Major Contribution of Halogenated Greenhouse Gases to Global Surface Temperature Change
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Global Lower-Stratospheric Temperature (GLST)
3.2. Temperature Climatology in the Troposphere and Stratosphere
3.3. Global Land Surface Air Temperatures
3.4. Evidence of the ‘Arctic Amplification (AA)’ Mechanism for Polar Warmings
3.5. Global Warming Pause at NH Extratropic Excluding Russia and Alaska
3.6. Parameter-Free Theoretical Calculations of GMST
4. Conclusions and Implications
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoyt, D.V.; Schatten, K.H. A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. Space Phys. 1993, 98, 18895–18906. [Google Scholar] [CrossRef]
- Solanki, S.K.; Krivova, N.A. Can solar variability explain global warming since 1970? J. Geophys. Res. Space Phys. 2003, 108, 1200. [Google Scholar] [CrossRef]
- Hegerl, G.; Zwiers, F. Use of models in detection and attribution of climate change. WIREs Clim. Chang. 2011, 2, 570–591. [Google Scholar] [CrossRef]
- Lu, Q.-B. Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change. Int. J. Modern Phys. B 2013, 27, 1350073. [Google Scholar] [CrossRef]
- Lu, Q.-B. New Theories and Predictions on the Ozone Hole and Climate Change; World Scientific: Hackensack, NJ, USA, 2015; pp. 141–252. [Google Scholar]
- IPCC. AR5 Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- WMO. Scientific Assessment of Ozone Depletion: 2018; WMO Global Ozone Research and Monitoring Project—Report No. 58; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. AR6 Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Lindzen, R.S. Can increasing carbon dioxide cause climate change? Proc. Natl. Acad. Sci. USA 1997, 94, 8335–8342. [Google Scholar] [CrossRef] [PubMed]
- Idso, S.B. CO₂-induced global warming: A skeptic’s view of potential climate change. Clim. Res. 1998, 10, 69–82. [Google Scholar] [CrossRef]
- Knight, J.; Kennedy, J.J.; Folland, C.; Harris, G.; Jones, G.S.; Palmer, M.; Parker, D.; Scaife, A.; Stott, P. Do global temperature trends over the last decade falsify climate predictions. Bull. Am. Meteo. Soc. 2009, 90, 22–23. [Google Scholar]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36, L08706. [Google Scholar] [CrossRef]
- Lu, Q.-B. Cosmic-ray-driven electron-induced reactions of halogenated molecules adsorbed on ice surfaces: Implications for atmospheric ozone depletion and global climate change. Phys. Rep. 2010, 487, 141–167. [Google Scholar] [CrossRef]
- Lu, Q.-B. What is the Major Culprit for Global Warming: CFCs or CO2? J. Cosmol. 2010, 8, 1846–1862. [Google Scholar]
- Fyfe, J.C.; Gillett, N.P.; Zwiers, F.W. Overestimated global warming over the past 20 years. Nat. Clim. Chang. 2013, 3, 767–769. [Google Scholar] [CrossRef]
- Happer, W. Why has global warming paused? Int. J. Mod. Phys. A 2014, 29, 1460003. [Google Scholar] [CrossRef]
- Medhaug, I.; Stolpe, M.B.; Fischer, E.M.; Knutti, R. Reconciling controversies about the ‘global warming hiatus’. Nature 2017, 545, 41–47. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z. Stable Isotope Evidence for Recent Global Warming Hiatus. J. Earth Sci. 2020, 31, 419–424. [Google Scholar] [CrossRef]
- Modak, A.; Mauritsen, T. The 2000–2012 Global Warming Hiatus More Likely with a Low Climate Sensitivity. Geophys. Res. Lett. 2021, 48, e2020GL091779. [Google Scholar] [CrossRef]
- Wei, M.; Song, Z.; Shu, Q.; Yang, X.; Song, Y.; Qiao, F. Revisiting the Existence of the Global Warming Slowdown during the Early Twenty-First Century. J. Clim. 2022, 35, 1853–1871. [Google Scholar] [CrossRef]
- Lean, J.L.; Rind, D.H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 2008, 35, L18701. [Google Scholar] [CrossRef]
- Lean, J.L.; Rind, D.H. How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 2009, 36, L15708. [Google Scholar] [CrossRef]
- Ramanathan, V. Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications. Science 1975, 190, 50–52. [Google Scholar] [CrossRef]
- Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Kuhn, W.; Lacis, A.; Luther, F.; Mahlman, J.; Reck, R.; et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys. 1987, 25, 1441–1482. [Google Scholar] [CrossRef]
- Ko, M.K.W.; Sze, N.D.; Molnar, G.; Prather, M.J. Global warming from chlorofluorocarbons and their alternatives: Time scales of chemistry and climate. Atmos. Environ. 1993, 27, 581–587. [Google Scholar] [CrossRef]
- Velders, G.J.M.; Andersen, S.O.; Daniel, J.S.; Fahey, D.W.; McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl. Acad. Sci. USA 2007, 104, 4814–4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polvani, L.M.; Previdi, M.; England, M.R.; Chiodo, G.; Smith, K.L. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Chang. 2020, 10, 130–133. [Google Scholar] [CrossRef]
- Gillett, N.P.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Eyring, V.; Garcia, R.; Karpechko, A.Y.; McLinden, C.A.; Morgenstern, O.; Plummer, D.A.; et al. Attribution of observed changes in stratospheric ozone and temperature. Atmos. Chem. Phys. 2011, 11, 599–609. [Google Scholar] [CrossRef]
- Polvani, L.M.; Wang, L.; Aquila, V.; Waugh, D.W. The Impact of Ozone-Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s. J. Clim. 2017, 30, 2523–2534. [Google Scholar] [CrossRef]
- Manabe, S.; Wetherald, R.T. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. J. Atmos. Sci. 1967, 24, 241–259. [Google Scholar] [CrossRef]
- Shine, K.P.; Bourqui, M.S.; Forster, P.M.D.F.; Hare, S.H.E.; Langematz, U.; Braesicke, P.; Grewe, V.; Ponater, M.; Schnadt, C.; Smith, C.A.; et al. A comparison of model-simulated trends in stratospheric temperatures. Q. J. R. Meteorol. Soc. 2003, 129, 1565–1588. [Google Scholar] [CrossRef]
- Lu, Q.-B. Fingerprints of the cosmic ray driven mechanism of the ozone hole. AIP Adv. 2021, 11, 115307. [Google Scholar] [CrossRef]
- Lu, Q.-B. Observation of Large and All-Season Ozone Losses over the Tropics. AIP Adv. 2022, 12, 075006. [Google Scholar] [CrossRef]
- Lu, Q.-B.; Madey, T.E. Giant enhancement of electron-induced dissociation of chlorofluorocarbons coadsorbed with water or ammonia ices: Implications for atmospheric ozone depletion. J. Chem. Phys. 1999, 111, 2861–2864. [Google Scholar] [CrossRef]
- Lu, Q.-B.; Sanche, L. Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion. Phys. Rev. Lett. 2001, 87, 078501. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.-B. Correlation between Cosmic Rays and Ozone Depletion. Phys. Rev. Lett. 2009, 102, 118501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, S.; Ivy, D.J.; Kinnison, D.; Mills, M.J.; Neely, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Fyfe, J.; Polvani, L.; Waugh, D.; Chang, K. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 2020, 579, 544–548. [Google Scholar] [CrossRef]
- Ball, W.; Chiodo, G.; Abalos, M.; Alsing, J.; Stenke, A. Inconsistencies between chemistry-climate models and observed lower stratospheric ozone trends since 1998. Atmos. Chem. Phys. 2020, 20, 9737–9752. [Google Scholar] [CrossRef]
- Christy, J.R.; Spencer, R.W.; Braswell, W.D. MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons. J. Atmos. Ocean. Technol. 2000, 17, 1153–1170. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders. J. Atmos. Ocean. Technol. 2009, 26, 1040–1056. [Google Scholar] [CrossRef]
- Gleisner, H.; Lauritsen, K.B.; Nielsen, J.K.; Syndergaard, S. Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record. Atmos. Meas. Technol. 2020, 13, 3081–3098. [Google Scholar] [CrossRef]
- Free, M.; Seidel, D.J.; Angell, J.K.; Lanzante, J.; Durre, I.; Peterson, T.C. Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC): A new data set of large-area anomaly time series. J. Geophys. Res. Atmos. 2005, 110, D22101. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. Atmos. 2012, 117, D08101. [Google Scholar] [CrossRef]
- Osborn, T.J.; Jones, P.D.; Lister, D.H.; Morice, C.P.; Simpson, I.R.; Winn, J.P.; Hogan, E.; Harris, I.C. Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. J. Geophys. Res. Atmos. 2021, 126, e2019JD032352. [Google Scholar] [CrossRef]
- Robinson, D.A.; Estilow, T.W.; NOAA CDR Program. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2012. [Google Scholar] [CrossRef]
- Estilow, T.W.; Young, A.H.; Robinson, D.A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 2015, 7, 137–142. [Google Scholar] [CrossRef]
- Chung, E.-S.; Ha, K.-J.; Timmermann, A.; Stuecker, M.F.; Bodai, T.; Lee, S.-K. Cold-Season Arctic Amplification Driven by Arctic Ocean-Mediated Seasonal Energy Transfer. Earth’s Future 2021, 9, e2020EF001898. [Google Scholar] [CrossRef]
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.E.; Legg, T.P.; Folland, C.K. A new daily central England temperature series, 1772–1991. Int. J. Climatol. 1992, 12, 317–342. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.-B. Major Contribution of Halogenated Greenhouse Gases to Global Surface Temperature Change. Atmosphere 2022, 13, 1419. https://doi.org/10.3390/atmos13091419
Lu Q-B. Major Contribution of Halogenated Greenhouse Gases to Global Surface Temperature Change. Atmosphere. 2022; 13(9):1419. https://doi.org/10.3390/atmos13091419
Chicago/Turabian StyleLu, Qing-Bin. 2022. "Major Contribution of Halogenated Greenhouse Gases to Global Surface Temperature Change" Atmosphere 13, no. 9: 1419. https://doi.org/10.3390/atmos13091419
APA StyleLu, Q. -B. (2022). Major Contribution of Halogenated Greenhouse Gases to Global Surface Temperature Change. Atmosphere, 13(9), 1419. https://doi.org/10.3390/atmos13091419