Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent
Abstract
:1. Introduction
2. Data and Methods
2.1. CMIP6 GCMs
2.2. Observations
2.3. Methodology
3. Results
3.1. Climatology of Indices
3.1.1. Precipitation Extremes
3.1.2. Temperature Extremes
3.2. Normalisation and Averaging
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Zhou, B. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 November 2021).
- Kiem, A.S.; Johnson, F.; Westra, S.; van Dijk, A.; Evans, J.P.; O’Donnell, A.; Mehrotra, R. Natural hazards in Australia: Droughts. Clim. Chang. 2016, 139, 37–54. [Google Scholar] [CrossRef]
- Walsh, K.; White, C.J.; McInnes, K.; Holmes, J.; Schuster, S.; Richter, H.; Warren, R.A. Natural hazards in Australia: Storms, wind and hail. Clim. Chang. 2016, 139, 55–67. [Google Scholar] [CrossRef]
- Johnson, F.; Hutchinson, M.F.; The, C.; Beesley, C.; Green, J. Topographic relationships for design rainfalls over Australia. J. Hydrol. 2016, 533, 439–451. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; White, C.J.; Alexander, L.V.; Argüeso, D.; Boschat, G.; Cowan, T.; Purich, A. Natural hazards in Australia: Heatwaves. Clim. Chang. 2016, 139, 101–114. [Google Scholar] [CrossRef]
- Zander, K.K.; Botzen, W.J.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 2015, 5, 647–651. [Google Scholar] [CrossRef]
- Westra, S.; White, C.J.; Kiem, A.S. Introduction to the special issue: Historical and projected climatic changes to Australian natural hazards. Clim. Chang. 2016, 139, 1–26. [Google Scholar] [CrossRef]
- Plummer, N.; Salinger, M.J.; Nicholls, N.; Suppiah, R.; Hennessy, K.J.; Leighton, R.M.; Lough, J.M. Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Weather. Clim. Extrem. 1999, 42, 183–202. [Google Scholar]
- Haylock, M.; Nicholls, N. Trends in extreme rainfall indices for an updated high-quality data set for Australia, 1910–1998. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1533–1541. [Google Scholar] [CrossRef]
- Alexander, L.V.; Arblaster, J.M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 417–435. [Google Scholar] [CrossRef]
- Alexander, L.V.; Arblaster, J.M. Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather Clim. Extrem. 2017, 15, 34–56. [Google Scholar] [CrossRef]
- Min, S.K.; Cai, W.; Whetton, P. Influence of climate variability on seasonal extremes over Australia. J. Geophys. Res. Atmos. 2013, 118, 643–654. [Google Scholar] [CrossRef]
- Nishant, N.; Sherwood, S.C. How strongly are mean and extreme precipitation coupled? Geophys. Res. Lett. 2021, 48, e2020GL092075. [Google Scholar] [CrossRef]
- Herold, N.; Ekström, M.; Kala, J.; Goldie, J.; Evans, J.P. Australian climate extremes in the 21st century according to a regional climate model ensemble: Implications for health and agriculture. Weather Clim. Extrem. 2018, 20, 54–68. [Google Scholar] [CrossRef]
- King, A.D.; Karoly, D.J.; Henley, B.J. Australian climate extremes at 1.5 C and 2 C of global warming. Nat. Clim. Chang. 2017, 7, 412–416. [Google Scholar] [CrossRef]
- King, A.D.; Black, M.T.; Min, S.K.; Fischer, E.M.; Mitchell, D.M.; Harrington, L.J.; Perkins-Kirkpatrick, S.E. Emergence of heat extremes attributable to anthropogenic influences. Geophys. Res. Lett. 2016, 43, 3438–3443. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Hammill, K.A.; Collins, L.; Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 2010, 25, 607–619. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Fernanda Dreccer, M.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Chang. Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef]
- Yilmaz, A.G.; Hossain, I.; Perera, B.J.C. Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: A case study of Melbourne. Hydrol. Earth Syst. Sci. 2014, 18, 4065–4076. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J. The excess heat factor: A metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Zwiers, F.W. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V.T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C.; Nyongesa, A.M.; Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 2018, 90, 901–920. [Google Scholar] [CrossRef]
- Xu, K.; Wu, C.; Hu, B.X. Projected changes of temperature extremes over nine major basins in China based on the CMIP5 multimodel ensembles. Stoch. Environ. Res. Risk Assess. 2019, 33, 321–339. [Google Scholar] [CrossRef]
- Wu, C.; Yeh, P.J.F.; Chen, Y.Y.; Hu, B.X.; Huang, G. Future precipitation-driven meteorological drought changes in the CMIP5 multimodel ensembles under 1.5 °C and 2 °C global warming. J. Hydrometeorol. 2020, 21, 2177–2196. [Google Scholar] [CrossRef]
- Ayugi, B.; Jiang, Z.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Karim, R.; Dike, V. Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 2015, 45, 441–453. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.P.; Dowdy, A.J.; Bador, M.; Boschat, G.; Power, S. Insights from CMIP6 for Australia’s future climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Ji, F.; Tam, E.; Nishant, N.; Evans, J.P.; Thomas, C.; Delage, F. (Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling: Model Performance, Independence, and Climate Change Signals. Earth’s Future 2022, 10, e2021EF002625. [Google Scholar] [CrossRef]
- Deng, X.; Perkins-Kirkpatrick, S.E.; Lewis, S.C.; Ritchie, E.A. Evaluation of Extreme Temperatures over Australia in the Historical Simulations of CMIP5 and CMIP6 Models. Earth’s Future 2021, 9, e2020EF001902. [Google Scholar] [CrossRef]
- Masud, B.; Cui, Q.; Ammar, M.E.; Bonsal, B.R.; Islam, Z.; Faramarzi, M. Means and Extremes: Evaluation of a CMIP6 Multi-Model Ensemble in Reproducing Historical Climate Characteristics across Alberta, Canada. Water 2021, 13, 737. [Google Scholar] [CrossRef]
- Gusain, A.; Ghosh, S.; Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 2020, 232, 104680. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ongoma, V.; Kooperman, G.J. Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmos. Res. 2021, 254, 105509. [Google Scholar] [CrossRef]
- Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Abramowitz, G.; Pitman, A.J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 2020, 47, e2020GL087820. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Hauser, M. Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles. Earth’s Future 2020, 8, e2019EF001474. [Google Scholar] [CrossRef]
- White, C.J.; McInnes, K.L.; Cechet, R.P.; Corney, S.P.; Grose, M.R.; Holz, G.K.; Bindoff, N.L. On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania, Australia. Clim. Dyn. 2013, 41, 3145–3165. [Google Scholar] [CrossRef]
- Tamoffo, A.T.; Dosio, A.; Vondou, D.A.; Sonkoué, D. Process-based analysis of the added value of dynamical downscaling over Central Africa. Geophys. Res. Lett. 2020, 47, e2020GL089702. [Google Scholar] [CrossRef]
- Tegegne, G.; Melesse, A.M.; Worqlul, A.W. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Sci. Total Environ. 2020, 704, 135357. [Google Scholar] [CrossRef]
- Srivastava, A.; Grotjahn, R.; Ullrich, P.A. Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather Clim. Extrem. 2020, 29, 100268. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, S.; Luo, H.; Zhi, X.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Chen, C.A.; Hsu, H.H.; Liang, H.C. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather Clim. Extrem. 2021, 31, 100303. [Google Scholar] [CrossRef]
- Wehner, M.; Lee, J.; Risser, M.; Ullrich, P.; Gleckler, P.; Collins, W.D. Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations. Philos. Trans. R. Soc. A 2021, 379, 20190545. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.V.; Herold, N. Climpactv2 Indices and Software. A Document Prepared on Behalf of the Commission for Climatology (CCL) Expert Team on Sector-Specific Climate Indices (ET-SCI). 2015. Available online: https://epic.awi.de/id/eprint/49274/1/ClimPACTv2_manual.pdf (accessed on 1 November 2020).
- Herold, N.; Alexander, L. Climpact 2. 2016. Available online: https://github.com/ARCCSS-extremes/climpact2 (accessed on 1 November 2020).
- Zivin, J.G.; Shrader, J. Temperature extremes, health, and human capital. Future Child. 2016, 26, 31–50. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Zhou, Y.; Xia, Y. Assessing the Impacts of Extreme Precipitation Change on Vegetation Activity. Agriculture 2021, 11, 487. [Google Scholar] [CrossRef]
- Evans, A.; Jones, D.; Smalley, R.; Lellyett, S. An Enhanced Gridded Rainfall Analysis Scheme for Australia. Bureau Research Report-41. 2020. Available online: http://www.bom.gov.au/research/publications/researchreports/BRR-041.pdf (accessed on 1 November 2020).
- Jones, D.A.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Rupp, D.E.; Abatzoglou, J.T.; Hegewisch, K.C.; Mote, P.W. Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos. 2013, 118, 10–884. [Google Scholar] [CrossRef]
- Irving, D.B.; Perkins, S.E.; Brown, J.R.; Gupta, A.S.; Moise, A.F.; Murphy, B.F.; Brown, J.N. Evaluating global climate models for the Pacific island region. Clim. Res. 2011, 49, 169–187. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Bond, N.A.; Walsh, J.E.; Kattsov, V.M.; Chapman, W.L. Considerations in the selection of global climate models for regional climate projections: The Arctic as a case study. J. Clim. 2011, 24, 1583–1597. [Google Scholar] [CrossRef]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Taylor, K.E. Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR); Cambridge University Press: Cambridge, UK, 2007; pp. 589–662. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Dai, A. Precipitation characteristics in eighteen coupled climate models. J. Clim. 2006, 19, 4605–4630. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.; Lin, P.; Liu, H.; He, B.; Bao, Q.; Wang, X. Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci. 2020, 37, 1057–1066. [Google Scholar] [CrossRef]
- Craig, A.P.; Vertenstein, M.; Jacob, R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl. 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Li, R.; Wang, B.; Yang, G. C-Coupler2: A flexible and user-friendly community coupler for model coupling and nesting. Geosci. Model Dev. 2018, 11, 3557–3586. [Google Scholar] [CrossRef]
- CSIRO and Bureau of Meteorology: Climate Change in Australia Information for Australia’s Natural Resource Management Regions: Technical Report, CSIRO and Bureau of Meteorology, Australia. 2015. Available online: https://apo.org.au/sites/default/files/resource-files/2015-01/apo-nid52475.pdf (accessed on 1 November 2020).
- Fiddes, S.; Pepler, A.; Saunders, K.; and Hope, P. Redefining southern Australia’s climatic regions and seasons. J. South Hemisph. Earth Syst. Sci. 2021, 71, 92–109. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Vera, C.S. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Evans, J.P.; Ji, F.; Lee, C.; Smith, P.; Argüeso, D.; Fita, L. Design of a regional climate modelling projection ensemble experiment–NARCliM. Geosci. Model Dev. 2014, 7, 621–629. [Google Scholar] [CrossRef]
- Nishant, N.; Evans, J.P.; Di Virgilio, G.; Downes, S.M.; Ji, F.; Cheung, K.K.W.; Tam, E.; Miller, J.; Beyer, K.; Riley, M.L. Introducing NARCliM1.5: Evaluating the performance of regional climate projections for southeast Australia for 1950-2100. Earth’s Future 2021, 9, e2020EF001833. [Google Scholar] [CrossRef]
- Cai, X.; Wang, D.; Zhu, T.; Ringler, C. Assessing the regional variability of GCM simulations. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Shi, F.; Wang, Z.; Qi, L.; Chen, R. An Assessment of GCM Performance at a Regional Scale Using a Score-Based Method. Adv. Meteorol. 2018, 2018, 7641019. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Xu, Z.; Han, Y.; Guo, W. Evaluation of CMIP6 models toward dynamical downscaling over 14 CORDEX domains. Clim. Dyn. 2022, 1–15. [Google Scholar] [CrossRef]
- Trenberth, K.E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Weather Clim. Extrem. 1999, 42, 327–339. [Google Scholar]
- Fischer, E.M.; Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 2016, 6, 986–991. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Abramowitz, G. Model independence in multi-model ensemble prediction. Aust. Meteorol. Oceanogr. J. 2010, 59, 3–6. [Google Scholar] [CrossRef]
- Abramowitz, G.; Bishop, C.H. Climate model dependence and the ensemble dependence transformation of CMIP projections. J. Clim. 2015, 28, 2332–2348. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. 2008, 113, D6. [Google Scholar] [CrossRef]
- Diaconescu, E.P.; Mailhot, A.; Brown, R.; Chaumont, D. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Clim. Dyn. 2018, 50, 2061–2085. [Google Scholar] [CrossRef]
- Pope, M.; Jakob, C.; Reeder, M.J. Convective systems of the north Australian monsoon. J. Clim. 2008, 21, 5091–5112. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Rastogi, D.; Mei, R.; Touma, D.; Ruby Leung, L. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim. Dyn. 2017, 49, 193–223. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M. How well do CMIP6 historical runs match observed Northeast US Precipitation and extreme precipitation–related circulation? J. Clim. 2020, 33, 9835–9848. [Google Scholar] [CrossRef]
- Taylor, G.P.; Loikith, P.C.; Aragon, C.M.; Lee, H.; Waliser, D.E. CMIP6 model fidelity at simulating large-scale atmospheric circulation patterns and associated temperature and precipitation over the Pacific Northwest. Clim. Dyn. 2022, 1–20. [Google Scholar] [CrossRef]
- Cannon, A.J. Reductions in daily continental-scale atmospheric circulation biases between generations of global climate models: CMIP5 to CMIP6. Environ. Res. Lett. 2020, 15, 064006. [Google Scholar] [CrossRef]
- Johnson, F.; White, C.J.; van Dijk, A.; Ekstrom, M.; Evans, J.P.; Jakob, D.; Westra, S. Natural hazards in Australia: Floods. Clim. Chang. 2016, 139, 21–35. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, W.; Fu, C. Calibrating and evaluating reanalysis surface temperature error by topographic correction. J. Clim. 2008, 21, 1440–1446. [Google Scholar] [CrossRef]
- Lun, Y.; Liu, L.; Cheng, L.; Li, X.; Li, H.; Xu, Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]
GCM Name | Institution/Centre | Run | Atmosphere Lat/lon Grid (°) | |
---|---|---|---|---|
1. | ACCESS-CM2 | Australian Community | r1i1p1f1 | 1.2 × 1.8 |
2. | ACCESS-ESM1-5 | Australian Community | r1i1p1f1 | 1.2 × 1.8 |
3. | AWI-ESM-1-1-LR | Alfred Wegener Institute | r1i1p1f1 | 0.9 × 0.9 |
4. | BCC-CSM2-MR | Beijing Climate Centre | r1i1p1f1 | 1.1 × 1.1 |
5. | BCC-ESM1 | Beijing Climate Centre | r1i1p1f1 | 2.8 × 2.8 |
6. | CMCC-CM2-SR5 | Euro-Mediterranean Centre | r1i1p1f1 | ~ 0.9 |
7. | CNRM-CM6-1-HR | National Centre of Meteorological Research (NCMR), France | r1i1p1f2 | ~ 0.5 |
8. | CNRM-CM6-1 | National Centre of Meteorological Research (NCMR), France | r1i1p1f2 | 1.4 × 1.4 |
9. | CNRM-ESM2-1 | National Centre of Meteorological Research (NCMR), France | r1i1p1f2 | 1.4 × 1.4 |
10. | CanESM5 | Canadian Centre for Climate Modelling and Analysis | r1i1p1f1 | 2.8 × 2.8 |
11. | EC-Earth3-Veg-LR | EC-EARTH consortium, The Netherlands/Ireland | r1i1p1f1 | 0.7 × 0.7 |
12. | EC-Earth3-Veg | EC-EARTH consortium, The Netherlands/Ireland | r1i1p1f1 | 0.7 × 0.7 |
13. | EC-Earth3 | EC-EARTH consortium, The Netherlands/Ireland | r1i1p1f1 | 0.7 × 0.7 |
14. | FGOALS-f3-L | Chinese Academy of Sciences, China | r1i1p1f1 | 2.3 × 2.0 |
15. | FGOALS-g3 | Chinese Academy of Sciences, China | r1i1p1f1 | 2.3 × 2.0 |
16. | GFDL-CM4 | NOAA Geophysical Fluid Dynamics Laboratory | r1i1p1f1 | 1.0 × 1.3 |
17. | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory | r1i1p1f1 | 1.0 × 1.3 |
18. | HadGEM3-GC31-LL | Met Office Hadley Centre, UK | r1i1p1f3 | 2.2 × 2.2 |
19. | HadGEM3-GC31-MM | Met Office Hadley Centre, UK | r1i1p1f3 | 0.9 × 0.9 |
20. | INM-CM4-8 | Institute for Numerical Mathematics (INM), Russia | r1i1p1f1 | 1.5 × 2.0 |
21. | INM-CM5-0 | Institute for Numerical Mathematics (INM), Russia | r1i1p1f1 | 1.5 × 2.0 |
22. | IPSL-CM6A-LR | Institute Pierre Simon Laplace, France | r1i1p1f1 | 1.3 × 2.5 |
23. | KACE-1-0-G | National Institute of Meteorological Sciences/Korea Meteorological Administration | r1i1p1f1 | 2.2 × 2.2 |
24. | KIOST-ESM | Korean Institute of Ocean Science and technology | r1i1p1f1 | 2.2 × 2.2 |
25. | MIR°C-ES2L | National Institute for Environmental Studies, Japan | r1i1p1f2 | 4.5 × 4.5 |
26. | MIR°C6 | National Institute for Environmental Studies, Japan | r1i1p1f1 | 1.4 × 1.4 |
27. | MPI-ESM-1-2-HAM | Max Planck Institute for Meteorology (MPI), Germany | r1i1p1f1 | 2.2 × 2.2 |
28. | MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI), Germany | r1i1p1f1 | ~0.9 |
29. | MPI-ESM1-2-LR | Max Planck Institute for Meteorology (MPI), Germany | r1i1p1f1 | ~2.0 |
30. | MRI-ESM2-0 | Meteorological Research Institute, Japan | r1i1p1f1 | 1.1 × 1.1 |
31 | NESM3 | Nanjing University of Information Science and Technology, Nanjing | r1i1p1f1 | 1.9 × 1.9 |
32. | NorCPM1 | Norwegian Climate Centre, Norway | r1i1p1f1 | 1.9 × 2.5 |
33. | NorESM2-LM | Norwegian Climate Centre, Norway | r1i1p1f1 | 1.9 × 2.5 |
34. | NorESM2-MM | Norwegian Climate Centre, Norway | r1i1p1f1 | 0.9 × 0.9 |
35. | SAM0-UNICON | Seoul National University | r1i1p1f1 | 0.9 × 1.3 |
36. | TaiESM1 | Taiwan Earth System Model | r1i1p1f1 | 0.9 × 0.9 |
37. | UKESM1-0-LL | UK Met Office and NERC research centres | r1i1p1f2 | 1.3 × 1.9 |
Index | Definition | Units | Timescale | Sectors | |
---|---|---|---|---|---|
1. | R99p | Annual total precipitation when precipitation is greater than the 99th percentile | mm | Annual | Coasts |
2. | Rx1day | Maximum 1-day precipitation | mm | Annual/Monthly | Agriculture, Forestry |
3. | R10mm | Number of very heavy rain days (rain > 10 mm) | days | Annual/Monthly | coasts |
4. | CWD | Consecutive wet days | days | Annual/Monthly | Agriculture, Food security, Water resources |
5. | CDD | Consecutive dry days | days | Annual/Monthly | Agriculture, Food security, Water resources |
6. | TXge35 | Number of days when maximum temperature is greater than 35 °C | days | Annual/Monthly | Health, Agriculture and Disaster and risk management |
7. | TR | Tropical nights (Number of days when minimum temperature > 20 °C) | days | Annual/Monthly | Health, forestry |
8. | SU | Summer days (Number of days when maximum temperature > 25 °C) | days | Annual/Monthly | Health, forestry |
9. | TXx | Maximum maximum-temperature | °C | Annual/Monthly | Agriculture and food, Energy, forestry |
10. | TNn | Minimum minimum-temperature | °C | Annual/Monthly | Agriculture and food, Energy, forestry |
11. | CSDI | Cold Spell Duration Indicator (Annual count of nights with at least 6 consecutive nights when daily minimum temperature < 10th percentile) | days | Annual | Health, Energy, disaster risk reduction, Agriculture |
12. | WSDI | Warm Spell Duration Indicator (Annual count of days with at least 6 consecutive days when daily maximum temperature > 90th percentile) | days | Annual | Health, Energy, disaster risk reduction, Agriculture |
GCM | R99p | Rx1day | R10mm | CWD | CDD | Txge35 | TR | SU | TXX | TNN | WSDI | CSDI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ACCESS-CM2 | 2.67 | 0.51 | 1.08 | 0.43 | 3.49 | 1.05 | 3.4 | 2.01 | 1.44 | 2.78 | 7.09 | 0.07 |
2 | ACCESS-ESM1-5 | 7.9 | 0.2 | 0.98 | 0.69 | 4.12 | 0.13 | 3.63 | 1.25 | 0.45 | 2.56 | 5.07 | 0.81 |
3 | AWI-ESM-1-1-LR | 20.46 | 0.93 | 8.22 | 1.08 | 1.34 | 3.13 | 3.45 | 2.69 | 2.42 | 2.79 | 3.95 | 1.34 |
4 | BCC-CSM2-MR | 36.13 | 5.77 | 1.16 | 0.99 | 8.25 | 1.19 | 2.87 | 0.86 | 0.98 | 2.34 | 1.13 | 0.24 |
5 | BCC-ESM1 | 8.26 | 4.74 | 2.67 | 0.58 | 6.12 | 0.19 | 4.62 | 0.68 | 0.1 | 4.2 | 0.55 | 0.06 |
6 | CMCC-CM2-SR5 | 14.7 | 2.05 | 12.03 | 2.48 | 7.73 | 7.37 | 11 | 8.28 | 7.73 | 8.32 | 5.51 | 1.25 |
7 | CNRM-CM6-1-HR | 25.56 | 3.15 | 5.18 | 0.72 | 8.39 | 0.68 | 0.18 | 1.02 | 0.98 | 0.89 | 1.43 | 0.77 |
8 | CNRM-CM6-1 | 21.2 | 1.27 | 1.48 | 0.18 | 3.52 | 1.18 | 1.51 | 1.21 | 1.35 | 1.74 | 3.73 | 0.09 |
9 | CNRM-ESM2-1 | 24.9 | 2.73 | 3.83 | 0.5 | 8.86 | 0.02 | 2.19 | 0.45 | 0.69 | 2.08 | 2.65 | 0.1 |
10 | CanESM5 | 19.85 | 1.64 | 2.29 | 1.12 | 6.03 | 1.38 | 2.97 | 0.39 | 1.34 | 1.71 | 5.88 | 1.42 |
11 | EC-Earth3-Veg-LR | 20.43 | 3.01 | 3.92 | 1.39 | 2.8 | 1.45 | 1.66 | 0.86 | 1.39 | 2.23 | 6.76 | 0.27 |
12 | EC-Earth3-Veg | 22.35 | 3.42 | 1.53 | 0.89 | 4.76 | 0.47 | 2.46 | 0.27 | 0.48 | 2.56 | 9.38 | 0.91 |
13 | EC-Earth3 | 21.91 | 3.89 | 0.4 | 0.53 | 5.37 | 0.06 | 2.6 | 0.72 | 0.08 | 2.82 | 13.37 | 1.19 |
14 | FGOALS-f3-L | 1.35 | 1.73 | 3.83 | 0.62 | 6.99 | 1.83 | 1.33 | 2.55 | 1.95 | 2.64 | 8.03 | 1.33 |
15 | FGOALS-g3 | 2.04 | 1.04 | 0.27 | 0.91 | 8.18 | 0.8 | 2.5 | 0.94 | 1.01 | 3.1 | 2.23 | 0.67 |
16 | GFDL-CM4 | 7.91 | 0.25 | 3.36 | 0.25 | 3.05 | 2.23 | 0.92 | 3.49 | 1.97 | 0.09 | 2.08 | 0.54 |
17 | GFDL-ESM4 | 4.06 | 0.06 | 1.42 | 0.04 | 6.54 | 1.88 | 2.78 | 2.82 | 1.79 | 1.81 | 3.66 | 1.37 |
18 | HadGEM3-GC31-LL | 4.01 | 0.71 | 0.58 | 0.45 | 4.17 | 0.83 | 0.52 | 1.48 | 0.73 | 0.8 | 3.84 | 1.62 |
19 | HadGEM3-GC31-MM | 1.52 | 1.32 | 3.7 | 0.03 | 1.84 | 0.63 | 0.21 | 0.48 | 0.22 | 0.46 | 1.96 | 1.89 |
20 | INM-CM4-8 | 3.62 | 0.94 | 6.63 | 3.69 | 14.56 | 2.24 | 1.77 | 1.64 | 1.84 | 1.67 | 3.87 | 0.19 |
21 | INM-CM5-0 | 27.21 | 2.89 | 3.84 | 2.76 | 13.8 | 2.03 | 0.6 | 2.51 | 2.01 | 0.49 | 1.98 | 0.83 |
22 | IPSL-CM6A-LR | 3.33 | 2.51 | 10.22 | 2.51 | 8.08 | 5.01 | 2.91 | 3.92 | 4.05 | 2.61 | 6.94 | 1.28 |
23 | KACE-1-0-G | 14.99 | 3.14 | 5.43 | 0.14 | 0.33 | 0.66 | 0.32 | 0.45 | 0.1 | 0.87 | 3.09 | 1.67 |
24 | KIOST-ESM | 2.29 | 2.02 | 3.61 | 1.15 | 1.62 | 8 | 3.43 | 3.97 | 8.54 | 2.56 | 0.4 | 0.59 |
25 | MIR°C-ES2L | 4.29 | 0.08 | 5.11 | 2.2 | 9.67 | 1.77 | 4.58 | 0.72 | 1.01 | 4.72 | 3.93 | 1.12 |
26 | MIR°C6 | 13.48 | 5.35 | 7.35 | 1.25 | 10.31 | 4.88 | 4.56 | 1.75 | 4.75 | 4.51 | 1.86 | 0.34 |
27 | MPI-ESM-1-2-HAM | 28.14 | 2.67 | 7.53 | 0.55 | 4.5 | 2.57 | 3.46 | 1.8 | 2.11 | 2.93 | 1.45 | 1.13 |
28 | MPI-ESM1-2-HR | 40.21 | 7.26 | 7.86 | 1.02 | 30.31 | 1.09 | 4.98 | 0.03 | 0.3 | 3.95 | 2.42 | 0.51 |
29 | MPI-ESM1-2-LR | 33.52 | 5.83 | 2.56 | 0.51 | 19.27 | 0.45 | 4.41 | 0.76 | 0.39 | 3.1 | 4.25 | 0.01 |
30 | MRI-ESM2-0 | 19.27 | 3.16 | 3.82 | 0.09 | 0.44 | 1.99 | 3.59 | 0.08 | 1.81 | 2.09 | 0.51 | 1.37 |
31 | NESM3 | 19.6 | 1.05 | 14.22 | 1.04 | 5.21 | 6.13 | 9.27 | 7.16 | 6.61 | 7.05 | 5.01 | 0.27 |
32 | NorCPM1 | 3.92 | 1.17 | 12.52 | 3.19 | 10.02 | 6.07 | 0.56 | 5 | 5.11 | 1.93 | 2.57 | 1.96 |
33 | NorESM2-LM | 5.81 | 1.79 | 6.31 | 1.34 | 6.61 | 2.81 | 4.65 | 2.79 | 2.53 | 4.43 | 1.45 | 0.71 |
34 | NorESM2-MM | 8.97 | 4.47 | 8.02 | 1.16 | 7.79 | 3.09 | 3.41 | 2.98 | 2.48 | 3.54 | 0.11 | 0.39 |
35 | SAM0-UNICON | 14.16 | 1.66 | 7.89 | 1.62 | 2.66 | 2.58 | 1.92 | 1.64 | 1.81 | 2.55 | 6 | 1.39 |
36 | TaiESM1 | 0.44 | 1.32 | 7.09 | 1.62 | 6.41 | 7.1 | 11.14 | 8.52 | 7.34 | 8.35 | 3.9 | 0.95 |
37 | UKESM1-0-LL | 4.06 | 1.16 | 2.68 | 0.04 | 1.31 | 0.88 | 0.71 | 1.7 | 0.89 | 0.26 | 7.11 | 1.01 |
GCM | R99p | Rx1day | R10mm | CWD | CDD | Txge35 | TR | SU | TXX | TNN | WSDI | CSDI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ACCESS-CM2 | 74.87 | 5.71 | 0.65 | 1.05 | 7.5 | 2.25 | 3.47 | 2.3 | 1.81 | 2.79 | 18.7 | 4.66 |
1 | ACCESS-ESM1-5 | 73.24 | 5.46 | 0.58 | 1.08 | 7.84 | 1.98 | 3.67 | 1.78 | 1.28 | 2.58 | 15.37 | 4.12 |
2 | AWI-ESM-1-1-LR | 59.12 | 5.32 | 0.97 | 1.54 | 9.38 | 3.49 | 3.59 | 2.96 | 2.58 | 2.81 | 17.41 | 5.37 |
3 | BCC-CSM2-MR | 92.9 | 8.11 | 0.62 | 1.28 | 9.56 | 1.93 | 3.1 | 1.44 | 1.45 | 2.48 | 11.12 | 4.15 |
4 | BCC-ESM1 | 77.92 | 7.66 | 0.72 | 1.22 | 8.9 | 1.88 | 4.72 | 1.56 | 1.44 | 4.23 | 12.65 | 4.5 |
5 | CMCC-CM2-SR5 | 76 | 5.62 | 1.15 | 2.62 | 9.19 | 7.37 | 11 | 8.28 | 7.73 | 8.32 | 16.22 | 3.76 |
6 | CNRM-CM6-1-HR | 57.55 | 5.14 | 0.66 | 1.03 | 11.53 | 1.82 | 1.83 | 1.61 | 1.24 | 1.33 | 11.96 | 4.08 |
7 | CNRM-CM6-1 | 60.66 | 5.14 | 0.65 | 0.93 | 9.43 | 2.14 | 2.29 | 1.9 | 1.6 | 1.9 | 14.28 | 4.89 |
8 | CNRM-ESM2-1 | 60.04 | 5.42 | 0.66 | 0.98 | 13.31 | 1.76 | 2.7 | 1.66 | 1.2 | 2.2 | 12.85 | 4.52 |
9 | CanESM5 | 82.74 | 6.4 | 0.7 | 1.5 | 9.15 | 2.66 | 3.12 | 1.79 | 2.48 | 2.25 | 16.77 | 3.76 |
10 | EC-Earth3-Veg-LR | 58.24 | 5.11 | 0.75 | 1.71 | 8.47 | 2.67 | 2.21 | 2.09 | 1.9 | 2.38 | 17.32 | 4.1 |
11 | EC-Earth3-Veg | 58.84 | 5.29 | 0.66 | 1.37 | 9.79 | 2.52 | 2.71 | 1.71 | 1.43 | 2.61 | 18.36 | 3.94 |
12 | EC-Earth3 | 57.8 | 5.31 | 0.59 | 1.13 | 9.66 | 2.39 | 2.85 | 1.61 | 1.24 | 2.85 | 20.48 | 3.61 |
13 | FGOALS-f3-L | 73.3 | 6.41 | 0.64 | 1.05 | 11.76 | 2.31 | 1.86 | 2.76 | 2.05 | 2.68 | 17.66 | 3.56 |
14 | FGOALS-g3 | 68.62 | 5.37 | 0.61 | 1.29 | 9.52 | 1.91 | 2.73 | 1.59 | 1.48 | 3.12 | 12.86 | 3.74 |
15 | GFDL-CM4 | 65.14 | 5.22 | 0.56 | 0.81 | 8.64 | 2.61 | 1.6 | 3.52 | 2.06 | 1.11 | 13.51 | 4.21 |
16 | GFDL-ESM4 | 68.16 | 5.48 | 0.56 | 0.9 | 11.76 | 2.48 | 2.93 | 3.01 | 1.96 | 1.92 | 14.85 | 3.46 |
17 | HadGEM3-GC31-LL | 71.27 | 5.25 | 0.59 | 1.01 | 7.45 | 2.11 | 1.73 | 1.82 | 1.33 | 1.67 | 14.47 | 3.63 |
18 | HadGEM3-GC31-MM | 68.15 | 5.03 | 0.55 | 0.75 | 6.68 | 1.72 | 1.48 | 1.19 | 0.98 | 1.29 | 12.15 | 3.33 |
19 | INM-CM4-8 | 70.85 | 5.35 | 0.8 | 3.72 | 14.6 | 2.92 | 2.23 | 2.09 | 2.06 | 2.24 | 14.42 | 4.08 |
20 | INM-CM5-0 | 88.48 | 6.26 | 0.71 | 2.81 | 13.86 | 2.86 | 1.91 | 2.73 | 2.17 | 1.92 | 14.45 | 4.8 |
21 | IPSL-CM6A-LR | 69.71 | 6.03 | 1.09 | 2.72 | 9.96 | 5.06 | 3.02 | 3.95 | 4.06 | 2.64 | 16.42 | 3.77 |
22 | KACE-1-0-G | 61.6 | 5.36 | 0.64 | 0.89 | 8.05 | 1.82 | 1.77 | 1.44 | 1.26 | 1.68 | 13.22 | 3.34 |
23 | KIOST-ESM | 69.4 | 5.47 | 0.62 | 1.55 | 7.83 | 8.18 | 3.58 | 4.38 | 8.59 | 2.71 | 15.19 | 4.85 |
24 | MIR°C-ES2L | 61.93 | 4.74 | 0.74 | 2.3 | 10.43 | 2.49 | 4.65 | 1.51 | 1.77 | 4.72 | 14.34 | 5.14 |
25 | MIR°C6 | 75.53 | 7.43 | 0.85 | 1.47 | 11.06 | 5.04 | 4.58 | 2.15 | 4.85 | 4.51 | 15.75 | 4.24 |
26 | MPI-ESM-1-2-HAM | 54.65 | 5.08 | 1.02 | 1.38 | 10.63 | 2.99 | 3.5 | 2.18 | 2.29 | 2.93 | 12.41 | 5.27 |
27 | MPI-ESM1-2-HR | 53.7 | 7.71 | 0.78 | 1.3 | 32.47 | 2.04 | 4.99 | 1.26 | 1.11 | 3.95 | 14.84 | 4.07 |
28 | MPI-ESM1-2-LR | 55.17 | 6.69 | 0.63 | 1.09 | 21.65 | 1.98 | 4.42 | 1.56 | 1.31 | 3.11 | 15.38 | 4.29 |
29 | MRI-ESM2-0 | 62.8 | 5.69 | 0.63 | 0.86 | 8.42 | 2.51 | 3.62 | 1.49 | 2.23 | 2.21 | 13 | 3.79 |
30 | NESM3 | 59.32 | 4.55 | 1.39 | 1.48 | 9.77 | 6.14 | 9.27 | 7.18 | 6.61 | 7.05 | 16.01 | 4.46 |
31 | NorCPM1 | 66.8 | 5.41 | 1.27 | 3.28 | 10.86 | 6.07 | 2.02 | 5.03 | 5.12 | 2.13 | 14.84 | 5.57 |
32 | NorESM2-LM | 64.93 | 5.99 | 0.9 | 1.64 | 9.31 | 3.09 | 4.66 | 2.87 | 2.62 | 4.43 | 13.61 | 5.02 |
33 | NorESM2-MM | 72.54 | 6.86 | 0.88 | 1.38 | 9.36 | 3.21 | 3.5 | 3.06 | 2.52 | 3.54 | 12.47 | 4.43 |
34 | SAM0-UNICON | 79.68 | 6.16 | 1 | 1.96 | 8.65 | 3.14 | 2.25 | 2.08 | 2 | 2.63 | 15.61 | 5.53 |
35 | TaiESM1 | 67.91 | 5.45 | 0.87 | 1.86 | 9.25 | 7.1 | 11.14 | 8.52 | 7.34 | 8.35 | 16.41 | 4.04 |
36 | UKESM1-0-LL | 71.46 | 5.09 | 0.57 | 0.85 | 7.25 | 1.91 | 1.71 | 1.92 | 1.35 | 1.55 | 15.48 | 3.88 |
GCM | R99p | Rx1day | R10mm | CWD | CDD | Txge35 | TR | SU | TXX | TNN | WSDI | CSDI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ACCESS-CM2 | 0.62 | 0.79 | 0.9 | 0.87 | 0.81 | 0.96 | 0.98 | 0.98 | 0.96 | 0.97 | 0.67 | 0.41 |
1 | ACCESS-ESM1-5 | 0.64 | 0.73 | 0.89 | 0.9 | 0.75 | 0.95 | 0.97 | 0.98 | 0.94 | 0.95 | 0.76 | 0.61 |
2 | AWI-ESM-1-1-LR | 0.43 | 0.69 | 0.85 | 0.83 | 0.65 | 0.88 | 0.98 | 0.98 | 0.96 | 0.95 | 0.64 | 0.53 |
3 | BCC-CSM2-MR | 0.8 | 0.77 | 0.83 | 0.87 | 0.62 | 0.97 | 0.96 | 0.99 | 0.95 | 0.94 | 0.68 | 0.32 |
4 | BCC-ESM1 | 0.54 | 0.57 | 0.8 | 0.68 | 0.52 | 0.94 | 0.9 | 0.98 | 0.89 | 0.85 | 0.64 | 0.39 |
5 | CMCC-CM2-SR5 | 0.62 | 0.8 | 0.83 | 0.77 | 0.78 | 0.37 | 0.96 | 0.95 | 0.95 | 0.98 | 0.67 | 0.32 |
6 | CNRM-CM6-1-HR | 0.64 | 0.86 | 0.72 | 0.79 | 0.83 | 0.97 | 0.94 | 0.98 | 0.97 | 0.96 | 0.77 | 0.39 |
7 | CNRM-CM6-1 | 0.46 | 0.76 | 0.77 | 0.83 | 0.78 | 0.97 | 0.96 | 0.97 | 0.97 | 0.96 | 0.71 | 0.48 |
8 | CNRM-ESM2-1 | 0.59 | 0.8 | 0.8 | 0.83 | 0.81 | 0.97 | 0.95 | 0.98 | 0.97 | 0.95 | 0.66 | 0.41 |
9 | CanESM5 | 0.65 | 0.69 | 0.86 | 0.8 | 0.62 | 0.91 | 0.94 | 0.98 | 0.92 | 0.89 | 0.65 | 0.36 |
10 | EC-Earth3-Veg-LR | 0.63 | 0.89 | 0.92 | 0.91 | 0.84 | 0.84 | 0.97 | 0.97 | 0.92 | 0.95 | 0.73 | 0.22 |
11 | EC-Earth3-Veg | 0.66 | 0.9 | 0.9 | 0.91 | 0.86 | 0.85 | 0.97 | 0.98 | 0.92 | 0.96 | 0.74 | 0.31 |
12 | EC-Earth3 | 0.73 | 0.91 | 0.92 | 0.93 | 0.85 | 0.87 | 0.97 | 0.98 | 0.93 | 0.96 | 0.68 | 0.13 |
13 | FGOALS-f3-L | 0.67 | 0.87 | 0.87 | 0.76 | 0.8 | 0.95 | 0.98 | 0.96 | 0.95 | 0.96 | 0.73 | 0.44 |
14 | FGOALS-g3 | 0.72 | 0.74 | 0.86 | 0.81 | 0.69 | 0.97 | 0.97 | 0.98 | 0.94 | 0.93 | 0.73 | 0.54 |
15 | GFDL-CM4 | 0.73 | 0.85 | 0.94 | 0.95 | 0.81 | 0.95 | 0.99 | 0.98 | 0.98 | 0.98 | 0.58 | 0.23 |
16 | GFDL-ESM4 | 0.68 | 0.86 | 0.94 | 0.95 | 0.81 | 0.92 | 0.98 | 0.96 | 0.97 | 0.96 | 0.72 | 0.48 |
17 | HadGEM3-GC31-LL | 0.73 | 0.84 | 0.92 | 0.89 | 0.77 | 0.94 | 0.96 | 0.99 | 0.95 | 0.9 | 0.71 | 0.52 |
18 | HadGEM3-GC31-MM | 0.76 | 0.88 | 0.96 | 0.96 | 0.81 | 0.98 | 0.97 | 0.99 | 0.98 | 0.94 | 0.7 | 0.38 |
19 | INM-CM4-8 | 0.36 | 0.68 | 0.92 | 0.81 | 0.72 | 0.78 | 0.95 | 0.98 | 0.94 | 0.87 | 0.74 | 0.43 |
20 | INM-CM5-0 | 0.59 | 0.8 | 0.9 | 0.82 | 0.66 | 0.81 | 0.94 | 0.97 | 0.95 | 0.87 | 0.75 | 0.45 |
21 | IPSL-CM6A-LR | 0.63 | 0.74 | 0.77 | 0.8 | 0.59 | 0.65 | 0.97 | 0.97 | 0.98 | 0.95 | 0.7 | 0.27 |
22 | KACE-1-0-G | 0.72 | 0.82 | 0.91 | 0.87 | 0.73 | 0.95 | 0.95 | 0.98 | 0.91 | 0.91 | 0.7 | 0.32 |
23 | KIOST-ESM | 0.7 | 0.74 | 0.79 | 0.79 | 0.72 | 0.69 | 0.96 | 0.91 | 0.72 | 0.93 | 0.57 | 0.5 |
24 | MIR°C-ES2L | 0.8 | 0.8 | 0.87 | 0.81 | 0.65 | 0.92 | 0.9 | 0.97 | 0.87 | 0.89 | 0.62 | 0.48 |
25 | MIR°C6 | 0.73 | 0.73 | 0.9 | 0.86 | 0.6 | 0.91 | 0.96 | 0.98 | 0.92 | 0.95 | 0.59 | 0.49 |
26 | MPI-ESM-1-2-HAM | 0.64 | 0.73 | 0.71 | 0.69 | 0.59 | 0.92 | 0.97 | 0.99 | 0.95 | 0.96 | 0.76 | 0.42 |
27 | MPI-ESM1-2-HR | 0.49 | 0.72 | 0.88 | 0.86 | 0.78 | 0.98 | 0.98 | 0.99 | 0.98 | 0.97 | 0.65 | 0.55 |
28 | MPI-ESM1-2-LR | 0.69 | 0.78 | 0.86 | 0.88 | 0.75 | 0.95 | 0.98 | 0.99 | 0.94 | 0.96 | 0.72 | 0.46 |
29 | MRI-ESM2-0 | 0.62 | 0.8 | 0.92 | 0.89 | 0.69 | 0.97 | 0.99 | 0.99 | 0.97 | 0.96 | 0.66 | 0.53 |
30 | NESM3 | 0.65 | 0.76 | 0.76 | 0.8 | 0.77 | 0.44 | 0.94 | 0.92 | 0.89 | 0.96 | 0.74 | 0.19 |
31 | NorCPM1 | 0.6 | 0.61 | 0.73 | 0.73 | 0.71 | 0.61 | 0.95 | 0.95 | 0.9 | 0.93 | 0.49 | 0.4 |
32 | NorESM2-LM | 0.75 | 0.68 | 0.79 | 0.8 | 0.59 | 0.9 | 0.97 | 0.98 | 0.93 | 0.95 | 0.6 | 0.61 |
33 | NorESM2-MM | 0.71 | 0.74 | 0.86 | 0.89 | 0.7 | 0.92 | 0.98 | 0.99 | 0.96 | 0.97 | 0.68 | 0.58 |
34 | SAM0-UNICON | 0.63 | 0.69 | 0.8 | 0.85 | 0.65 | 0.81 | 0.98 | 0.98 | 0.94 | 0.96 | 0.66 | 0.51 |
35 | TaiESM1 | 0.77 | 0.9 | 0.9 | 0.87 | 0.82 | 0.51 | 0.96 | 0.93 | 0.96 | 0.97 | 0.67 | 0.27 |
36 | UKESM1-0-LL | 0.66 | 0.86 | 0.92 | 0.91 | 0.76 | 0.97 | 0.96 | 0.99 | 0.95 | 0.91 | 0.64 | 0.37 |
GCM | R99p | Rx1day | R10mm | CWD | CDD | Txge35 | TR | SU | TXX | TNN | WSDI | CSDI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ACCESS-CM2 | 7.41 | 0.26 | 0.05 | 0.07 | 1.55 | 0.09 | 0.2 | 0.09 | 0.06 | 0.07 | 4.56 | 0.3 |
1 | ACCESS-ESM1-5 | 5.57 | 0.15 | 0.04 | 0.04 | 1.59 | 0.36 | 0.14 | 0.23 | 0.03 | 0.14 | 2.2 | 0.49 |
2 | AWI-ESM-1-1-LR | 6.15 | 0.06 | 0.17 | 0.28 | 0.85 | 0.15 | 0.32 | 0.65 | 0.43 | 0.1 | 5.46 | 0.6 |
3 | BCC-CSM2-MR | 6.53 | 0.18 | 0.07 | 0.01 | 3.01 | 0.55 | 0.04 | 0.08 | 0.14 | 0.05 | 3.06 | 0.46 |
4 | BCC-ESM1 | 1.44 | 0.4 | 0.03 | 0.06 | 2.39 | 0.42 | 0.03 | 0.17 | 0.09 | 0.07 | 1.17 | 0.19 |
5 | CMCC-CM2-SR5 | 12.05 | 1.12 | 0.28 | 0.51 | 0.38 | 0.73 | 0.4 | 0.29 | 0.14 | 0.28 | 7.59 | 0.33 |
6 | CNRM-CM6-1-HR | 6.13 | 0.65 | 0.11 | 0.12 | 1.06 | 0.03 | 0.22 | 0.08 | 0.14 | 0 | 0.24 | 0.37 |
7 | CNRM-CM6-1 | 5.41 | 0.45 | 0.05 | 0.06 | 0.04 | 0.26 | 0.22 | 0.13 | 0.08 | 0.11 | 0.07 | 0.55 |
8 | CNRM-ESM2-1 | 4.2 | 0.37 | 0.04 | 0.04 | 0.77 | 0.21 | 0.1 | 0.24 | 0.05 | 0.03 | 0.18 | 0.23 |
9 | CanESM5 | 6.31 | 0.19 | 0.06 | 0.12 | 1.75 | 0.13 | 0.03 | 0.26 | 0.14 | 0.05 | 3.35 | 0.96 |
10 | EC-Earth3-Veg-LR | 3.38 | 0.25 | 0.13 | 0.48 | 0.03 | 0.1 | 0.17 | 0.68 | 0.41 | 0.03 | 7.03 | 0.06 |
11 | EC-Earth3-Veg | 5.85 | 0.56 | 0.01 | 0.22 | 0.01 | 0.14 | 0.15 | 0.26 | 0.07 | 0.03 | 4.94 | 0.6 |
12 | EC-Earth3 | 4.99 | 0.7 | 0.01 | 0.05 | 0.92 | 0.11 | 0.15 | 0.08 | 0.09 | 0.05 | 6.74 | 0.64 |
13 | FGOALS-f3-L | 1.64 | 0.57 | 0.07 | 0.1 | 0.06 | 0.35 | 0.17 | 0.21 | 0.1 | 0 | 3.71 | 0.41 |
14 | FGOALS-g3 | 4.02 | 0.06 | 0.02 | 0.11 | 2.21 | 0.32 | 0.02 | 0.02 | 0.14 | 0.11 | 1.55 | 0.16 |
15 | GFDL-CM4 | 1.18 | 0.08 | 0.05 | 0.03 | 0.87 | 0.3 | 0.12 | 0.1 | 0.05 | 0.18 | 1.09 | 0.24 |
16 | GFDL-ESM4 | 0.61 | 0.3 | 0.01 | 0.13 | 1.72 | 0.3 | 0.21 | 0.37 | 0.06 | 0.04 | 2.8 | 0.82 |
17 | HadGEM3-GC31-LL | 0.3 | 0.27 | 0.05 | 0.01 | 1.9 | 0.37 | 0.17 | 0.03 | 0.11 | 0.14 | 1.53 | 1.2 |
18 | HadGEM3-GC31-MM | 0.8 | 0.46 | 0.11 | 0.1 | 2.02 | 0.46 | 0.11 | 0.06 | 0.09 | 0.07 | 0.66 | 1.22 |
19 | INM-CM4-8 | 2.1 | 0.47 | 0.07 | 0.21 | 3.51 | 0.22 | 0.05 | 0.08 | 0.02 | 0.14 | 3.26 | 0 |
20 | INM-CM5-0 | 3.58 | 0.33 | 0.02 | 0.06 | 3.18 | 0.25 | 0.02 | 0.02 | 0.05 | 0.12 | 0.58 | 0.22 |
21 | IPSL-CM6A-LR | 4.62 | 0.42 | 0.17 | 0.48 | 2.36 | 0.33 | 0 | 0.09 | 0.05 | 0 | 3.46 | 0.73 |
22 | KACE-1-0-G | 0.07 | 0.39 | 0.08 | 0.03 | 0.88 | 0.34 | 0.04 | 0.06 | 0.16 | 0.01 | 0.36 | 1 |
23 | KIOST-ESM | 4.8 | 0.67 | 0.13 | 0.05 | 2.45 | 0.24 | 0.55 | 0.33 | 0.55 | 0.14 | 0.37 | 0.91 |
24 | MIR°C-ES2L | 1.51 | 0.38 | 0.03 | 0.24 | 2.38 | 0.16 | 0.03 | 0.06 | 0.06 | 0.04 | 1.19 | 0.76 |
25 | MIR°C6 | 2.88 | 0.82 | 0.12 | 0.1 | 2.44 | 0.31 | 0.43 | 0.26 | 0.69 | 0.11 | 3.88 | 0.14 |
26 | MPI-ESM-1-2-HAM | 5.57 | 0.58 | 0 | 0.02 | 0.15 | 0.4 | 0.08 | 0.29 | 0.05 | 0.01 | 0.23 | 0.65 |
27 | MPI-ESM1-2-HR | 10.16 | 0.6 | 0.03 | 0.04 | 7.84 | 0.06 | 0.01 | 0.12 | 0.06 | 0.04 | 1.03 | 0.26 |
28 | MPI-ESM1-2-LR | 9.41 | 0.43 | 0.02 | 0.05 | 3.69 | 0.02 | 0.25 | 0.26 | 0.14 | 0.11 | 2.98 | 0.41 |
29 | MRI-ESM2-0 | 1.81 | 0.26 | 0.03 | 0.03 | 0.69 | 0.2 | 0.12 | 0.23 | 0.01 | 0.11 | 1.95 | 0.18 |
30 | NESM3 | 3.92 | 0.86 | 0.07 | 0.04 | 1.75 | 0.59 | 0.02 | 0.03 | 0.07 | 0.02 | 2.6 | 0.31 |
31 | NorCPM1 | 0.09 | 0.34 | 0.14 | 0.37 | 2.29 | 0.39 | 0.06 | 0.42 | 0.15 | 0.02 | 1.97 | 0.9 |
32 | NorESM2-LM | 0.4 | 0.59 | 0.15 | 0.17 | 1.81 | 0.35 | 0.07 | 0.2 | 0.19 | 0.09 | 0.18 | 0.42 |
33 | NorESM2-MM | 2.06 | 1.35 | 0.24 | 0.28 | 0.79 | 0.04 | 0.12 | 0.1 | 0.01 | 0.07 | 0.07 | 0.13 |
34 | SAM0-UNICON | 6.38 | 0.5 | 0.23 | 0.38 | 0.07 | 0.06 | 0.19 | 0.2 | 0.09 | 0.07 | 1.39 | 1.36 |
35 | TaiESM1 | 5.02 | 0.66 | 0.16 | 0.35 | 0.33 | 0.79 | 0.25 | 0.13 | 0.08 | 0.17 | 3.3 | 0.43 |
36 | UKESM1-0-LL | 2.85 | 0.6 | 0.11 | 0.11 | 1.82 | 0.3 | 0.16 | 0.14 | 0.03 | 0.11 | 0.88 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishant, N.; Di Virgilio, G.; Ji, F.; Tam, E.; Beyer, K.; Riley, M.L. Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere 2022, 13, 1478. https://doi.org/10.3390/atmos13091478
Nishant N, Di Virgilio G, Ji F, Tam E, Beyer K, Riley ML. Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere. 2022; 13(9):1478. https://doi.org/10.3390/atmos13091478
Chicago/Turabian StyleNishant, Nidhi, Giovanni Di Virgilio, Fei Ji, Eugene Tam, Kathleen Beyer, and Matthew L. Riley. 2022. "Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent" Atmosphere 13, no. 9: 1478. https://doi.org/10.3390/atmos13091478
APA StyleNishant, N., Di Virgilio, G., Ji, F., Tam, E., Beyer, K., & Riley, M. L. (2022). Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere, 13(9), 1478. https://doi.org/10.3390/atmos13091478