Li, J.; Li, Y.J.; Zheng, F. Climatological characteristics of flow around and flow over the Tibetan Plateau. Chin. J. Atmos. Sci. 2012, 36, 1236–1252. (In Chinese) [Google Scholar]
- Numaguti, A. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 1999, 104, 1957–1972. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Qian, Y.F. Numerical studies on the effects of the critical height of Qinghai-Xizang Plateau uplift on the atmosphere. Acta Meteorol. Sin. 1999, 57, 157–167. (In Chinese) [Google Scholar]
- Chinanews. Tracking: 51 Towns in 7 Counties Were Affected by the “May 21” Torrential Rain in Leshan, Sichuan [EB/OL]. 2018. Available online: https://www.chinanews.com.cn/sh/2018/05-22/8520120.shtml (accessed on 22 May 2018).
- Huang, Y.J.; Cui, X.P. Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13. J. Hydrometeor. 2015, 16, 1906–1917. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.D. Spatiotemporal structure of the moisture sources feeding heavy precipitation events over the Sichuan Basin. Int. J. Climatol. 2016, 36, 3446–3457. [Google Scholar]
- Du, Y.; Zhang, Q.H.; Chen, Y.L.; Zhao, Y.Y.; Wang, X. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Clim. 2014, 27, 5747–5767. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Barnes, S.L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor. 1964, 3, 396–409. [Google Scholar] [CrossRef]
- Sawyer, J.S. The physical and dynamical problems of orographic rain. Weather 1956, 11, 375–381. [Google Scholar] [CrossRef]
- Xia, R.D.; Luo, Y.L.; Zhang, D.L.; Li, M.X.; Bao, X.H.; Sun, J.S. On the diurnal cycle of heavy rainfall over the Sichuan Basin during 10–18 August 2020. Adv. Atmos. Sci. 2021, 38, 2183–2200. [Google Scholar] [CrossRef]
- Bao, X.H.; Zhang, F.Q.; Sun, J.H. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Weather Rev. 2011, 139, 2790–2810. [Google Scholar] [CrossRef]
- Jin, X.; Wu, T.W.; Li, L. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim. Dyn. 2013, 41, 977–994. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Y.Q.; Zhao, T.L.; Reinhard, S.; Mark, M.; Jiang, X.W. Northeastward propagation of nocturnal precipitation over the Sichuan Basin. Int. J. Climatol. 2020, 41, E2863–E2879. [Google Scholar] [CrossRef]
- Zhang, F.L.; Li, G.P.; Yue, J. The moisture sources and Transport processed for a sudden rainstorm associated with double low-level jets in the northeast Sichuan Basin of China. Atmosphere 2019, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.L.; Li, Y.Q.; Xu, L. An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation. Meteor. Atmos. Phys. 2016, 128, 373–399. [Google Scholar] [CrossRef]
- Chen, S.; Sun, J.S.; He, L.F. Analysis of Multi-scale Characteristics of Three Different Types of Heavy Rainfall in Sichuan Basin. Plateau Meteorol. 2022, 4, 1190–1208. (In Chinese) [Google Scholar]
- Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. Estimation of continental precipitation recycling. J. Clim. 1993, 6, 1077–1089. [Google Scholar] [CrossRef]
- Pathak, A.; Ghosh, S.; Kumar, P. Precipitation recycling in the Indian subcontinent during summer monsoon. J. Hydrometeor. 2014, 15, 2050–2066. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D.; Lissaridis, I. Study of wind field under sea breeze conditions: An application of WRF model. Atmos. Res. 2010, 98, 102–117. [Google Scholar] [CrossRef]
- Jiménez, P.A.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Montávez, J.P.; De Arellano, J.V.G.; Dudhia, J.; Muñoz-Roldan, A. Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation. J. Appl. Meteorol. Climatol. 2010, 49, 268–287. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Shin, H.H.; Hong, S.Y.; Jiménez, P.A.; Dudhia, J.; Hong, J. Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J. Geophys. Res. Atmos. 2015, 120, 644–653. [Google Scholar] [CrossRef]
Date | Rainstorm | Height (m) | Precipitation at | Peak Time | Precipitation at | Night Rain Rate (%) |
---|---|---|---|---|---|---|
Center (°E,°N) | Night (mm) | (LST) | Peak Time (mm) | |||
2 July 2010 | 103.00, 29.98 | 628 | 192.3 | 03 | 67.5 | 100.0 |
16 September 2010 | 104.40, 31.73 | 782 | 154.3 | 23 | 51.6 | 96.7 |
20 July 2011 | 104.11, 31.54 | 904 | 115.0 | 23 | 40.6 | 100.0 |
26 July 2012 | 103.19, 30.00 | 619 | 225.7 | 01 | 60.5 | 100.0 |
15 July 2013 | 102.72, 30.13 | 931 | 146.2 | 22 | 51.3 | 100.0 |
20 August 2014 | 103.53, 28.83 | 614 | 111.5 | 22 | 60.4 | 98.6 |
7 July 2016 | 104.27, 31.71 | 799 | 144.8 | 01 | 43.7 | 85.0 |
26 July 2017 | 104.33, 31.68 | 982 | 149.8 | 00 | 58.0 | 99.5 |
21 May 2018 | 103.80, 28.98 | 1015 | 332.8 | 00 | 107.9 | 98.9 |
26 July 2018 | 103.12, 30.28 | 1114 | 187.1 | 03 | 65.5 | 88.0 |
21 August 2018 | 103.49, 30.10 | 555 | 150.1 | 23 | 103.7 | 99.9 |
13 August 2019 | 103.52, 29.40 | 672 | 166.6 | 23 | 75.7 | 93.0 |
4 August 2020 | 103.68, 31.13 | 1054 | 171.0 | 23 | 49.3 | 99.1 |
23 August 2020 | 103.44, 29.73 | 746 | 285.0 | 00 | 130.3 | 100.0 |
21 July 2021 | 104.38, 31.79 | 700 | 126.5 | 00 | 52.7 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, A.; Li, G. Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin. Atmosphere 2023, 14, 84. https://doi.org/10.3390/atmos14010084
Wu A, Li G. Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin. Atmosphere. 2023; 14(1):84. https://doi.org/10.3390/atmos14010084
Chicago/Turabian StyleWu, Annan, and Guoping Li. 2023. "Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin" Atmosphere 14, no. 1: 84. https://doi.org/10.3390/atmos14010084
APA StyleWu, A., & Li, G. (2023). Roles of the Topographically-Affected Boundary Layer Low-Level Jet in the Moisture Transport Process of Nocturnal Rainstorms in Mountainous Areas around the Western Sichuan Basin. Atmosphere, 14(1), 84. https://doi.org/10.3390/atmos14010084