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Abstract: Receptor-oriented models, including positive matrix factorization (PMF) analyses, are
now commonly used to elaborate and/or evaluate action plans to improve air quality. In this
context, the SOURCES project has been set-up to gather and investigate in a harmonized way
15 datasets of chemical compounds from PM10 collected for PMF studies during a five-year period
(2012–2016) in France. The present paper aims at giving an overview of the results obtained within
this project, notably illustrating the behavior of key primary sources as well as focusing on their
statistical robustness and representativeness. Overall, wood burning for residential heating as well
as road transport were confirmed to be the two main primary sources strongly influencing PM10

loadings across the country. While wood burning profiles, as well as those dominated by secondary
inorganic aerosols, present a rather good homogeneity among the sites investigated, some significant
variabilities were observed for primary traffic factors, illustrating the need to better characterize the
diversity of the various vehicle exhaust and non-exhaust emissions. Finally, natural sources, such
as sea salts (widely observed in internal mixing with anthropogenic compounds), primary biogenic
aerosols and/or terrigenous particles, were also found as non-negligible PM10 components at every
investigated site.

Keywords: PM; source apportionment; aerosols; similarity assessment; uncertainties

1. Introduction

Particulate matter (PM) in ambient air is known to have significant impacts on the Earth climate [1].
It is also recognized to induce adverse human health effects. A growing number of studies are notably
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confirming its influence on the occurrence of respiratory and cerebrovascular diseases, as well as heart
attacks and other cardiovascular issues [2,3]. The implementation of action plans to effectively improve
air quality relies on sound knowledge of their origins. However, the scientific community and public
authorities are still facing issues to clearly identify efficient mitigation policies. This is notably due
to the multiplicity of PM emission sources and the complexity of their (trans)-formation, from both
primary and secondary processes in the atmosphere.

Several methodologies have been developed and used in the last decades for PM source
apportionment purposes. Among them, receptor-oriented models (RMs) have been widely used
to discriminate the main PM fractions based on the investigation of co-variations of chemical species
measured at a given location, which should include specific tracers [4–7]. In particular, positive matrix
factorization (PMF) relies on two data matrices that contain the concentrations of measured particulate
species and their corresponding uncertainties, respectively. One of the main features of the PMF results
is their quantitative nature, allowing to evaluate the contributions as well as the chemical composition
of the main PM fractions [8,9]. These PM fractions may correspond to primary aerosols emitted by
a given type of emission sources, to a group of chemical species formed through similar and/or
concomitant secondary processes in the atmosphere, or to a mixing of both primary and secondary
aerosols. Their chemical profiles are then used for their identification and labeling, based on the current
knowledge of emission chemical footprints and of atmospheric secondary processes. The availability of
well-known real-world PM chemical profiles is essential to validate the attribution of factors obtained
from the PMF analyses. The scarcity of local source profiles often represents a challenge for RMs in
terms of both the identification of sources and the comparability between studies.

In this context, libraries gathering various PM chemical source profiles obtained from previous
studies are of great interest for the scientific community. The SPECIATE database has been made
available by the US EPA since 1988 [10], now containing over 3000 local source profiles. More recently,
a similar effort has been conducted in Europe, leading to the SPECIEUROPE database as described
by Pernigotti et al. [11]. This database could be implemented thanks to various recent PMF studies, such
as those described in Karagulian et al. [5], Belis et al. [6], Viana et al. [7], Mooibroek et al. [12], Perrone
et al. [13] and reference therein. However, the robustness of these source profiles needs to be assessed
more deeply and outputs from additional source apportionment studies are still needed to increase the
European coverage and to document various aerosol fractions and/or geographical areas. In particular,
a very limited number of comprehensive PM2.5 and/or PM10 source apportionment studies were
conducted in France before 2012 [14–17]. To fill this gap, the research community along with regional
monitoring networks put common efforts into extensive filter samplings, off-line chemical analyses
and statistical data treatments for numerous French locations [18]. Moreover, the SOURCES project has
been set-up to deliver a comprehensive overview of these filter-based source apportionment studies
achieved in France for the 2012–2016 period [19].

Here, we present some of the main results obtained within this SOURCES project, based on
the outputs of PMF analyses conducted for 15 datasets corresponding to various sampling sites
distributed all over France. An innovative aspect of this study is that PMF analyses have been
achieved in a harmonized way, allowing for a proper comparison of the results. Furthermore, all
the outcomes of the project, including time-series and source profiles along with their corresponding
uncertainties, have been made available through a website interface, proposed as Supplementary
Materials for this article, at http://pmsources.u-ga.fr. This methodology offers a unique opportunity
to compare main PM factor’s contributions and chemical footprints at a national scale. The results
were first investigated for their representativity and homogeneity at a national scale, also including
a presentation of the variability and the seasonality of their contributions to the PM10 mass. The large
set of chemical profiles of the PM sources obtained in this work also allows for a discussion on their
similarities and uncertainties using different metrics, including the bootstrap (BS) and displacement
(DISP) analysis [20]. Assessing the stability of chemical profiles across a comparable set of studies is an
important aspect in the perspective of using these profiles as benchmarks for future works.

http://pmsources.u-ga.fr
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2. Materials and Methods

2.1. PM Sampling Sites

Figure 1 shows the geographical location of the 15 sampling sites for which comparable datasets
(in terms of number of samples, investigated period and PM10 chemical speciation data) were made
available for the present study through the SOURCES project. Table 1 summarizes the characteristics
of these sites. Most of them correspond to urban background stations and are distributed throughout
France, including two Alpine cities (classified herewith as “Urban valley”). Other site typologies
could also be investigated, with two urban traffic sites, one industrial, as well as one EMEP (European
Monitoring and Evaluation Programme, https://www.emep.int/) rural background station.

At each site, PM10 concentrations were monitored using automated analyzers, in accordance with
recommendations of EN 16450:2017 [21], and daily (24 h) filter samples were collected every third day
by employees of the corresponding regional air quality monitoring network. Samplings were achieved
on pre-heated quartz fiber filters using high-volume sampler (DA80, Digitel), following EN 12341:2014
procedures [22]. Off-line chemical analyses performed on these filters are fully described in the
Figure SI-1 of the Supplementary Materials. Briefly, the elemental and organic carbon fractions (EC
and OC) were measured via thermo-optical analysis (Sunset Lab. Analyzer [23]) using the EUSAAR-2
protocol [24,25]. Major water-soluble inorganic contents (Cl– , NO3

– , SO4
2 – , NH4

+, Na+, K+, Mg2+,
and Ca2+) and methanelsulfonic acid (MSA) were determined using ion chromatography [25,26]).
Many metals or trace elements (e.g., Al, Ca, Fe, K, As, Ba, Cd, Co, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Sr, V,
and Zn) were measured by ICP-AES or ICP-MS [27–29]. Finally, various anhydrosugars (including
levoglucosan, mannosan, arabitol, sorbitol, and mannitol) were analyzed using High Performance
Liquid Chromatography followed by pulsed amperometric detection (HPLC-PAD) [17].

Figure 1. Map showing he geographical location of the 15 selected sites. Color codes denote the
typology of the site: green, remote; red, urban; orange, urban valley; magenta, industrial; blue, traffic.

https://www.emep.int/)
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Table 1. Characteristics of the 15 PM sampling sites investigated in the present study.

Sampling Site Code Coordinates Elevation Period N Samples Typology

Revin REV 49◦55′0.00′′N
4◦38′29.00′′E

395 m 2 Jan 2013→1 Jun 2014 168 remote

Bordeaux-Talence TAL 44◦48′2.01′′N
0◦35′17.01′′W

20 m 2 Feb 2012→7 Apr 2013 154 urban
background

Lyon LY 45◦45′27.82′′N
4◦51′15.15′′E

160 m 3 Jan 2012→31 Dec 2012 115 urban
background

Poitiers POI 46◦34′48.80′′N
0◦20′25.34′′E

106 m 16 Nov 2014→29 Dec 2015 110 urban
background

Nice NIC 43◦42′7.48′′N
7◦17′10.53′′E

1 m 4 Jun 2014→29 Jun 2016 184 urban
background

Marseille MRS 43◦18′18.84′′N
5◦23′40.89′′E

64 m 11 Jan 2015→27 Jun 2016 102 urban
background

Aix-en-Provence PROV 43◦31′49.04′′N
5◦26′29.00′′E

180 m 18 Jul 2013→13 Jul 2014 56 urban
background

Nogent sur Oise NGT 49◦16′35.00′′N
2◦28′56.00′′E

28 m 2 Jan 2013→2 Jun 2014 155 urban
background

Rouen ROU 49◦25′41.40′′N
1◦3′29.10′′E

6 m 2 Jan 2013→1 Jun 2014 162 urban
background

Lens LEN 50◦26′12.60′′N
2◦49′36.70′′E

47 m 2 Jan 2013→1 Jun 2014 167 urban
background

Grenoble GRE 45◦9′42.84′′N
5◦44′8.15′′E

214 m 2 Jan 2013→29 Dec 2014 240 urban
background
& alpine valley

Chamonix CHAM 45◦55′21.00′′N
6◦52′12.00′′E

1038 m 2 Nov 2013→31 Oct 2014 115 urban
background
& alpine valley

Port de Bouc PdB 43◦24′7.99′′N
4◦58′55.99′′E

1 m 1 Jun 2014→27 Jun 2016 185 urban
background
& industrial

Roubaix RBX 50◦42′23.60′′N
3◦10′50.50′′E

10 m 20 Feb 2013→26 May 2014 157 urban traffic

Strasbourg STG 48◦34′24.25′′N
7◦45′7.60′′E

139 m 2 Apr 2013→8 Apr 2014 78 urban traffic

2.2. PMF Methodology

2.2.1. PMF Model

The U.S. Environmental Protection Agency (US-EPA) PMF5.0 software [30] was used in the
present study to achieve the PM source apportionment. Similar to other RM approaches, PMF aims at
solving the mass conservation between the measured species concentrations and source emissions as
a linear combination of factors p, species profile f of each source, and the amount of mass g contributed
to each individual sample, following Equation (1):

Xij =

(
∑
p

gip × fpj

)
+ eij (1)

where Xij represents the measured data for species j in sample i, and eij is the residual of each sample
and species not fitted by the model. Detailed information on the PMF methodology can be found
elsewhere [8,9]. Briefly, a multivariate factor analysis was applied to decompose the matrix of the
chemical dataset into two matrices: factor contributions (G) and factor profiles (F), each factor to be
ascribed to a specific aerosol fraction (i.e., factor), that may be attributed to a source. It is based on
a weighted least square fit, where the weights are derived from the analytical uncertainty, and provides
the optimal solution by minimizing the function Q, given by Equation (2):

Q = ∑
i

∑
j

(
eij

σij

)2

(2)
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where σij represents the measurement uncertainty of each data point.

2.2.2. Input Variable and Uncertainties

Selection of the input variables was done based on the percentage of values above detection
limit (DL) (using 60 % as a minimum threshold), and the value of the signal-to-noise ratio (S/N)
for each species [31]. Table 2 presents the PMF input variables selected for this work. This dataset
notably includes EC, major ions, molecular organic markers (MSA, levoglucosan, and mannosan),
and a selection of metals or trace elements. Assuming that they mainly originate from the same
sources—i.e., primary biogenic emissions—sorbitol, arabitol and mannitol concentrations were
summed and labeled as polyols [32]. Furthermore, OC* was determined by subtracting the carbon
concentrations of the specific organic markers to total OC concentrations, so that they are not
accounted twice:

OC∗ = OC− ([MSA]× 0.12 + [polyols]× 0.40 + [levoglucosan]× 0.44 + [manosan]× 0.44), (3)

where the coefficient are the carbon mass par unit of mass.
The different variables were categorized in the model based on their mean signal-to-noise ratio

(S/N) as follows: “strong” if S/N > 2, “weak” if 0.2 ≤ S/N ≤ 2, and “bad” if S/N < 0.2. For a given
site, variables classified as “weak” were downweighted following PMF5.0 algorithms, while variables
classified as “bad” were excluded from the PMF analysis. The PM10 variable was classified as a total
variable (with corresponding uncertainties increased by a factor of 3) to evaluate the contribution
of the identified factors to PM10 data. Extensive preliminary work was conducted to harmonize the
estimation of uncertainties of the different input variables σij, based on the uncertainty calculation
equation proposed by Gianini et al. [33], as described by Equation (4):

σij =
√

DL2
j + (CVj × xij)2 + (a× xij)2 (4)

with DL the detection limit (twice the standard deviation of field blanks, with field blanks samples
representing about 5 % to 10 % of the actual number samples); xij the concentration of species j on day
i; CV the coefficient of variation of species j; and a the additional coefficient of variation.

Many trial-and-error tests were conducted with the aim of defining domains of variation of the
coefficient a that are dependent on the type of analysis performed, i.e., to assign a a value to each
category or family of chemical species analyzed. The PMF solutions obtained for different values
of a were examined to optimize the stability of the results as well as the geochemical reality of the
solved factors. The values eventually retained vary between 3% and 15% depending on the different
categories of chemical species, as presented in Table 2.

It should also be noted that an uncertainty of 5/6× DL was applied for values lower than the
DL and uncertainties equal to four times the specie concentration geometric mean were attributed to
missing or replaced values, following Polissar et al. [34].

Table 2. Input variables and uncertainties used in the PMF analyses.

Carbonaceous
Species

Water-Soluble Ions and
MSA

Organic
Markers

Metals and Trace
Elements

Species OC*, EC MSA, Cl– , NO3
– , SO4

2 – ,
NH4

+, K+, Mg2+, Ca2+
Polyols,
levoglucosan,
mannosan

Al, As, Ba, Cd, Co, Cr, Cs,
Cu, Fe, La, Mn, Mo, Ni,
Pb, Rb, Sb, Se, Sn, Sr, Ti,
V, Zn

a coefficient 0.03 0.05 0.01 0.15
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2.2.3. Set of Constraints

One of the limitations of PMF is related to a possible collinearity of factors due to co-emission
or co-accumulation phenomena, leading to rotational ambiguities. To solve this problem, specific
chemical constraints based on expert geochemical knowledge can be applied to the chemical profiles
(or contributions) of PMF factors (both “soft” and “hard” pulling, as defined in Section 3.4), after the
selection of the initial base runs. As part of this study, a minimal and homogeneous set of chemical
constraints was defined, as summarized in Table 3. They were applied to the PMF analysis of each site.

Table 3. Summary of the specific constraints applied on source-specific tracers in some of the identified
PMF factor profiles. SOA, secondary organic aerosol; HFO, heavy fuel oil.

Factor Profile Species Constraint Value

Biomass burning Levoglucosan Pull up Maximally %dQ 0.50
Biomass burning Mannosan Pull up Maximally %dQ 0.50
Primary traffic Levoglucosan Set to 0 0
Primary traffic Mannosan Set to 0 0
Primary biogenic Levoglucosan Set to 0 0
Primary biogenic Mannosan Set to 0 0
Primary biogenic Polyols Pull up Maximally %dQ 0.50
Primary biogenic EC Pull down Maximally %dQ 0.50
Marine SOA Levoglucosan Set to 0 0
Marine SOA Mannosan Set to 0 0
Marine SOA Polyols Pull down Maximally %dQ 0.50
Marine SOA MSA Pull up Maximally %dQ 0.50
Marine SOA EC Pull down Maximally %dQ 0.50
HFO combustion Levoglucosan Set to 0 0
HFO combustion Mannosan Set to 0 0
HFO combustion Polyols Set to 0 0
HFO combustion MSA Set to 0 0
Sea-salt Ratio Mg2+/Na+ Sea-salt ratio 0.119 %dQ 0.50

2.3. Criteria for Valid Solutions

Solutions with a total number of factors from 6 to 12 were examined to capture the optimal
number of factors for each site. Various statistical performance parameters to evaluate the robustness
and relevance of the selected final solution were studied according to the recommendations of the
European guide on air pollution source apportionment with receptor models [35], as well as the
geochemical evaluation of the solution. Briefly, these parameters are summarized as follows:

• Evolution of the ratio Qtrue/Qrobust (<1.5). The solutions retained on all 15 sites have
a Qtrue/Qrobust ratio of 1, indicating a zero impact of outliers on the results.

• The weighted residuals for most of the species have a normal centered distribution and between
±4, indicating an overall good modeling of most variables.

• Evaluation of the statistical representativity of the solution and sensitivity to noise and single
point in the data from the bootstrap test (BS) for 100 successive iterations of the model and for
a minimum correlation r2 of 0.6.

• Evaluation of the rotational ambiguity and sensitivity of the solution to small changes from
(default dQ of the software) the Displacement Test (DISP) proposed by the software.

• Evaluation of the geochemical meaning and the physical reality of extracted factor profiles based
on the knowledge of the chemical footprints of the sources, their specific tracers, the temporal
variability (daily, weekly and seasonally), and the characteristics of the site studied.

• Statistical evaluation and precision for constrained solutions regarding the BS and %dQrobust as
well as DISP.

Further discussions on the BS and DISP approaches are proposed in Section 3.4.
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2.4. Test of Similarity between Chemical Profiles

Since factors in the different PMF were labeled with the same name due to their chemical
composition and time variation, a tool was needed to objectively assess the homogeneity of their
chemical profiles. The similarities between the factors or sources were tested with both the Pearson
distance (PD) and the Similarity Identity Distance (SID), following Belis et al. [36] and using Python
3.5. The PD is equal to 1− r2 where r2 is the Pearson coefficient and SID is defined by Equation (5):

SID =

√
2

m

m

∑
j=1

|xj − yj|
xj + yj

, (5)

with x and y the relative mass to the PM of two different factors or sources and m the number of
common specie in x and y.

Shortly, these two metrics aim to compare two profiles based on their common chemical relative
mass composition. The PD is highly sensitive to variation in the major mass fractions of the PM, while
the SID is equally sensitive to all components. PD < 0.4 and SID < 1 are considered as acceptable
criteria for profile similarity, according to Pernigotti and Belis [37].

3. Results and Discussions

The outputs of the SOURCES project consist of a large database, which cannot be exhaustively
discussed in a single paper. Here, we present an overview of obtained PMF’s results, give some
examples of factor’s behaviors, and focus on the statistical evaluation of the solutions as well as on the
comparability of various factors. However, all the results—including time-series and factors profiles
along with their corresponding uncertainties—have been made interactively available online at http:
//pmsources.u-ga.fr. This application is proposed as Supplementary Materials for the present paper.

It should be noted that the harmonized methodology used for the purpose of this study may
lead to slight discrepancies when compared to results obtained in the case of PMF analysis performed
specifically at a given site, as discussed for instance in Favez et al. [38].

3.1. Identification of Factors

The number of selected factors varied between 8 and 11 depending on the site. Among these
factors, nine were identified at most of the locations: biomass burning, exhaust and non-exhaust
road transport emissions (primary traffic), secondary aerosols dominated by ammonium nitrate and
ammonium sulfate (nitrate-rich and sulfate-rich, respectively), primary biogenic particles, secondary
organic aerosols (SOA) from marine biogenic emissions (marine SOA), fresh and/or aged sea-salt,
and mineral dusts. It is noteworthy that this harmonized methodology enables identifying such a large
and common set of factor at the national scale. Two other minor factors were exclusively identified at
a few sites and seem to be specific of local sources: industrial emissions (at five sites) and emission
related to combustion of heavy fuel oil (HFO) (at three sites).

All of these chemical profiles were identified and attributed to different sources (or source
categories) mainly based on the presence of specific chemical tracers or combination of markers,
as presented in Table 4. In some cases, it was impossible to separate two factors among the ones listed
in Table 4, and they were named as a combination of both of them (Figure 2). The main chemical
characteristics of the factors identified at all 15 sites, as well as the particularities observed on some
sites, may be found in the web app, together with their concentrations time series.

One of the specificities of theses PMF is the use of organics species (polyols and MSA notably).
Discussion on the identification of the factors may be found in previous paper [4,17,39–42], where the
same criteria are applied. However, we would like to mention the presence of Se in the sulfate rich
factor. Indeed, Se is not often used in PMF studies together with organics. In this study, 23 ± 15% of
the Se was associated to the sulfate rich factor, together with 13 ± 6% of the OC*. Such association of
Se, SO4

2 – and OC is already documented for soil [43] as well for the emission of Se and S from marine

http://pmsources.u-ga.fr
http://pmsources.u-ga.fr
http://pmsources.u-ga.fr
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algae [44]. It has also been reported that abiotic condition could lead to the formation of volatile Se
when associated with organic acid [45–47]. Then, the sulfate rich factor may not be only an inorganic
aerosol but may also be induced by the formation of secondary organics.

Table 4. Summary of the characteristic marker species used to identify PMF factors.

Identified Factors Specific Markers and Indicators

Biomass burning Levoglucosan, mannosan, K+, OC, EC
Primary traffic EC, OC, Ba, Cr, Co, Cu, Fe, Mo, Pb, Sb, Sn, Zn
Nitrate rich NO3

– , NH4
+

Sulfate rich SO4
2 – , NH4

+, Se, OC
Primary biogenic Polyols
Marine SOA MSA
Dust Ca2+, Al, Ba, Co, Cu, Fe, Mn, Pb, Sr, Ti, Zn
Sea-salt Na+, Mg2+, Ca2+, Cl–

Aged sea-salt Na+, Mg2+, NO3
– , SO4

2 –

Industries As, Cd, Cr, Cs, Co, Ni, Pb, Rb, Se, V, Zn
Heavy fuel oil (HFO) V, Ni, SO4

2 – , EC

3.2. Major Source Contributors To PM

Figure 2 presents the yearly mass contributions of the different factors identified at all sites, in
both absolute (top) and relative (bottom) contributions. The all-sites average ranked contributions of
the main PM factors are presented in Figure 3.

The average concentration of PM10 for each site ranged from 13.0 µg m−3 for the rural site of REV
to 23.3 µg m−3 for the traffic site of RBX, with an average concentration of 17.6± 2.6 µg m−3. As already
pointed out in previous recent studies conducted at French sites [4,16,17,39,48,49], one of the main PM
factor is biomass burning, with an average contribution of 2.9± 1.5 µg m−3 (17 ± 9% of PM10 mass),
coming mainly from residential heating. This is particularly true for Alpine valley sites, as exemplified
with the CHAM site in this study, where it reaches 45% of the total PM10 mass (Figure 2). We also clearly
observed the large contributions of PM10 formed through secondary processes, namely the nitrate-rich
and the sulfate-rich factors, representing on average 3.0± 1.6 µg m−3 (17 ± 8%) and 2.6± 0.7 µg m−3

(15 ± 4%), respectively. Since such factors impact all of the metropolitan France territory, it suggests
the importance of large-scale processes at the European scale, especially during PM pollution events in
the late winter-early spring period [4,50,51]). The primary traffic factor represents another important
fraction, with a yearly contribution of 2.6± 1.2 µg m−3 (15 ± 7%). It should be noted that this factor
was assessed to comprise oxidized compounds formed rapidly after emission, but to miss some of the
secondary species (e.g., ammonium nitrate, SOA) partly originating from precursors and/or oxidative
species within exhaust smoke, such as high-volatility organic and nitrogen gaseous compounds. As
another primary anthropogenic source, a pure HFO factor was observed for only three locations,
with the highest contribution to PM10 (about 5%) at the industrial site of PdB. Finally, some industrial
related PM was found at five sites, but the exact types of industrial activity were not identified.

Considering natural particles, the dust factor was identified as a large contributor at almost all sites
(n = 13), representing on average 2.3± 1.0 µg m−3 (13± 4%). However, this latter factor could possibly
be considered as a mixing between terrigenous aerosols and mineral particles linked to human activities
(e.g., building works, resuspension due to road transport, etc.), since it includes variable amounts
of trace elements depending on the site. The primary biogenic and marine SOA factors—traced by
polyols and MSA, respectively—represent 1.2± 0.5 µg m−3 ( 7 ± 3%) and 0.6± 0.2 µg m−3 (4 ± 1%)
on a yearly average and display the lowest dispersion among all the sites studied, suggesting common
large-scale processes for these two factors. An extensive discussion on the primary biogenic factor
for these sites can be found in Samaké et al. [32]. The fresh sea-salt fraction display an average
concentration of 1.1± 0.4 µg m−3 (6 ± 2%) while the aged sea-salt factor was observed at almost all
sites, with an average concentration of 1.5± 0.9 µg m−3 (8± 4 %) (Figure 3). This last result strengthens
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the importance of the secondary processes that occurs during the aging of natural aerosols, possibly
leading to internal mixing with anthropogenic emissions. Similarly, a marine/HFO factor—notably
containing sulfate, vanadium, sodium and chloride—was observed at three coastal sites, pointing to
substantial influence of shipping emissions at these sites.
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Figure 2. Yearly average contributions from the constrained runs in µg m−3 (top) and % (bottom) of
the identified factors to PM10 mass at each of the sites studied, grouped by typology (remote, urban,
urban valley and traffic).
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Figure 3. Average daily mass concentrations (µg m−3) of the main PMF factors (observed at least at
10 sites) obtained in the constrained runs in this study. Error bars indicate the standard deviation
between sites and n denotes the number of sites where the factors were identified.

3.3. Seasonality of the Contributions

Since it is not possible to present all the results in this paper, we encourage the reader to refer
to the online view app to browse the different time series and chemical profiles. Among the factors
that present a strong seasonality (nitrate rich, biomass burning, primary biogenic and marine SOA)
we choose to highlight the seasonal contributions of the biomass burning (main contribution during
winter) and the primary biogenic (main contribution during summer) (Figures 4 and 5, respectively).
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With about 35% of the PM10 mass during winter and less than 2% during summer (see Figure 4),
the biomass burning factor shows the strongest seasonality among all factors identified. At the two
sites investigated in the Alpine valley, and due to frequent inversion layers in winter, the contribution
of the biomass burning can reach up to 70% of the total PM10 mass in the cold season, as already
mentioned in previous studies in the Alps [4,52–54].

Conversely, the primary biogenic factor can contribute to a significant amount of PM10 during
the warm months, with an average contribution to PM10 of 13 ± 8% (min 1.5%, max 33% among
the sites studied) during summertime, as shown in Figure 5. A detailed study about the seasonal
and spatial variations of the primary biogenic factor resulting from these PMF analyses can be found
in Samaké et al. [32].
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Figure 4. Biomass burning seasonal contributions (in %) to the total PM mass from the constrained runs.
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Figure 5. Primary biogenic seasonal contributions (in %) to the total PM mass from the constrained runs.

3.4. Uncertainties of PMF Factors

In factor analysis, three sources of uncertainties can arise from: (1) random errors in data values
linked to measurement uncertainties: (2) rotational ambiguity due to possible multiple acceptable
solutions; and (3) modeling errors, such as mis-specification of the model compare to the real processes
in atmosphere [35].

To quantify the uncertainties of the results at one site (internal uncertainties), and the variability
of the factor profiles, we performed both bootstrap (BS) and displacement (DISP) analyses. Shortly, BS
randomly resample the X matrix and perform a new PMF run, then try to map each new BS-factor
to the reference run, according to the correlation between the contributions of factors. A threshold
correlation coefficient of 0.6 was used for all sites in this study. BS gives an estimation of uncertainties
linked to sampling artifact and measurement uncertainties. DISP analysis estimates the rotational
ambiguity by lowering and majoring each species in every factor up to a given variation of the Q value
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dQmax. The reader may refer to Paatero et al. [20] for more details about DISP computation in EPA
PMF5.0. Here, BS and DISP analyses were applied in both base runs and constrained runs, i.e., before
and after applying the constraints listed in Table 3.

3.4.1. Statistical Stability of the Solutions

In this study, all base cases solutions (i.e., without constraints) reached high BS values, the lowest
one being 77% (Table 5). Hence, the PMF base solution for all sites already presents very good
BS mapping results that largely agree with the general recommendations of the European guide
on air pollution source apportionment with receptor models [35]. Moreover, we systematically
observed improvement in BS mapping when applying constraints (Table 5). Considering all the
sites, the minimum value of BS for constraint solutions was 83%. It means that, even if the base cases
were good enough to differentiate specific factors, the expert knowledge added through the use of
specific constraints helped the model to “clean” the factors and improve the stability of the solutions.
Finally, we note that virtually no “unmapped” factor was obtained during this BS sensitivity analysis
(always less than 1%). Concerning the DISP analyses, no swap between factors was observed, for both
the base and constrained runs.

Table 5. Summary of bootstrap mapping of the base runs and of the constrained runs expressed as
percent of correct mapping bootstrap for the main factors identified in this study. Ranges are min and
max. The number in parenthesis is the number of sites where the given profile could be identified.

Profiles
Base Cases Constrained Cases

Mean ± Std Range Unmapped Mean ± Std Range Unmapped

Biomass burning (15) 100.0± 0.0 100–100 0.0 100.0± 0.0 100–100 0.0
Nitrate rich (15) 98.7± 2.8 89–100 0.2 99.9± 0.3 99–100 0.0
Primary biogenic (15) 99.3± 1.3 96–100 0.0 99.8± 0.8 97–100 0.0
Marine SOA (14) 95.9± 4.9 83–100 0.7 100.0± 0.0 100–100 0.0
Primary traffic (14) 97.1± 4.8 85–100 0.0 98.7± 2.8 89–100 0.0
Aged sea-salt (13) 95.8± 4.8 83–100 0.1 98.5± 2.7 91–100 0.1
Sulfate rich (13) 93.4± 6.9 83–100 0.5 98.9± 1.8 95–100 0.1
Dust (12) 94.1± 7.3 77–100 0.7 97.8± 4.8 83–100 0.1
Sea-salt (11) 99.5± 1.5 95–100 0.0 99.8± 0.6 98–100 0.0
Industries (5) 92.8± 8.5 80–100 1.0 98.4± 2.2 96–100 0.0

3.4.2. Uncertainties of the Profile Composition

Impacts of the Constraints on the Uncertainties

The application of specific chemical constraints (see Table 5) also improved the resolving power
of the PMF and the quality of the solutions, displaying narrower uncertainties for the contributions of
chemical species in many factors. For instance, the OC* concentration in the primary traffic profile of
ROU varied between 0.79 and 1.65 µg m−3 for the base run but only between 1.23 and 1.84 µg m−3 in
the constrained run, according to the BS analysis (5th–95th) (Table 6). Similar trends were observed for
the uncertainties proposed by the DISP approach and were apparent for most of the chemical species
that are proxies of a given source (Table 6 proposes some examples).

Interestingly, the uncertainties estimated with the DISP method were almost always narrower
than the uncertainties given by the BS method. This may be explained by using constraints that already
narrowed the rotational ambiguity (lowering DISP uncertainties range) or by the sensitivity of our
datasets to specific days (increasing BS uncertainties range).
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Table 6. Summary of the uncertainties (in µg m−3) obtained from the BS (5th and 95th percentiles) and
DISP (min-max) runs for a subset of species in two different factor profiles, the road traffic at ROU site
and the biomass burning at GRE site, for both the base and constrained runs.

ROU—Primary Traffic
Run Base Constrained

Species OC* EC Cu Fe OC* EC Cu Fe
Reference 1.605 0.541 0.0104 0.1986 1.649 0.592 0.0114 0.221
BS (5th–95th) 0.792–1.654 0.334–0.541 0.007–0.011 0.108–0.232 1.232–1.845 0.493–0.641 0.009–0.013 0.159–0.264
DISP (min-max) 1.426–1.912 0.480–0.644 0.009–0.012 0.178–0.229 1.576–1.837 0.572–0.666 0.011–0.012 0.210–0.236

GRE—Biomass Burning
Run Base Constrained

Species OC* EC Levoglucosan K+ OC* EC Levoglucosan K+
Reference 1.266 0.434 0.306 0.057 1.520 0.563 0.388 0.059
BS (5th–95th) 1.061–1.505 0.372–0.614 0.269–0.362 0.039–0.067 1.347–1.640 0.492–0.672 0.412–0.434 0.039–0.070
DISP (min-max) 1.100–1.363 0.378–0.480 0.275–0.319 0.050–0.061 1.456–1.589 0.539–0.604 0.408–0.439 0.058–0.059

Composition Uncertainties in the Chemical Profiles

The dispersion of the concentrations of key species in different profiles was investigated and
is briefly presented here. The external variability (from site to site) is presented in its own section
below (Section 3.6). Here, we only assessed the internal variability, i.e., the variability of a specie at
a given site for a given factor, and the coefficients of variation (CV, standard deviation over the mean)
of species from the BS runs are presented in Figure 6, averaged from all sites. To minimize the impact
of potential outliers in the BS runs, only the BS values above the 5th percentile and below the 95th
percentile were used.

For most of the main proxies of sources (i.e., specific tracers), we observed a narrow range of
possible values given by the BS and DISP, associated with low CV for the specific tracers. This is
the case for instance for the levoglucosan in the biomass burning factor (1.6 ± 0.5%), the MSA in
the marine SOA (1.2 ± 0.8%), the polyols in the primary biogenic (0.1 ± 0.1%), the Ti in the dust
(12.2 ± 9.6%), the Na+ in the sea-salt (10.3 ± 7.2%), NO3

– in the nitrate rich (6.5 ± 2.5%) or even Cu
and Sb in the primary traffic (14.0 ± 11.0% and 16.0 ± 12.4%, respectively, which are the lowest CVs
for these two metals for all factors).

However, for non-tracers species, the dispersion according to the BS and DISP runs could be
larger. For instance, according to BS, the OC* and Ca2+ in the nitrate rich have a CV of 60.4 ± 35.9%
and 59.6 ± 39.1%, respectively, or the metals in the primary biogenic factor.

We also note that some species have an extremely large CV in some factors, notably the NO3
– in

the sulfate rich factor (354.3 ± 301.3%). This likely indicates some possible mixing with other factor
or more generally the fact that the PMF model did not find a well defined solution for this species in
this factor. Conversely, we can see in Figure 6 that the main species with regard to the mass are stable
in the biomass burning factor. Notably, PM10, OC* and EC had CVs of 12.2 ± 6.8%, 12.8 ± 8.9% and
25.6 ± 22.9%, respectively, an indication that the components of this factor were well described by the
PMF run.

Therefore, despite high confidence in the markers and in the obtained mass fractions, caution
should be taken when scrutinizing the repartition of a given species between factors and extrapolating
specific ratio if the species present some large uncertainties.
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Figure 6. Site averaged coefficient of variation of the species concentration in each major profile
according to the BS runs. Markers are individual values and the box plots show the dispersion
of values.

3.5. Estimation of the Uncertainties of Time Series Concentrations

This section presents an attempt to express the uncertainties associated with the concentrations of
a chemical species in the time series of a specific factor contribution. Even if during the BS runs both
the F and G matrices were recomputed, only the F matrix was returned to the user in the EPA PMF5.0
software. The matrix G was only used internally to map the BS factor to the base factor [20]. As a result,
the outcome was an estimation of uncertainties for the F matrix, but not for the G one. Hereafter, we
propose to estimate the uncertainties for the time series of the concentrations of a chemical species by
multiplying the different concentrations given by the uncertainties runs (BS and DISP) by the factor
contribution of the reference run Gre f :

X′ERRi = FERRi · Gre f , (6)

where FERRi refers either to the F matrix given by the DISP min/max run or to one of the BS runs, Gre f is
the contribution matrix of the reference run, and X′ERRi simulates the temporal concentration of species
in the run ERRi (DISP or BS). It should be noted that this method only represents an approximation of
the “true” uncertainties of the model over the sample time series. Indeed, both the F and G matrix
should theoretically be modified at the same time, whereas the different FERRi were multiplied here by
a constant value of G for a given sample. Therefore, samples with high concentration (G) will always
have higher uncertainties than sample with low concentration.

However, this method provides a first idea of the uncertainties in the time series and help to
visualize the uncertainties given by the BS and DISP methods. For instance, uncertainties (i.e., standard
deviation of BS, and DISP min/max) of the OC* in the sulfate-rich factor obtained for the site CHAM are
presented in Figure 7, coupling the uncertainties in the chemical profile (OC*ref, 0.5423 µg m−3; OC*BS,
0.568± 0.262 µg m−3; and OC*DISP, 0.612 µg m−3 to 0.934 µg m−3) and the concentrations time series.
In this example, it may be hypothesized that the sulfate-rich factor may be mixed with another aerosol
fraction (e.g., possibly SOA) since it presents some important uncertainties and high concentration
of OC* during summertime. Even if it may be possible by directly tweaking the ME-2, the solver
used in EPA PMF5.0 software, it seems difficult for the non-computers-scientist end-user to extract the
different G matrices. We think that an added value to the software would be to output them during
the BS process and we encourage developers of other PMF software to ease this process.



Atmosphere 2019, 10, 310 14 of 22

2013-11 2014-01 2014-03 2014-05 2014-07 2014-09 2014-11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
on

tri
bu

tio
n 

to
 O

C
* (

µg
.m

3 )
Sulfate rich

Ref. run
BS (sd)
DISP (min-max)

Figure 7. Estimation of the over-time uncertainties of OC* (in µg m−3) in the sulfate-rich factor
at CHAM site using the BS and DISP runs. The grey line denotes the reference constrained run
contribution, the shaded blue area indicates the uncertainties (standard deviation) given by the BS and
the orange shaded area the uncertainties given by the DISP (min max).

3.6. Variability of the Chemical Profiles at the Regional Scale

3.6.1. Overall Comparison

In the previous sections, we discuss the internal variability of the different factors.
Next, similarities of all the chemical profiles identified in this study were investigated thanks to
the tools developed in the frame of the FAIRMODE (Forum for Air Quality Modeling) activities
and presented by Belis et al. [36], based on the constrained runs. PMF factor profiles attributed to
a source category are compared among each other’s using both the PD (Pearson distance) and SID
(standardized identity distance) similarity indicators. Fewer factors identified at some sites were not
considered in this assessment analysis as they showed some mixing with other emission sources.

Figure 8 gives mean and standard deviation of the distances between all pair of factor/source
profiles tagged as belonging to the same category in the SID-PD space. It results in the comparison of
n× n+1

2 − n pairs of profiles for each category, where n is the number of profiles belonging to the same
source category (see Figure 8).

First, we can see that many factor/source profiles present low PD and SID with values (mean
± standard deviation) inside the acceptance box (PD < 0.2 and SID < 0.8), indicating that they are
stable over the different sites of the study. It includes the biomass burning, sulfate-rich, nitrate-rich,
and fresh sea-salt factors. The primary biogenic source also appears relatively stable at all sites but
presents some dissimilarity according to the PD metric. It suggests that this source is not yet fully
understood and need further investigation, as recently discussed by Samaké et al. [32].

Other factors seem to have more heterogeneous profiles, with part of their values (mean ±
standard deviation) outside of the acceptance box. For instance, differences were clearly observed in
the few industrial chemical profiles. This is expected as such emissions may be very local and highly
variable, despite their common contents of high concentrations of metals and metalloids. Marine SOA
profiles also display site-to-site variations and a wide range in the PD-SID space, notably for the PD
metric. This factor, mainly identified thanks to its MSA marker, may actually regroup a large diversity
of chemical species. The low variance in the SID but high variance in the PD tends to indicate a large
discrepancy for the chemical species that represent the main mass of the profile. A deeper analysis (not
presented here) showed that the high variance is driven by an observation at only three sites: GRE,
CHAM and ROU. The valley sites of GRE and CHAM both present a larger part of OC* in their profile
while, conversely, ROU presents the lowest amount of OC* among all the sites. Finally, the primary
traffic profile presents the lowest SID values, but a relatively high PD, still in the acceptable area.
As this factor is commonly observed in RM studies and contributes substantially to the PM10 mass, it
is discussed in detail in the following section.
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Figure 8. Similarity plot for all pairs of profiles belonging to the same factor/source category in this study.
The mean ± standard deviation for a given source category are plotted. The size of the dot is proportional
to the number of available pair of profile (from 10 to 105, shown in parenthesis in the legend). The green
box highlights the acceptable area for profile similarity according to Pernigotti and Belis [37].

3.6.2. A Non-Homogeneous Source: Primary Traffic

The primary traffic source present large variability in the SID-PD space, suggesting a wide variety
of road transport chemical profiles over France. As a matter of fact, this factor presents the lowest
SID value of all profile while larger variabilities were found in the PD metric. This could be seen
in the OC/EC ratio, both species being the most abundant ones within the primary traffic factor
(Figures 9 and 10). Even when excluding the rural site of REV, we observed a large variability in this
ratio, spanning from 0.09 to 3.31 (Figure 10). As the PD is mainly sensitive to the main chemical species
in term of mass, these two compounds may explain the wide span of the PD value for this source. It
should also be noted that the high variability in the PD may be driven by the values for the RBX site.
Indeed, despite RBX has all 22 metals in the ranges of the other sites, the value of OC* is extremely low
compared to others sites. The lower dispersion in the SID-axis highlights the relative homogeneity
of the other components of this factor. Indeed, as shown in Figure 9, the amount of metals, notably
the Fe, Cu, Al, Zn and Sb, as well as sulfate are relatively homogeneous over the 14 sites. We also see
that organic compounds such as levoglucosan, mannosan, MSA and polyols as well as Na+ are almost
never present in this factor, or in a very small amount.

The extremely high OC-to-EC ratio for REV (Figure 10) and the relatively higher uncertainties
estimated from the BS runs (OC*BS, 0.000 µg m−3 to 0.937 µg m−3; ECBS, and 0.0162 µg m−3 to
0.0703 µg m−3, still close to the detection limit) indicate low confidence in the PMF solution for
this factor at this site.

Finally, the primary traffic factor is the closest to the dust factor when comparing the dust factor
to all other profiles (see Figure S1). Such results may indicate that some resuspended dust coming
from road abrasion or resuspension might contribute importantly to the dust factors at some sites.
This may also explain the relatively low amount of trace element in the primary traffic factor obtained
at STRAS. Indeed, at this site, we identified a mixed factor of “resuspended dust”, which may be
a mixing between mineral dust and road dust. This particular factor is not included in the “dust” one
presented in Figure 8 due to it singularity.
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OC*/EC
Primary traffic

OC*/Levoglucosan
Biomass burning

0

2

4

6

8

10

12

14

16

R
at

io

Remote
REV

Urban
MRS
NIC
PROV
TAL
POI
LEN
NGT
ROU
LY

Urban valley
GRE
CHAM

Industrial
PdB

Traffic
RBX
STRAS

Figure 10. Variability of the OC-to-EC ratios and OC-to-Levoglucosan ratios obtained for the primary
traffic and biomass burning factors, respectively. Markers refer to individual site and box plots show
the dispersion for all sites.

3.7. A Homogeneous Source: The Biomass Burning Source

Among the stable profiles, the biomass burning is the most important source in terms of mass
contribution. As already well reported in the literature [6,55,56], OC is the PM dominant fraction in this
source, with a quite constant amount (38 ± 5% of the PM mass, see Figure 11). Moreover, as presented
in Figure 6 and detailed in Figure S2, the OC* uncertainties in this factor is low. Concerning the tracer
of biomass burning, levoglucosan and mannosan are present at 96 ± 3% and 95 ± 4% in this profile,
respectively (Figure 11). Mass-wise, the levoglucosan represents 8 ± 2% of the total PM mass. The EC
presents a wider dispersion, with a mass concentration of 9 ± 4%. We also note a fair amount of Cl– ,
as well as K+ in this factor, which explains 14 ± 19% and 32 ± 13% of their respective total mass.
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Despite its contribution to the mass of biomass burning PM mass (6 ± 4%), the NO3
– is clearly not

mainly allocated to this source as the biomass burning represents only 7 ± 5% of the total NO3
–

mass. Metal elements are barely present in this factor and some high discrepancy was observed for
the different sites, with a dispersion up to two orders of magnitude for Pb, Zn and Mn. It may be
noted that the OC-to-Levoglucosan ratio fluctuates between 2.1 and 7.4, with a mean and standard
deviation values of 4.6± 1.5 (Figure 10). Such ratios are in the 1.9–12.6 range of values previously
reported for PM10 wood combustion samples [55,56]. They may reflect the use of the different type of
wood for heating purposes, as detailed in the same previous studies. However, we did not observe any
systematic difference according to the geographical location and/or the site typology for this source.
Overall, these findings suggest a relatively similar wood burning emission in term of PM constituents
all over the territory.
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Figure 11. Chemical profiles obtained for the biomass burning factor in µg per µg of PM10. Markers
refer to individual site and box plots show the dispersion for all sites.

4. Conclusions

This paper presents results obtained from PMF analyses conducted in a harmonized way and
taking advantage of datasets corresponding to more than 2200 samples collected at 15 different
sampling sites in France. To the best of our knowledge, this is the first study using such a large database
over several years of monitoring. Thirty-seven input variables were selected to cover a wide range of
major expected PM10 factors and to optimize total mass reconstruction at all sites. The operator-related
subjectivity was reduced by using homogeneous statistical and geochemical criteria for the source
discrimination and identification.

Overall, the main PM10 factors were found to be primary traffic (15 ± 7% of the PM10 mass
on a yearly average) and biomass burning (17 ± 9%) as well as two secondary aerosol fractions
dominated by ammonium nitrate (17 ± 8%) and ammonium sulfate (15 ± 4%), respectively. These
findings are in good agreement with what has commonly been observed by many previous studies
over Europe and illustrates—if still needed—the major impact of anthropogenic emissions on urban
air quality. Nevertheless, substantial contributions of mineral dusts (13 ± 4%), fresh (6 ± 2%) and/or
aged sea-salts (8 ± 4%), as well as of primary biogenic aerosols (7 ± 3%) are also observed at almost
all sites, reflecting that natural emissions should not be neglected as other important contributors to
PM10 levels on a yearly basis.
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During wintertime, high contribution of the biomass burning was observed, together with the
nitrate-rich factor in early spring (March). The sea-salt also presents higher contribution during this
period of the year, potentially linked to stronger westerlies winds. In summer, all sites present
important contributions from biogenic sources: the primary biogenic and marine SOA factors.
Conversely, the primary traffic, dust, aged sea-salt and sulfate rich factors do not present clear
seasonality pattern. Uncertainties of each PMF results were investigated thanks to the bootstrap
and displacement methods, both for the base and the constrained runs. The use of a set of
constraints—taken as limited as possible—allows to decrease these uncertainties and to strengthen
the output statistical representativity of factors commonly observed all over the French continental
territory. The internal variability (i.e., for a given site) assessment shows high confidence for the
concentration of the main proxies of sources (i.e., specific tracers) and for the PM10 mass apportionment,
but larger uncertainties were found for concentrations of non-tracer species and caution should be
taken concerning the contributions of such chemical species to the different factors.

Finally, the external variability (i.e., from one site to another) was investigated thanks to both the
SID and PD metrics. In particular, the discrepancy between the chemical profiles of sources could be
quantified thanks to both the SID and PD metrics, notably showing that fresh sea salt, nitrate-rich,
sulfate-rich and biomass burning factor profiles can be considered as chemically similar at all the sites
studied. Conversely, some significant variabilities were observed for other factor chemical profiles,
such as the ones related to traffic and industrial emissions as well as mineral dusts and marine SOA.
The latter finding is calling for the use of additional variables, such as organic molecular markers,
within studies aiming at scrutinizing specific local sources at individual sites and/or for a better
knowledge on the origins of SOA fractions.

Overall, results obtained in this comprehensive study may help to increase the completeness of
the SPECIEUROPE database, and can be used to assess the contributions of the different sources to the
oxidative potential of PM10 following methodology proposed by Weber et al. [49].
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