Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Inductively Coupled Plasma Mass Spectrometer (ICP-MS) Analyses of Metals
2.4. Nutrients Measured in the Rainfall Samples
3. Results
3.1. Measured Concentrations of Metals and Some Nutrients in the Digested Dust
3.2. Concentrations of Undigested Dust Aerosols in Rainfall Using the Colorimetric Nutrient Analyzer and ICP-MS Analysis
3.3. Concentrations from Digested Monthly Rainfall Samples Using the Colorimetric Nutrient Analyzer and ICP-MS Analysis Instruments
4. Discussion
4.1. Historical Accounts on Trans-Atlantic Dust Aerosols Reaching the United States, including Dust Properties
4.2. Trajectory Patterns and Origins of Trans-Atlantic Dust Aerosols Reaching the United States
4.3. Historical Accounts on the Chemical Nature of Trans-Atlantic Aerosols in Florida and Comparison to Data Collected in Southwestern Florida: Metals and Nutrients
4.4. Potential Environmental Impacts and Indirect Health Impacts of Aerosol Deposition in Southwest Florida and the Surrounding Area
4.5. Potential Direct Health Impacts of Aerosols in Southwest Florida
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Derry, L.A.; Chadwick, O.A. Contributions from Earth’s atmosphere to soils. Elements 2007, 3, 333–338. [Google Scholar] [CrossRef]
- Prospero, J.M. Atmospheric dust studies. Bull. Am. Meteorolog. Soc. 1968, 49, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Savoie, D.L.; Prospero, J.M. Aerosol concentration statistics for the Northern Tropical Atlantic. J. Geophys. Res. 1977, 82, 5954–5964. [Google Scholar] [CrossRef]
- Prospero, J.M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. USA 1999, 96, 3396–3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, R.W.; Harriss, R.C.; Browell, E.V.; Gregory, G.L.; Sebacher, D.I.; Beck, S.M. Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere—Relationship to African dust. J. Geophys. Res. 1986, 91, 5173–5183. [Google Scholar] [CrossRef]
- Aldhaif, A.M. Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmos. Environ. 2020, 231, 117456. [Google Scholar] [CrossRef]
- Carlson, T.N.; Prospero, J.M. The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meterol. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Prospero, J.M. Mineral and sea salt aerosol concentrations in various ocean regions. J. Geophys. Res. 1979, 84, 725–730. [Google Scholar] [CrossRef]
- Westphal, D.L. A case study of mobilization and transport of Saharan Dust. J. Atmos. Sci. 1987, 45, 2145–2175. [Google Scholar] [CrossRef]
- Prospero, J.M.; Carlson, T.N. Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res. 1996, 77, 5255–5265. [Google Scholar] [CrossRef]
- Muhs, D.R.; Budahn, J.; Prospero, J.M.; Carey, S.N. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas, and Florida. J. Geophys. Res. 2007, 112, F02009. [Google Scholar] [CrossRef] [Green Version]
- Muhs, D.R.; Budahn, J.; Prospero, J.M.; Skipp, G.; Herwitz, S.R. Soil genesis on the island of Bermuda in the Quaternary: The importance of African dust transport and deposition. J. Geophys. Res. 2012, 117, F03025. [Google Scholar] [CrossRef] [Green Version]
- Glaser, P.H.; Hansan, B.C.S.; Donovan, J.J.; Givnish, T.J.; Stricker, C.A.; Volin, J.C. Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms. Proc. Natl. Acad. Sci. USA 2013, 110, 17211–17216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, R.W.; Andreae, M.; Berresheim, H.; Artaxo, P. Aerosol chemistry during the wet season in Central Amazonia: The influence of long-Range transport. J. Geophys. Res. 2013, 95, 16955–16969. [Google Scholar] [CrossRef]
- Yu, M.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The fertilizing role of African dust in the Amazon rainforest: A first multi-year assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar]
- Harley, G.L.; King, J.; Maxwell, J.T. Trans-Atlantic connections between North African dust flux and tree growth in the Florida Keys, United States. Earth Interact. 2017, 21, 1–22. [Google Scholar] [CrossRef]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Campos y Sansano, A.; Panechou, K. Characterizing and quantifying African dust transport and deposition to South America: Implications for the phosphorus budget in the Amazon Basin. Global Biochem. Cycles 2020, 34, e2020GB006536. [Google Scholar] [CrossRef]
- Querola, X.; Tobias, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Garcia-Pando, C.P.; Ginoux, P.; Forastierre, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Internat. 2019, 130, 104867. [Google Scholar] [CrossRef]
- Tanaya, T.Y.; Orito, K.; Sekiyama, T.T.; Shibata, S.; Chiba, M.; Tanaka, H. MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM. Pap. Meteorol. Geophys. 2003, 53, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M. Long-term measurements of the transport of African dust to the southeastern United States. J. Geophys. Res. 1999, 104, 15917–15928. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Lamb, P.J. African droughts and dust transport to the Caribbean: Climate change implications. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Gioda, A.; Mayoral-Bracero, O.L.; Scatena, F.N.; Weathers, K.C.; Mateus, V.L.; McDowell, W.H. Chemical constituents in clouds and rainwater in Puerto Rico rainforest: Potential sources and seasonal drivers. Atmos. Environ. 2013, 68, 208–220. [Google Scholar]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- National Atmospheric and Space Administration (NASA). Atmospheric Composition Maps, Dust Aerosol Optical Thick Map, 09-02-021. 2021. Available online: https://earthobservatory.nasa.gov/global-maps/MODAL2_M_AER_OD (accessed on 2 September 2021).
- Parkin, D.W.; Phillips, D.R.; Sullivan, R.; Johnson, L.R. Airborne dust collections down the Atlantic. Quart. J. R. Met. Soc. 1972, 98, 798–808. [Google Scholar] [CrossRef]
- Havens, K.E.; Ji, G.; Beaver, J.R.; Fulton, R.S., III; Teacher, C.E. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia 2019, 829, 43–59. [Google Scholar] [CrossRef]
- Peters, N.E.; Reese, R.S. Variations of weekly atmospheric deposition for multiple collectors at a site on the shore of Lake Okeechobee, Florida. Atmos. Environ. 1995, 29, 179–187. [Google Scholar] [CrossRef]
- Grimshaw, H.J.; Dolske, D.A. Rainfall concentrations and wet atmospheric deposition of phosphorus and other constituents in Florida, U.S.A. Water Air Soil Pollut. 2002, 137, 117–140. [Google Scholar] [CrossRef]
- Redfield, G.W. Atmospheric deposition of phosphorus to the Everglades: Concepts, constraints, and published deposition rates for ecosystem management. Sci. World J. 2002, 2, 1843–1873. [Google Scholar] [CrossRef]
- Havens, K.E.; Paerl, H.W. Climate change at a crossroad for control of harmful algal blooms. Environ. Sci. Technol. 2015, 49, 12605–12606. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Blades, E.; Naidu, R.; Mathison, G.; Thani, H.; Lavoie, M.C. Relationship between African dust carried in the Atlantic trade winds and surges in pediatric asthma attendances in the Caribbean. Int. J. Biometeorol. 2009, 52, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Prospero, J.M.; Collard, F.-X.; Molinié, J.; Jeannot, A. Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Glob. Bichem. Cycles 2014, 29, 757–773. [Google Scholar] [CrossRef]
- Terradellas, R.; Nickovic, S.; Zhang, X.-Y. Airborne Dust: A Hazard to Human Health, Environment and Society. In World Meteorological Organization; Bulletin nº 2015; p. 64. Available online: https://public.wmo.int/en/resources/bulletin/airborne-dust-hazard-human-health-environment-and-society (accessed on 9 September 2021).
- Venero-Fernández, S.J. Saharan dust effects on human health: A challenge for Cuba’s researchers. MEDICC Rev. 2016, 18, 32–34. [Google Scholar] [PubMed]
- Akpinar-Elci, M.; Martin, F.E.; Behr, J.G.; Diaz, R. Saharan dust, climate variability, and asthma in Grenada, the Caribbean. Int. J. Biometeorol. 2015, 59, 1667–1671. [Google Scholar] [CrossRef] [PubMed]
- Viel, J.-F.; Mallet, Y.; Raghoumandan, C.; Quénel, P.; Kadhel, P.; Rouget, F.; Multigner, L. Impact of Saharian dust episodes on preterm births in Guadeloupe (French West Indies). Occup. Environ. Med. 2019, 76, 336–340. [Google Scholar] [CrossRef]
- Kotsyfakis, M.; Zarogiannis, S.G.; Patelarou, E. The health impact of Saharian dust exposure. Int. J. Occup. Med. Environ. Health 2019, 32, 749–760. [Google Scholar] [CrossRef]
- Gutierrez, M.P.; Zuidema, P.; Mirsaeidi, M.; Campos, M.; Kumar, N. Association between African dust transport and acute exacerbations of COPD in Miami. J. Clin. Med. 2020, 8, 2496. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Integrated Science Assessment for Particulate Matter; U.S. Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.federalregister.gov/documents/2020/01/27/2020-01223/integrated-science-assessment-for-particulate-matter (accessed on 12 December 2021).
- Schuerger, A.C.; Smith, D.J.; Griffen, D.W.; Jaffe, D.A.; Wawrik, B.; Burrows, S.M.; Christner, B.C.; Gonzalez-Martin, C.; Lipp, E.K.; Schmale, D.H., III; et al. Science questions and knowledge gaps to study microbial transport and survival in Asian and African dust plumes reaching North America. Aerobiologia 2018, 34, 425–435. [Google Scholar] [CrossRef]
- Waters, S.M.; Purdue, S.K.; Armstrong, R.; Detrés, Y. Metagenomic investigation of African dust events in the Caribbean. FMES Microbiology Letters 2020, 367, fnaa051. [Google Scholar] [CrossRef]
- Pieters, N.; Plusquin, M.; Cox, B.; Kicinski, M.; Vangrpnsvold, J.; Nawrot, T.S. An epidemiological appraisal of the association between heart rate variability and particulate air pollution: A meta-analysis. Heart 2012, 98, 1127–1135. [Google Scholar]
- Auchincloss, A.H.; Diez Roux, A.V.; Dvonch, J.T.; Brown, P.T.; Barr, R.G.; Daviglus, M.L. Associations between recent exposure to ambient fine particulate matter and blood pressure in Multi-Ethnic Study of Athersclerosis (MESA). Environ. Health Perspect. 2008, 116, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilian, J.; Kitazawa, M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease—Evident from epidemiological and animal studies. Biomed. J. 2018, 41, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, R.B.; Kunzil, N.; Hidy, G.M.; Gotschi, T.; Jerrett, M. The health relevance of ambient particulate matter characteristics: Coherence of toxicological and epidemiological inferences. Inhal. Toxicol. 2006, 18, 95–125. [Google Scholar] [CrossRef] [PubMed]
- Carlson, T.N. Atmospheric turbidity in Saharan dust outbreaks as determined by analysis of satellite brightness data. Monthly Weather Review 1979, 107, 322–335. [Google Scholar] [CrossRef]
- Levin, Z.; Joseph, J.H.; Mekler, Y. Properties of Sharav (Khamsin) dust—Comparison of optimal and direct sampling. J. Atmos. Sci. 1980, 37, 882–891. [Google Scholar] [CrossRef]
- Prospero, J.M.; Nees, R.T.; Uematsu, M. Deposition rate of particulate and dissolved aluminum derived from Saharan Dust in precipitation at Miami, Florida. J. Geophys. Res. 1987, 92, 14723–14731. [Google Scholar]
- Prospero, J.M.; Savoie, D.L.; Carlson, T.N.; Nees, R.T. Monitoring Saharan aerosol transport by means of atmospheric turbidity. In Saharan Dust: Mobilization, Transport, Deposition; Morales, C., Ed.; Chapter 8; SCOPE Report 14; John Wiley & Sons: New York, NY, USA, 1979; pp. 171–187. [Google Scholar]
- Prospero, J.M.; Nees, R.T. Impact of the North African drought and El Niño on mineral dust in the Barbaros trade winds. Nature 1986, 320, 735–738. [Google Scholar] [CrossRef]
- Prospero, J.M.; Nees, R.T. Dust concentration in the atmosphere of the Equatorial North Atlantic: Possible relationship to the Sahelian Drought. Science 1977, 196, 1196–1198. [Google Scholar] [CrossRef] [Green Version]
- D’Almeida, G.A. A model for Saharan dust transport. J. Clim. Appl. Meteor. 1986, 25, 903–916. [Google Scholar] [CrossRef]
- Reiff, J.; Forbes, G.S.; Spieksma, F.T.M.; Reynders, J.J. African dust reaching northwestern Europe: A case study to verify trajectory calculations. J. Clim. Appl. Meteorol. 1986, 25, 1543–1567. [Google Scholar]
- Loye-Pilot, M.D.; Martin, J.M.; Morelli, J. Influence of Saharan dust on rain acidity and atmospheric input to the Mediterranean. Nature 1986, 321, 427–428. [Google Scholar]
- Landing, W.M.; Perry, J.J., Jr.; Guentzel, J.L.; Gill, G.A.; Pollman, C.D. Relationships between the atmospheric deposition of trace elements, major ions, and mercury in Florida: The FMS project (1992–1993). Water Air Soil Pollut. 1995, 80, 343–352. [Google Scholar] [CrossRef]
- U. S. Office of Mining Efficiency and Renewable Energy. ITP Mining: Energy and Environmental Profile of the U. S. Mining Industry; Chapter 9; Washington, DC, USA, 2002. Available online: https://www.energy.gov/eere/amo/downloads/itp-mining-energy-and-environmental-profile-us-mining-industry-december-2002 (accessed on 20 December 2021).
- Brand, L.E.; Compton, A. Long-term increase in Karenia brevis abundance along.the Southwest Florida Coast. Harmful Algae 2007, 6, 232–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, B.H.; Davis, T.W.; Gobler, C.J.; Kramer, B.J.; Loftin, K.A. Cyanobacteria of the 2016 Okeechobee Waterway Harmful Algal Bloom; Open-File Report 2017-1054; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef] [Green Version]
- Griffin, D.W.; Kellogg, C.A. Dust storms and their impact on ocean and human health. EcoHealth 2004, 1, 284–295. [Google Scholar] [CrossRef]
- Lenes, J.M.; Darrow, B.A.; Walsh, J.J.; Prospero, J.M.; He, R.; Weisberg, R.H.; Vargo, G.A.; Heil, C.A. Saharan dust and phosphatic fidelity: A three-dimensional biogeochemical model of Trichodesmium as a nutrient source for red tides on the West Florida Shelf. Cont. Shelf Res. 2008, 28, 1091–1115. [Google Scholar] [CrossRef]
- Conley, D.J.; Carstensen, J.; Vaquer-Sunyer, R.; Duarte, C.M. Ecosystem thresholds with hypoxia. In Eutrophication in Coastal Ecosystems: Towards Better Understanding and Management Strategies 12 Selected Papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006; Andersen, J.H., Conley, D.J., Eds.; Developments in Hydrology: Nyborg, Denmark; Springer: Dordrecht, The Netherlands, 2009; pp. 21–29. [Google Scholar] [CrossRef]
- Kramer, B.J.; Davis, T.W.; Meyer, K.A.; Rosen, B.H.; Goleski, J.A.; Dick, G.J.; Oh, G.; Gobler, C.J. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacteria populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 2018, 13, e0196278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, B.H.; Loftin, K.A.; Graham, J.L.; Stahlhut, K.N.; Riley, J.M.; Johnston, B.D.; Senegal, S. Understanding the Effect of Salinity Tolerance on Cyanobacteria Associated with a Harmful Algal Bloom in Lake Okeechobee, Florida; Scientific Investigations Report 2018-5092; U. S. Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Missimer, T.M.; Thomas, S.; Rosen, B. Legacy phosphorus in Lake Okeechobee sediment: A review with new perspectives. Water 2020, 13, 39. [Google Scholar] [CrossRef]
- Hoagland, P.; Jin, D.; Beet, A.; Kirkpatrick, B.; Reich, A.; Ullman, S.; Fleming, L.E.; Kirkpatrick, G. The human health effects of Florida red tides: An expamded analysis. Environ. Internat. 2014, 68, 144–153. [Google Scholar]
- Ibelings, B.W.; Backer, L.; Kardinaal, W.E.A.; Chorus, I. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 2014, 40, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, R.P.; Li, Y.; Kirkpatrick, B.; Litaker, R.W.; Hubbard, K.A.; Currier, R.D.; Harrison, K.K.; Tomlinson, M.C.; Anil, A.C. Quantifying Karenia brevis bloom severity and respiratory irritation impact along the shoreline of southwest Florida. PloS ONE 2022, 17, e0260755. [Google Scholar] [CrossRef]
- Rodriguez, R.I.; Ortiz-Martinez, M.G.; Jiménez-Vélez, B.D. Organic extracts from African dust storms stimulate oxidative stress and induce inflammatory responses in human lung cells through Nrf2 but not NF-kB. Env. Toxicol Pharm 2015, 39, 845–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A systematic review of global dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef]
- Greenplate, R.; Thomas, S.; Danley-Thomson, A.; Missimer, T.M. Phytoremediation potential of the coastal plain willow Salix Carolina for mercury and other heavy metals. Environ. Sci. Pollut. Res. 2022. in review. [Google Scholar]
Constituent | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
B | 0.0 | 330.7 | 27.5 | 82.0 |
C | 0.0 | 897.2 | 45.4 | 181.3 |
Si | 0.0 | 853.3 | 263.8 | 282.4 |
P | 0.0 | 80.5 | 4.4 | 15.9 |
S | 0.0 | 5752.1 | 664.2 | 1626.8 |
K | 0.0 | 3251.1 | 422.0 | 983.6 |
Ca | 0.0 | 3813.5 | 371.0 | 1024.4 |
Al | 0.0 | 3599.7 | 324.6 | 765.2 |
Cu | 0.0 | 18.2 | 1.6 | 3.3 |
Cr | 0.0 | 31.8 | 0.8 | 4.1 |
Mg | 3.1 | 22026 | 563 | 2783.1 |
Fe | 0.0 | 81.0 | 3.9 | 14.0 |
Constituent | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
Al | 0.0 | 23 | 1.4 | 3.8 |
Fe | 0.0 | 0.9 | 0.1 | 0.2 |
Pb | 0.0 | 0.0 | 0.0 | 0.0 |
K | 0.0 | 9467.9 | 364.4 | 1298.3 |
N2O | 0.0 | 746.9 | 118 | 225.4 |
NO2 | 0.0 | 207.3 | 3.6 | 26.7 |
NO3 | 0.0 | 746.8 | 114.4 | 218.5 |
Constituent | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|
K | 10.2 | 336 | 78.3 | 80.2 |
Al | 203.8 | 11254.8 | 2405.7 | 2265.5 |
Mg | 6.1 | 852.9 | 98.4 | 151.2 |
NO2 | 0.4 | 32.8 | 5.2 | 0.1 |
NO3 | 1.3 | 718.5 | 209.9 | 210.2 |
NH3 | 1.4 | 658 | 101.4 | 111.5 |
P | 0.1 | 15.8 | 3.1 | 3.1 |
Si | 0.0 | 517.3 | 116.8 | 158.5 |
Fe | 0.0 | 125.7 | 3.3 | 19.1 |
Ca | 0.0 | 974.1 | 24.0 | 129.2 |
Ion Ratios | African | Asian | Other (Anthropogenic) | SW Florida (Digested Dust) | SW Florida (Digested Rainfall) |
---|---|---|---|---|---|
K:Fe | 0.39 | 1.03 | 7.15 | 129.68 | 23.56 |
Al:Ca | 4.55 | 1.50 | 1.10 | 0.87 | 100.12 |
Si:Al | 1.92 | 2.03 | 2.67 | 0.81 | 0.05 |
Fe:Ca | 2.34 | 0.88 | 0.54 | 0.01 | 0.14 |
Analyte | African | Asian | Other | Undigested Dust (SW FL) | Digested Dust (SW FL) |
---|---|---|---|---|---|
NO3 | 0.45 | 0.48 | 0.48 | 0.009 | 0.532 |
SO4 | 2.01 | 1.99 | 2.64 | - | - |
K | 0.22 | 0.1 | 0.23 | 0.581 | 0.12 |
TOC | 0.68 | 1.05 | 0.66 | - | - |
EC | 0.04 | 0.27 | 0.44 | - | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barcan, R.; Kassis, Z.R.; Teaf, C.M.; Danley-Thomson, A.; Covert, D.J.; Missimer, T.M. Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications. Atmosphere 2023, 14, 102. https://doi.org/10.3390/atmos14010102
Barcan R, Kassis ZR, Teaf CM, Danley-Thomson A, Covert DJ, Missimer TM. Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications. Atmosphere. 2023; 14(1):102. https://doi.org/10.3390/atmos14010102
Chicago/Turabian StyleBarcan, Razvan, Zoie R. Kassis, Christopher M. Teaf, Ashley Danley-Thomson, Douglas J. Covert, and Thomas M. Missimer. 2023. "Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications" Atmosphere 14, no. 1: 102. https://doi.org/10.3390/atmos14010102
APA StyleBarcan, R., Kassis, Z. R., Teaf, C. M., Danley-Thomson, A., Covert, D. J., & Missimer, T. M. (2023). Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications. Atmosphere, 14(1), 102. https://doi.org/10.3390/atmos14010102