Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2
Abstract
:1. Introduction
2. Model, Dataset and Method
2.1. Seasonal Prediction System FGOALS-f2 V1.0
2.2. Observational Data and the Hindcast of FGOALS-f2 V1.0
2.3. TC Detection Method
- (1)
- At first, local minimum 850 hPa absolute vorticity within a 600 km × 600 km grid box is picked up as a potential TC. Then, there must be a minimum sea-level pressure and a warm core (1 °C warmer than the surroundings) within a 2° × 2° grid box centered on the 850 hPa absolute vorticity.
- (2)
- The identification of TC tracks is mainly based on the identification of potential TCs. In addition, the TC tracks must satisfy the following criteria: (1) the lifetime of TC is greater than 72 h; (2) the surface wind is greater than 15.84 m s−1. The wind-speed threshold is consistent with a recent study, which clarified the relationship between the horizontal resolution of GCMs and the TC detection algorithms [57].
- (3)
- TCs are then classified based on the Saffir–Simpson hurricane wind scale [58].
2.4. Recognition of Landfalling TC
2.5. Skill Scores
2.6. Genesis Potential Index
3. Evaluation of the Prediction Skill of TC in SCS
3.1. The Climatology of Seasonal TC Activity in SCS
3.2. Interannual Variability in Seasonal TC Activity in SCS
4. Possible Reasons Contributing to the Prediction Skill
4.1. The Relationship between the TC Activity and ENSO
4.2. Genesis Potential Index
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, Z.; Wang, G.; Wang, C. Out-of-phase relationship between tropical cyclones generated locally in the South China Sea and non-locally from the Northwest Pacific Ocean. Clim. Dyn. 2015, 45, 1129–1136. [Google Scholar] [CrossRef]
- Li, H.; Xu, F.; Sun, J.; Lin, Y.; Wright, J.S. Subtropical high affects interdecadal variability of tropical cyclone genesis in the South China Sea. J. Geophys. Res. Atmos. 2019, 124, 6379–6392. [Google Scholar] [CrossRef]
- Wang, G.; Su, J.; Ding, Y.; Chen, D. Tropical cyclone genesis over the South China Sea. J. Mar. Syst. 2007, 68, 318–326. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.; Bi, M. Contrasting contributions of flows on different time scales to tropical cyclone tracks over the South China Sea. Environ. Res. Lett. 2020, 15, 034003. [Google Scholar] [CrossRef]
- Robertson, A.W.; Kumar, A.; Peña, M.; Vitart, F. Improving and promoting subseasonal to seasonal prediction. Bull. Am. Meteorol. Soc. 2015, 96, ES49–ES53. [Google Scholar] [CrossRef]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M. The subseasonal to seasonal (S2S) prediction project database. Bull. Am. Meteorol. Soc. 2017, 98, 163–173. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Du, Y.; Wang, D.; Wang, C.; Wang, X. Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Clim. Dyn. 2015, 44, 1505–1519. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, R. Interannual variability of the tropical cyclone landfall frequency over the southern and northern regions of East Asia in autumn. J. Clim. 2019, 32, 8677–8686. [Google Scholar] [CrossRef]
- Camp, J.; Roberts, M.J.; Comer, R.E.; Wu, P.; MacLachlan, C.; Bett, P.E.; Golding, N.; Toumi, R.; Chan, J.C. The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Q. J. R. Meteorol. Soc. 2019, 145, 105–116. [Google Scholar] [CrossRef]
- Sparks, N.; Toumi, R. On the seasonal and sub-seasonal factors influencing East China tropical cyclone landfall. Atmos. Sci. Lett. 2021, 22, e1014. [Google Scholar] [CrossRef]
- Manganello, J.V.; Hodges, K.I.; Kinter, J.L., III; Cash, B.A.; Marx, L.; Jung, T.; Achuthavarier, D.; Adams, J.M.; Altshuler, E.L.; Huang, B. Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Clim. 2012, 25, 3867–3893. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Madden–Julian oscillation: Bridging weather and climate. Bull. Am. Meteorol. Soc. 2013, 94, 1849–1870. [Google Scholar] [CrossRef]
- Xiang, B.; Lin, S.-J.; Zhao, M.; Zhang, S.; Vecchi, G.; Li, T.; Jiang, X.; Harris, L.; Chen, J.-H. Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Weather Rev. 2015, 143, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Vecchi, G.A.; Villarini, G.; Delworth, T.L.; Gudgel, R.; Underwood, S.; Yang, X.; Zhang, W.; Lin, S.-J. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Clim. 2016, 29, 7977–7989. [Google Scholar] [CrossRef]
- Chan, J.C.; Shi, J.-E.; Lam, C.-M. Seasonal forecasting of tropical cyclone activity over theWestern North Pacific and the South China Sea. Weather Forecast. 1998, 13, 997–1004. [Google Scholar] [CrossRef]
- Liu, K.; Chan, J.C. Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Weather Rev. 2003, 131, 1650–1662. [Google Scholar] [CrossRef]
- Gray, W.M.; Landsea, C.W.; Mielke, P.W.; Berry, K.J. Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Weather Forecast. 1993, 8, 73–86. [Google Scholar] [CrossRef]
- Gray, W.M.; Landsea, C.W.; Mielke, P.W., Jr.; Berry, K.J. Predicting Atlantic basin seasonal tropical cyclone activity by 1 June. Weather Forecast. 1994, 9, 103–115. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Mu, M.; Duan, W. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim. Dyn. 2013, 40, 2887–2902. [Google Scholar] [CrossRef]
- Choi, W.; Ho, C.-H.; Kim, J.; Kim, H.-S.; Feng, S.; Kang, K. A track pattern–based seasonal prediction of tropical cyclone activity over the North Atlantic. J. Clim. 2016, 29, 481–494. [Google Scholar] [CrossRef]
- Nath, S.; Kotal, S. Seasonal prediction of tropical cyclone activity over the North Indian Ocean using the neural network model. Atmósfera 2015, 28, 271–281. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Delworth, T.; Wittenberg, A.T.; Rosati, A.; Underwood, S.; Anderson, W.; Harris, L.; Gudgel, R. Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 2016, 29, 1391–1415. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Villarini, G.; Murakami, H.; Rosati, A.; Yang, X.; Jia, L.; Zeng, F. Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode. Clim. Dyn. 2017, 48, 631–647. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G. Seasonal forecasting of western North Pacific tropical cyclone frequency using the North American multi-model ensemble. Clim. Dyn. 2019, 52, 5985–5997. [Google Scholar] [CrossRef]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 2007, 20, 4819–4834. [Google Scholar] [CrossRef]
- Vitart, F. Evolution of ECMWF sub-seasonal forecast skill scores. Q. J. R. Meteorol. Soc. 2014, 140, 1889–1899. [Google Scholar] [CrossRef]
- Robertson, A.W.; Vitart, F.; Camargo, S.J. Subseasonal to seasonal prediction of weather to climate with application to tropical cyclones. J. Geophys. Res. Atmos. 2020, 125, e2018JD029375. [Google Scholar] [CrossRef]
- Harris, L.; Zhou, L.; Lin, S.J.; Chen, J.H.; Chen, X.; Gao, K.; Morin, M.; Rees, S.; Sun, Y.; Tong, M. GFDL SHiELD: A unified system for weather-to-seasonal prediction. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002223. [Google Scholar] [CrossRef]
- Manganello, J.V.; Hodges, K.I.; Cash, B.A.; Kinter, J.L., III; Altshuler, E.L.; Fennessy, M.J.; Vitart, F.; Molteni, F.; Towers, P. Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Clim. 2016, 29, 1179–1200. [Google Scholar] [CrossRef]
- Wu, G.; Lau, N.-C. A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Weather Rev. 1992, 120, 958–977. [Google Scholar] [CrossRef]
- Chan, J.C. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, B.; Lee, J.-Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Madden-julian oscillation. Rev. Geophys. 2005, 43, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Hendon, H.H.; Wheeler, M.C.; Zhang, C. Seasonal dependence of the MJO–ENSO relationship. J. Clim. 2007, 20, 531–543. [Google Scholar] [CrossRef]
- Emanuel, K.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorolgy, Miami, FL, USA, 3–7 May 2004. [Google Scholar]
- Camargo, S.J.; Sobel, A.H.; Barnston, A.G.; Emanuel, K.A. Tropical cyclone genesis potential index in climate models. Tellus A 2007, 59, 428–443. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Moon, J.-Y. An anomalous genesis potential index for MJO modulation of tropical cyclones. J. Clim. 2017, 30, 4021–4035. [Google Scholar] [CrossRef]
- Bao, Q.; Wu, X.; Li, J.; Wang, L.; He, B.; Wang, X.; Liu, Y.; Wu, G. Outlook for El Niño and the Indian Ocean Dipole in autumn-winter 2018–2019. Chin. Sci. Bull. 2018, 64, 73–78. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Bao, Q.; Wang, X.; Zhou, L.; Wu, X.; Liu, Y.; Wu, G.; Chen, K.; He, S.; Hu, W. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci. 2019, 36, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Li, J. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. J. Adv. Model. Earth Syst. 2019, 11, 1117–1136. [Google Scholar] [CrossRef]
- Bao, Q.; Li, J. Progress in climate modeling of precipitation over the Tibetan Plateau. Natl. Sci. Rev. 2020, 7, 486–487. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Bao, Q.; Liu, Y.; Wu, G.; Wang, W.C.; Wang, X.; He, B.; Yu, H.; Li, J. Global energy and water balance: Characteristics from F inite-volume A tmospheric M odel of the IAP/LASG (FAMIL 1). J. Adv. Model. Earth Syst. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Ren, H.-L.; Wu, Y.; Bao, Q.; Ma, J.; Liu, C.; Wan, J.; Li, Q.; Wu, X.; Liu, Y.; Tian, B. The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J. Meteorol. Res. 2019, 33, 540–552. [Google Scholar] [CrossRef]
- Bloom, S.; Takacs, L.; Da Silva, A.; Ledvina, D. Data assimilation using incremental analysis updates. Mon. Weather Rev. 1996, 124, 1256–1271. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Xue, Y.; Zhang, D.; Kumar, A.; McPhaden, M.J. The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Clim. 2010, 23, 4901–4925. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.N.; Kalnay, E. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A Dyn. Meteorol. Oceanogr. 1983, 35, 100–118. [Google Scholar] [CrossRef]
- Kang, I.-S.; Jang, P.-H.; Almazroui, M. Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer. Clim. Dyn. 2014, 42, 2627–2637. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Held, I.M.; Lin, S.-J.; Vecchi, G.A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Clim. 2009, 22, 6653–6678. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-H.; Lin, S.-J. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Clim. 2013, 26, 380–398. [Google Scholar] [CrossRef]
- Walsh, K.; Fiorino, M.; Landsea, C.; McInnes, K. Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Clim. 2007, 20, 2307–2314. [Google Scholar] [CrossRef]
- Simpson, R.H.; Saffir, H. The Hurricane Disaster—Potential Scale. Weatherwise 1974, 27, 169–186. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Chan, J.C.; Shi, J.E. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett. 1996, 23, 2765–2767. [Google Scholar] [CrossRef]
- Vitart, F.; Anderson, J.; Stern, W. Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Clim. 1997, 10, 745–760. [Google Scholar] [CrossRef]
- Mei, W.; Lien, C.-C.; Lin, I.-I.; Xie, S.-P. Tropical cyclone–induced ocean response: A comparative study of the South China Sea and tropical northwest Pacific. J. Clim. 2015, 28, 5952–5968. [Google Scholar] [CrossRef]
- Strachan, J.; Vidale, P.L.; Hodges, K.; Roberts, M.; Demory, M.-E. Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Clim. 2013, 26, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Brierley, C.M.; An, S.-I.; Guarino, M.-V.; Stevenson, S.; Williams, C.J.; Zhang, Q.; Zhao, A.; Abe-Ouchi, A.; Braconnot, P. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim. Past 2020, 16, 1777–1805. [Google Scholar] [CrossRef]
- Yang, S.; Jiang, X. Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP Climate Forecast System. J. Clim. 2014, 27, 4451–4472. [Google Scholar] [CrossRef]
- Klotzbach, P.; Blake, E.; Camp, J.; Caron, L.-P.; Chan, J.C.; Kang, N.-Y.; Kuleshov, Y.; Lee, S.-M.; Murakami, H.; Saunders, M. Seasonal tropical cyclone forecasting. Trop. Cyclone Res. Rev. 2019, 8, 134–149. [Google Scholar] [CrossRef]
- Camp, J.; Bett, P.E.; Golding, N.; Hewitt, C.D.; Mitchell, T.D.; Scaife, A.A. Verification of the 2019 GloSea5 seasonal tropical cyclone landfall forecast for East China. J. Meteorol. Res. 2020, 34, 917–925. [Google Scholar] [CrossRef]
- Feng, X.; Hodges, K.I.; Hoang, L.; Pura, A.G.; Yang, G.Y.; Luu, H.; David, S.J.; Duran, G.A.M.; Guo, Y.P. A new approach to skillful seasonal prediction of Southeast Asia tropical cyclone occurrence. J. Geophys. Res. Atmos. 2022, 127, e2022JD036439. [Google Scholar] [CrossRef]
- Feng, X.; Klingaman, N.P.; Hodges, K.I.; Guo, Y.-P. Western North Pacific tropical cyclones in the Met office global seasonal forecast system: Performance and ENSO teleconnections. J. Clim. 2020, 33, 10489–10504. [Google Scholar] [CrossRef]
- Chen, G. How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J. Clim. 2011, 24, 4695–4700. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Clim. 2011, 24, 1839–1849. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.-S. Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Clim. 2002, 15, 2678–2689. [Google Scholar] [CrossRef]
- Yoshida, R.; Kajikawa, Y.; Ishikawa, H. Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the western North Pacific. Sola 2014, 10, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.; Lavender, S.; Scoccimarro, E.; Murakami, H. Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Clim. Dyn. 2013, 40, 585–599. [Google Scholar] [CrossRef]
- Camargo, S.J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 2013, 26, 9880–9902. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Pan, X. Diagnosis of seasonal variations of tropical cyclogenesis over the South China Sea using a genesis potential index. J. Ocean Univ. China 2012, 11, 267–278. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Liu, Y.; Wu, G.; Bao, Q.; Zhou, T.; Wu, X.; Wang, L.; Li, J.; Wang, X.; Li, J. CAS FGOALS-f3-L model datasets for CMIP6 GMMIP Tier-1 and Tier-3 experiments. Adv. Atmos. Sci. 2020, 37, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Turner, A.G.; Kinter, J.L.; Wang, B.; Qian, Y.; Chen, X.; Wu, B.; Liu, B.; Zou, L.; He, B. GMMIP (v1. 0) contribution to CMIP6: Global monsoons model inter-comparison project. Geosci. Model Dev. 2016, 9, 3589–3604. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J.; Camp, J.; Seddon, J.; Vidale, P.L.; Hodges, K.; Vanniere, B.; Mecking, J.; Haarsma, R.; Bellucci, A.; Scoccimarro, E. Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. J. Clim. 2020, 33, 2557–2583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Tian, Q.; Shen, Z.; Yan, Z.; Li, M.; Xue, J.; Yang, Y.; Zeng, L.; Zang, Y.; Li, S. Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2. Atmosphere 2023, 14, 85. https://doi.org/10.3390/atmos14010085
Li J, Tian Q, Shen Z, Yan Z, Li M, Xue J, Yang Y, Zeng L, Zang Y, Li S. Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2. Atmosphere. 2023; 14(1):85. https://doi.org/10.3390/atmos14010085
Chicago/Turabian StyleLi, Jinxiao, Qun Tian, Zili Shen, Zixiang Yan, Majun Li, Jiaqing Xue, Yaoxian Yang, Lingjun Zeng, Yuxin Zang, and Siyuan Li. 2023. "Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2" Atmosphere 14, no. 1: 85. https://doi.org/10.3390/atmos14010085
APA StyleLi, J., Tian, Q., Shen, Z., Yan, Z., Li, M., Xue, J., Yang, Y., Zeng, L., Zang, Y., & Li, S. (2023). Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2. Atmosphere, 14(1), 85. https://doi.org/10.3390/atmos14010085