Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Setups
- Probe(s) to extract the diluted sample. The setup can use a single probe followed by a flow-splitting device. Alternatively, two probes can sample TPN10 and SPN10 separately. In such a case, the setup consists of two different PN layouts.
- Nozzle(s) fitted to the probe’s end to achieve isokinetic sampling. The nozzle(s) must have its axis parallel to the dilution tunnel ensuring that the aspiration angle does not exceed 15°.
- Cyclonic separator(s) to remove particles larger than 2.5 μm, which typically do not contribute to the PN concentration but might contaminate the PN system(s). The system can use a cyclonic separator with a higher cut-off point of up to 10 μm. Two cyclonic separators must be applied when using different probes for sampling TPN10 and SPN10 or when the cyclonic separators are downstream of the flow-splitting device. The cyclonic separator(s) must be mounted directly at the sampling probe’s outlet or the PN system’s inlet.
- A flow splitter (optionally) is necessary when two PN systems are sampling from the same probe (Appendix A, Figure A1). The splitter, if used, may be installed before or after the cyclonic separator.
- Transfer tube to the PN system (optionally), abbreviated as particle transfer tube (PTT). Only one PTT for each PN system can be used. The PTT must be placed before or after the cyclonic separator.
- A Dilution system (DIL) for TPN10 or a volatile particle remover (VPR) for SPN10. The DIL dilutes the aerosol sample with clean air and the VPR dilutes the aerosol sample and removes volatile particles. For SPN10, the setup mandates a catalytic stripper at 350 °C to remove volatile particles. The minimum total dilution (before and/or after the catalytic stripper) must be at least 10:1.
- Particle number counter (PNC) that counts particles from approximately 10 nm electrical mobility diameter and larger.
- Internal tubing, abbreviated as internal transfer line (ITL), connects the DIL or VPR to the PNC.
- With the cyclonic separator directly mounted to the probe’s outlet and followed by the PTT;
- With the cyclonic separator directly mounted to the inlet of the DIL or VPR and preceded by the PTT.
2.2. Technical Specifications
2.3. Background Levels
3. Results
3.1. Scenarios
- PN setup based on the specifications described above with minimum particle losses, and thus maximum penetration, abbreviated as “max penetration”.
- PN setup with all permissible flexibilities in the technical requirements maximizing particle losses, abbreviated as “min penetration”.
3.2. Penetration
4. Discussion
4.1. Penetration for Various Size Distributions
4.2. Differences between PN Setups
4.3. Significance of Upper Cut-Point
4.4. Comparison with Exhaust Setups
- Isokinetic sampling is required; however, with a relatively relaxed range of tolerance: 0.6–1.5.
- A cyclonic separator is required in the brake setup but is only recommended for the exhaust PN systems.
- The primary dilution of the brakes VPR does not need heating to 150 °C; however, the VPR needs a catalytic stripper at 350 °C. For exhaust systems, the first dilution must be hot (>150 °C), and the catalytic stripper is required only for the recommended system provided as an example in the exhaust regulation. The volatile removal efficiency requirements with tetracontane particles are identical (see Figure 2).
- The primary dilution factor of the brakes system is undefined as long as the total dilution is at least 10:1, while for the exhaust PN systems, the primary dilution has to be at least 10:1.
- It does not have a minimum ratio as long as the total dilution is 10:1 or higher.
- It does not need to be hot.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
Appendix A
- With the cyclonic separator directly mounted to the probe’s outlet and followed by the flow-splitting device and the PTT;
- With the cyclonic separator directly mounted to the inlet of the PN system and preceded by the flow-splitting device and the PTT, respectively;
- With the cyclonic separator directly mounted to the inlet of the PN system and preceded by the PTT and the flow-splitting device, respectively.
References
- Health Effects Institute. State of Global Air 2020; Health Effects Institute: Boston, MA, USA, 2020. [Google Scholar]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Air Quality in Europe 2022. 2022. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2022 (accessed on 1 December 2022).
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Habre, R.; Girguis, M.; Urman, R.; Fruin, S.; Lurmann, F.; Shafer, M.; Gorski, P.; Franklin, M.; McConnell, R.; Avol, E.; et al. Contribution of Tailpipe and Non-Tailpipe Traffic Sources to Quasi-Ultrafine, Fine and Coarse Particulate Matter in Southern California. J. Air Waste Manag. Assoc. 2021, 71, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Trombetti, M.; Thunis, P.; Bessagnet, B.; Clappier, A.; Couvidat, F.; Guevara, M.; Kuenen, J.; López-Aparicio, S. Spatial Inter-Comparison of Top-down Emission Inventories in European Urban Areas. Atmos. Environ. 2018, 173, 142–156. [Google Scholar] [CrossRef]
- Fujitani, Y.; Takahashi, K.; Saitoh, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Takami, A.; Kobayashi, S. Contribution of Industrial and Traffic Emissions to Ultrafine, Fine, Coarse Particles in the Vicinity of Industrial Areas in Japan. Environ. Adv. 2021, 5, 100101. [Google Scholar] [CrossRef]
- Weber, S.; Salameh, D.; Albinet, A.; Alleman, L.Y.; Waked, A.; Besombes, J.-L.; Jacob, V.; Guillaud, G.; Meshbah, B.; Rocq, B.; et al. Comparison of PM10 Sources Profiles at 15 French Sites Using a Harmonized Constrained Positive Matrix Factorization Approach. Atmosphere 2019, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Seibert, R.; Nikolova, I.; Volná, V.; Krejčí, B.; Hladký, D. Air Pollution Sources’ Contribution to PM2.5 Concentration in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 522. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Matrali, A.; Pandis, S.N.; Kazantzidis, A. Insights about the Sources of PM2.5 in an Urban Area from Measurements of a Low-Cost Sensor Network. Atmosphere 2022, 13, 440. [Google Scholar] [CrossRef]
- Firląg, S.; Rogulski, M.; Badyda, A. The Influence of Marine Traffic on Particulate Matter (PM) Levels in the Region of Danish Straits, North and Baltic Seas. Sustainability 2018, 10, 4231. [Google Scholar] [CrossRef]
- Durán-Grados, V.; Rodríguez-Moreno, R.; Calderay-Cayetano, F.; Amado-Sánchez, Y.; Pájaro-Velázquez, E.; Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V.; Moreno-Gutiérrez, J. The Influence of Emissions from Maritime Transport on Air Quality in the Strait of Gibraltar (Spain). Sustainability 2022, 14, 12507. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Inambao, F.L.; Ampah, J.D. Evaluation of Biodiesel on Speciated PM2.5, Organic Compound, Ultrafine Particle and Gaseous Emissions from a Low-Speed EPA Tier II Marine Diesel Engine Coupled with DPF, DEP and SCR Filter at Various Loads. Energy 2022, 239, 121837. [Google Scholar] [CrossRef]
- Diesel Net. Emission Standards. 2022. Available online: https://dieselnet.com/standards/ (accessed on 1 December 2022).
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of Motor Vehicle Particulate Emissions Sampling and Measurement: From Smoke and Filter Mass to Particle Number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe: 2020 Report; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-29.
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-Exhaust Vehicle Emissions of Particulate Matter and VOC from Road Traffic: A Review. Atmos. Environ. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Grange, S.K.; Fischer, A.; Zellweger, C.; Alastuey, A.; Querol, X.; Jaffrezo, J.-L.; Weber, S.; Uzu, G.; Hueglin, C. Switzerland’s PM10 and PM2.5 Environmental Increments Show the Importance of Non-Exhaust Emissions. Atmos. Environ. X 2021, 12, 100145. [Google Scholar] [CrossRef]
- Piscitello, A.; Bianco, C.; Casasso, A.; Sethi, R. Non-Exhaust Traffic Emissions: Sources, Characterization, and Mitigation Measures. Sci. Total Environ. 2021, 766, 144440. [Google Scholar] [CrossRef]
- Woo, S.-H.; Jang, H.; Lee, S.-B.; Lee, S. Comparison of Total PM Emissions Emitted from Electric and Internal Combustion Engine Vehicles: An Experimental Analysis. Sci. Total Environ. 2022, 842, 156961. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Airborne Brake Wear Particle Emission Due to Braking and Accelerating. Wear 2015, 334–335, 44–48. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake Wear Particle Emissions: A Review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef]
- Mathissen, M.; Grigoratos, T.; Lahde, T.; Vogt, R. Brake Wear Particle Emissions of a Passenger Car Measured on a Chassis Dynamometer. Atmosphere 2019, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Mellios, G.; Ntziachristos, L. Evaporation and Brake Wear Control. Onine AGVES Meeting. 8 April 2021. Available online: https://circabc.europa.eu/sd/a/1c0efc15-8507-4797-9647-97c12d82fa28/agves-2021-04-08-evap_non-exh.pdf (accessed on 1 December 2022).
- European Commission. Directorate General for Internal Market, Industry, Entrepreneurship and SMEs. In Technical Studies for the Development of Euro 7: Testing, Pollutants and Emission Limits; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-56545-1. [Google Scholar]
- Grigoratos, T.; Mathissen, M.; Gramstat, S.; Mamakos, A.; Vedula, R.; Agudelo, C.; Grochowicz, J.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions–Part I: Particulate Matter Mass Emissions. Atmosphere 2023. under review. [Google Scholar]
- Mamakos, A.; Arndt, M.; Hesse, D.; Augsburg, K. Physical Characterization of Brake-Wear Particles in a PM10 Dilution Tunnel. Atmosphere 2019, 10, 639. [Google Scholar] [CrossRef] [Green Version]
- Mamakos, A.; Kolbeck, K.; Arndt, M.; Schröder, T.; Bernhard, M. Particle Emissions and Disc Temperature Profiles from a Commercial Brake System Tested on a Dynamometer under Real-World Cycles. Atmosphere 2021, 12, 377. [Google Scholar] [CrossRef]
- Farwick zum Hagen, F.H.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. On-Road Vehicle Measurements of Brake Wear Particle Emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- zum Hagen, F.H.F.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions. Environ. Sci. Technol. 2019, 53, 5143–5150. [Google Scholar] [CrossRef]
- Mathissen, M.; Grigoratos, T.; Gramstat, S.; Mamakos, A.; Vedula, R.; Agudelo, C.; Grochowicz, J.; Giechaskiel, B. Interlaboratory Study on Brake Particle Emissions–Part II: Particle Number Emissions. Atmosphere 2023. under review. [Google Scholar]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manf. 2015, 9, 147–157. [Google Scholar] [CrossRef]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On Airborne Nano/Micro-Sized Wear Particles Released from Low-Metallic Automotive Brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Nosko, O.; Olofsson, U. Effective Density of Airborne Wear Particles from Car Brake Materials. J. Aerosol Sci. 2017, 107, 94–106. [Google Scholar] [CrossRef]
- Agudelo, C.; Vedula, R.T.; Collier, S.; Stanard, A. Brake Particulate Matter Emissions Measurements for Six Light-Duty Vehicles Using Inertia Dynamometer Testing; SAE 2020-01–1637; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Stanard, A.; DeFries, T.; Palacios, C.; Kishan, S. Brake and Tire Wear Emissions; ERG: Concord, MA, USA, 2021. [Google Scholar]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory Testing of Airborne Brake Wear Particle Emissions Using a Dynamometer System under Urban City Driving Cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Kukutschová, J.; Filip, P. Review of Brake Wear Emissions. In Non-Exhaust Emissions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 123–146. ISBN 978-0-12-811770-5. [Google Scholar]
- Andersson, J.; Campbell, M.; Marshall, I.; Kramer, L.; Norris, J. Measurement of Emissions from Brake and Tyre Wear. Final Report—Phase 1; T0018-TETI0037, Ricardo Ref. ED14775; Ricardo: London, UK, 2022. [Google Scholar]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Grigoratos, T.; Agudelo, C.; Grochowicz, J.; Gramstat, S.; Robere, M.; Perricone, G.; Sin, A.; Paulus, A.; Zessinger, M.; Hortet, A.; et al. Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle. Atmosphere 2020, 11, 1309. [Google Scholar] [CrossRef]
- Grigoratos, T.; Giechaskiel, B. Draft GTR—Proposed Way Forward. PMP Webex. 25 May 2022. Available online: https://wiki.unece.org/display/trans/pmp+web+conference+25.05.2022 (accessed on 1 December 2022).
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Mathissen, M.; Grochowicz, J.; Schmidt, C.; Vogt, R.; Farwick zum Hagen, F.H.; Grabiec, T.; Steven, H.; Grigoratos, T. A Novel Real-World Braking Cycle for Studying Brake Wear Particle Emissions. Wear 2018, 414–415, 219–226. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Chen, Q. Particle Capture by a Rotating Disk in a Kitchen Exhaust Hood. Aerosol Sci. Technol. 2020, 54, 929–940. [Google Scholar] [CrossRef]
- Yli-Ojanperä, J.; Sakurai, H.; Iida, K.; Mäkelä, J.M.; Ehara, K.; Keskinen, J. Comparison of Three Particle Number Concentration Calibration Standards through Calibration of a Single CPC in a Wide Particle Size Range. Aerosol Sci. Technol. 2012, 46, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Arndt, M.; Schindler, W.; Bergmann, A.; Silvis, W.; Drossinos, Y. Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide. SAE Int. J. Engines 2012, 5, 379–399. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-19410-1. [Google Scholar]
- Baron, P.A.; Kulkarni, P.; Willeke, K. (Eds.) Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-38741-2. [Google Scholar]
- Vincent, J.H. Aerosol Sampling: Science, Standards, Instrumentation and Applications; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; ISBN 978-0-470-02725-7. [Google Scholar]
- Dirgo, J.; Leith, D. Cyclone Collection Efficiency: Comparison of Experimental Results with Theoretical Predictions. Aerosol Sci. Technol. 1985, 4, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Melas, A. Impact of Material on Response and Calibration of Particle Number Systems. Atmosphere 2022, 13, 1770. [Google Scholar] [CrossRef]
- Helsper, C.; Mölter, W.; Haller, P. Representative Dilution of Aerosols by a Factor of 10,000. J. Aerosol Sci. 1990, 21, S637–S640. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Ntziachristos, L.; Samaras, Z. Effect of Ejector Dilutors on Measurements of Automotive Exhaust Gas Aerosol Size Distributions. Meas. Sci. Technol. 2009, 20, 045703. [Google Scholar] [CrossRef]
- Shin, D.; Woo, C.G.; Hong, K.-J.; Kim, H.-J.; Kim, Y.-J.; Lee, G.-Y.; Chun, S.-N.; Hwang, J.; Han, B. Development of a New Dilution System for Continuous Measurement of Particle Concentration in the Exhaust from a Coal-Fired Power Plant. Fuel 2019, 257, 116045. [Google Scholar] [CrossRef]
- Liu, P.S.K.; Deng, R.; Smith, K.A.; Williams, L.R.; Jayne, J.T.; Canagaratna, M.R.; Moore, K.; Onasch, T.B.; Worsnop, D.R.; Deshler, T. Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol Sci. Technol. 2007, 41, 721–733. [Google Scholar] [CrossRef]
- Hwang, T.-H.; Kim, S.-H.; Kim, S.H.; Lee, D. Reducing Particle Loss in a Critical Orifice and an Aerodynamic Lens for Focusing Aerosol Particles in a Wide Size Range of 30 Nm–10 Μm. J. Mech. Sci. Technol. 2015, 29, 317–323. [Google Scholar] [CrossRef]
- Sang-Nourpour, N.; Olfert, J.S. Calibration of Optical Particle Counters with an Aerodynamic Aerosol Classifier. J. Aerosol Sci. 2019, 138, 105452. [Google Scholar] [CrossRef]
- Tran, S.; Iida, K.; Yashiro, K.; Murashima, Y.; Sakurai, H.; Olfert, J.S. Determining the Cutoff Diameter and Counting Efficiency of Optical Particle Counters with an Aerodynamic Aerosol Classifier and an Inkjet Aerosol Generator. Aerosol Sci. Technol. 2020, 54, 1335–1344. [Google Scholar] [CrossRef]
- Kelly, W.P.; McMurry, P.H. Measurement of Particle Density by Inertial Classification of Differential Mobility Analyzer–Generated Monodisperse Aerosols. Aerosol Sci. Technol. 1992, 17, 199–212. [Google Scholar] [CrossRef]
- Sanders, P.G.; Xu, N.; Dalka, T.M.; Maricq, M.M. Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests. Environ. Sci. Technol. 2003, 37, 4060–4069. [Google Scholar] [CrossRef]
- Mamakos, A.; Arndt, M.; Hesse, D.; Hamatschek, C.; Augsburg, K. Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation; SAE 2020-01-1633; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Perricone, G.; Wahlström, J.; Olofsson, U. Towards a Test Stand for Standardized Measurements of the Brake Emissions. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2016, 230, 1521–1528. [Google Scholar] [CrossRef]
- Perricone, G.; Matĕjka, V.; Alemani, M.; Wahlström, J.; Olofsson, U. A Test Stand Study on the Volatile Emissions of a Passenger Car Brake Assembly. Atmosphere 2019, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Hesse, D.; Augsburg, K. Real Driving Emissions Measurement of Brake Dust Particles; SAE 2019-01-2138; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Feißel, T.; Hesse, D.; Augsburg, K.; Gramstat, S. Measurement of Vehicle Related Non Exhaust Particle Emissions under Real Driving Conditions. In Proceedings of the Euro Brake 2020, Online, 16 June 2020. [Google Scholar]
- Giechaskiel, B.; Lähde, T.; Melas, A.D.; Valverde, V.; Clairotte, M. Uncertainty of Laboratory and Portable Solid Particle Number Systems for Regulatory Measurements of Vehicle Emissions. Environ. Res. 2021, 197, 111068. [Google Scholar] [CrossRef]
Part 1 | “Max Penetration” Setup | “Min Penetration” Setup |
---|---|---|
Nozzle | Isoaxial θ = 0° | Anisoaxial θ = 15° |
Nozzle | Isokinetic ratio = 1.0 | Anisokinetic ratio = 1.5 |
Probe | Qpro = 5 L/min, dpro = 10 mm, Lpro = 1 m | Qpro = 5 L/min, dpro = 10 mm, Lpro = 1 m |
Splitter | none | none |
Probe bend | No bend | Rbend,pro = 40 mm |
Transfer (PTT) | No transfer tube | QPTT = 5 L/min, dPTT = 4 mm, LPTT = 5 m |
PTT bend | No bend | Rbend,PTT = 100 mm |
Internal (ITL) | QITL = 1 L/min, dITL = 4 mm, LITL = 0.4 m | QITL = 1 L/min, dITL = 4 mm, LITL = 1 m |
ITL bend | No bend | Rbend,ITL = 40 mm |
Gravitational | Only in the probe, ITL | Only in the probe, PTT, ITL |
VPR | P10nm = 52%, P15nm = 68%, | P10nm = 30%, P15nm = 53%, |
VPR | P30nm = 92%, P50nm = 101%, P100nm = 104% | P30nm = 87%, P50nm = 101%, P100nm = 105% |
VPR | 50% at 8 μm [47] | |
PNC | P10nm = 80%, P15nm = 95%, 50% at 9 μm [48] |
Scenario | “Min Penetration” Setup | “Max Penetration” Setup | ||
---|---|---|---|---|
GMD1 (GSD1) and GMD2 (GSD2) with C1:C2 | 2.5 μm | 5.0 μm | 2.5 μm | 5.0 μm |
10 nm (1.5) | 25% | 25% | 43% | 43% |
15 nm (1.5) | 46% | 46% | 64% | 64% |
20 nm (1.5) | 62% | 62% | 76% | 76% |
30 nm (1.5) | 81% | 81% | 90% | 90% |
50 nm (1.5) | 96% | 96% | 99% | 99% |
100 nm (2.0) | 101% | 101% | 101% | 101% |
500 nm (2.0) | 99% | 100% | 100% | 101% |
700 nm (2.0) | 93% | 96% | 95% | 99% |
1000 nm (2.0) | 82% | 89% | 85% | 94% |
1500 nm (2.0) | 65% | 77% | 69% | 85% |
2000 nm (2.0) | 50% | 66% | 54% | 75% |
3000 nm (2.0) | 30% | 47% | 33% | 57% |
20 nm (1.5) and 1500 nm (2.0) with a ratio of 9:1 | 63% | 64% | 76% | 77% |
20 nm (1.5) and 1500 nm (2.0) with a ratio of 4:1 | 63% | 65% | 75% | 78% |
20 nm (1.5) and 1500 nm (2.0) with a ratio of 1:1 | 64% | 70% | 73% | 81% |
100 nm (1.5) and 1500 nm (2.0) with a ratio of 9:1 | 97% | 98% | 98% | 100% |
100 nm (1.5) and 1500 nm (2.0) with a ratio of 4:1 | 93% | 96% | 95% | 98% |
100 nm (1.5) and 1500 nm (2.0) with a ratio of 1:1 | 83% | 89% | 85% | 93% |
GMD (nm) | GSD (nm) | Number-to-Mass Ratio (#/mg) |
---|---|---|
20 | 1.5 | 1.08 × 1014 |
60 | 1.7 | 2.36 × 1012 |
200 | 2.0 | 2.60 × 1010 |
500 | 2.0 | 1.69 × 109 |
1000 | 2.0 | 2.35 × 108 |
2000 | 2.0 | 0.45 × 108 |
3000 | 2.0 | 0.22 × 108 |
Part | Symbol | Brakes (Non-Exhaust) | Engine (Exhaust) |
---|---|---|---|
Nozzle | - | Required | Not prescribed |
Probe | - | Required | No requirements (Typically a bend in the tunnel) |
Pre-classifier | - | Cyclonic separator | Recommended (Cyclone, Impactor, Hat) |
d50% | 2.5–10 μm | 2.5–10 μm | |
P | >80% (number) (d1.5μm) | >99% (mass) (d1μm) | |
Transfer tube | Flow | Laminar | Laminar (Re < 1700) |
RT | <1 s | <3 s | |
VPR | - | Required | Required |
PND1 | Required | Required | |
DF | ≥10:1 (total) | ≥ 10:1 (Primary) | |
Tmix | ≥150 °C (recommended) | ≥150 °C (Required) | |
CS | Required | Required (at recommended system) | |
TCS | 350 °C (±10 °C) | 350 °C (±10 °C) (at recommended system) | |
Internal tubing | d | ≥4 mm | ≥4 mm |
RT | <1.0 s | ≤0.8 s | |
PNC | - | Required | Required |
Material | PAO, soot, silver | PAO, soot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoratos, T.; Mamakos, A.; Arndt, M.; Lugovyy, D.; Anderson, R.; Hafenmayer, C.; Moisio, M.; Vanhanen, J.; Frazee, R.; Agudelo, C.; et al. Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere 2023, 14, 103. https://doi.org/10.3390/atmos14010103
Grigoratos T, Mamakos A, Arndt M, Lugovyy D, Anderson R, Hafenmayer C, Moisio M, Vanhanen J, Frazee R, Agudelo C, et al. Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere. 2023; 14(1):103. https://doi.org/10.3390/atmos14010103
Chicago/Turabian StyleGrigoratos, Theodoros, Athanasios Mamakos, Michael Arndt, Dmytro Lugovyy, Robert Anderson, Christian Hafenmayer, Mikko Moisio, Joonas Vanhanen, Richard Frazee, Carlos Agudelo, and et al. 2023. "Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups" Atmosphere 14, no. 1: 103. https://doi.org/10.3390/atmos14010103
APA StyleGrigoratos, T., Mamakos, A., Arndt, M., Lugovyy, D., Anderson, R., Hafenmayer, C., Moisio, M., Vanhanen, J., Frazee, R., Agudelo, C., & Giechaskiel, B. (2023). Characterization of Particle Number Setups for Measuring Brake Particle Emissions and Comparison with Exhaust Setups. Atmosphere, 14(1), 103. https://doi.org/10.3390/atmos14010103