Tropical Cyclone Exposure in the North Indian Ocean
Abstract
:1. Introduction and Background
2. Data and Methodology
2.1. TC Data Information and Landfall Locations
2.2. TC Data Record and Missing Intensity Values
2.3. The Indian Ocean Dipole
2.4. Atmospheric Data
2.5. TC Induced Rainfall Distribution
2.6. TC Wind Fields—The DAV Wind Parameter Dataset
3. Results
3.1. TC Activity and Landfalling Trends in the North Indian Ocean
3.2. Seasonal Distribution of TC Landfall
3.3. Spatial Shift of TC Landfalling Tracks
3.4. Influence of the Indian Ocean Dipole (IOD) on Occurrence and Landfalls of TCs
3.5. TC Intensity at Landfall
3.6. Distribution of the TC Surface Winds and Rainfall after Landfall
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riehl, H. Climate and Weather in the Tropic; Academic Press: London, UK, 1979; p. 613. [Google Scholar]
- Yamaguchi, M.; Chan, J.C.; Moon, I.J.; Yoshida, K.; Mizuta, R. Global warming changes tropical cyclone translation speed. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157. [Google Scholar] [CrossRef]
- Pielke, R.A., Jr.; Gratz, J.; Landsea, C.W.; Collins, D.; Saunders, M.A.; Musulin, R. Normalized hurricane damages in the United States: 1900–2005. Nat. Hazards Rev. 2008, 9, 29–42. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkense, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Chang. 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Kabir, R.; Khan, H.T.; Ball, E.; Caldwell, K. Climate change impact: The experience of the coastal areas of Bangladesh affected by cyclones Sidr and Aila. J. Environ. Public Health 2016, 2016, 9654753. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Wu, L. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- IPCC. IPCC Sixth Assessment Report. Working Group 1: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 19 May 2022).
- Webster, P.J.; Chou, L.C. Seasonal structure of a simple monsoon system. J. Atmos. Sci. 1980, 37, 354–367. [Google Scholar] [CrossRef]
- Charney, J.G.; Shukla, J. Predictability of monsoons. In Monsoon Dynamics; Cambridge University Press: London, UK, 1981; pp. 99–109. [Google Scholar]
- Rajeevan, M. Prediction of Indian summer monsoon: Status, problems and prospects. Curr. Sci. 2001, 81, 1451–1457. [Google Scholar]
- Mooley, D.A.; Parthasarathy, B. Indian summer monsoon and El Nino. Pure Appl. Geophys. 1983, 121, 339–352. [Google Scholar] [CrossRef]
- Vissa, N.K.; Satyanarayana, A.N.V.; Bhaskaran, P.K. The intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal. Nat. Hazards 2013, 68, 351–371. [Google Scholar] [CrossRef]
- Lee, C.S.; Gray, W.M. Characteristics of North Indian Ocean Tropical Cyclone Activity; Department of Atmospheric Science, Colorado State University: Fort Collins, CO, USA, 1984. [Google Scholar]
- Singh, O.P.; Khan, T.A.; Rahman, M.S. Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorol. Atmos. Phys. 2000, 75, 11–20. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Rajasekhar, M.; Kishtawal, C.M.; Prasad, M.Y.S.; Seshagiri, R.V.; Rajeevan, M. Extended Range Tropical Cyclone Predictions for East Coast of India; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–148. [Google Scholar]
- Rajeevan, M.; Srinivasan, J.; Niranjan Kumar, K.; Gnanaseelan, C.; Ali, M.M. On the epochal variation of intensity of tropical cyclones in the Arabian Sea. Atmos. Sci. Lett. 2013, 14, 249–255. [Google Scholar] [CrossRef]
- Acharya, N. Severity of Cyclones in Bay of Bengal on the Rise, Say Scientists. Scientific Business Standard Report 2019. Available online: https://www.business-standard.com/article/current-affairs/severity-of-cyclones-in-bay-of-bengal-on-the-rise-say-scientists-119050300848_1.html (accessed on 30 September 2019).
- Wahiduzzaman, M.; Yeasmin, A. A kernel density estimation approach of North Indian Ocean tropical cyclone formation and the association with convective available potential energy and equivalent potential temperature. Meteorol. Atmos. Phys. 2020, 132, 603–612. [Google Scholar] [CrossRef]
- Ramsay, H. The Global Climatology of Tropical Cyclones. Oxf. Res. Encycl. Nat. Hazard Sci. 2017. [Google Scholar] [CrossRef]
- O’Hare, G. Hurricane 07B in the Godavari Delta, Andhra Pradesh, India: Vulnerability, mitigation, and the spatial impact. Geogr. J. 2001, 167, 23–38. [Google Scholar] [CrossRef]
- Belanger, J.I.; Webster, P.J.; Curry, J.A.; Jelinek, M.T. Extended prediction of North Indian Ocean tropical cyclones. Weather. Forecast. 2012, 27, 757–769. [Google Scholar] [CrossRef]
- Dube, S.K.; Rao, A.D.; Sinha, P.C.; Murty, T.S.; Bahulayan, N. Storm surge in the Bay of Bengal and Arabian Sea: The problem and its prediction. Mausam 1997, 48, 283–304. [Google Scholar] [CrossRef]
- Takahashi, H.G. Long-term changes in rainfall and tropical cyclone activity over South and Southeast Asia. Adv. Geosci. 2011, 30, 17–22. [Google Scholar] [CrossRef]
- Albert, J.; Bhaskaran, P.K. Evaluation of track length, residence time and translational speed for tropical cyclones in the North Indian Ocean. ISH J. Hydraul. Eng. 2022, 28, 34–41. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Ravichandran, M. The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J. Geophys. Res. Atmos. 2012, 117, C02033. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Thanga Prakash, V.P.; Ravichandran, M. Influence of Pacific Decadal Oscillation on the relationship between ENSO and tropical cyclone activity in the Bay of Bengal during October–December. Clim. Dyn. 2015, 44, 3469–3479. [Google Scholar] [CrossRef]
- Yuan, J.; Cao, J. North Indian Ocean tropical cyclone activities influenced by the Indian Ocean Dipole mode. Sci. China Earth Sci. 2013, 56, 855–865. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Sayantani, O.; Gnanaseelan, C. Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Clim. Dyn. 2014, 44, 2447–2462. [Google Scholar] [CrossRef]
- Shinoda, T.; Hendon, H.H.; Alexander, M.A. Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res. I 2004, 51, 619–635. [Google Scholar] [CrossRef]
- Rao, S.A.; Behera, S.K.; Masumoto, Y.; Yamagata, T. Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res. II 2002, 49, 1549–1572. [Google Scholar] [CrossRef]
- Wang, H.; Murtugudde, R.; Kumar, A. Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim. Dyn. 2016, 47, 2481–2500. [Google Scholar] [CrossRef]
- Pattanaik, D.R. Variability of oceanic and atmospheric conditions during active and inactive periods of storms over the Indian region. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 1523–1530. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Yu, W.; Li, K.; Liu, Y. What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post-monsoon peak season? Atmos. Sci. Lett. 2016, 17, 148–154. [Google Scholar] [CrossRef]
- Kikuchi, K.; Wang, B. Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteorol. Soc. Jpn. 2010, 88, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, M.; Adhikary, S. Modulation of cyclonic disturbances over the North Indian Ocean by Madden-Julian oscillation. Mausam 2011, 62, 375–390. [Google Scholar] [CrossRef]
- Uddin, M.J.; Li, Y.; Cheung, K.K.; Nasrin, Z.M.; Wang, H.; Wang, L.; Gao, Z. Rainfall contribution of Tropical Cyclones in the Bay of Bengal between 1998 and 2016 using TRMM satellite data. Atmosphere 2019, 10, 699. [Google Scholar] [CrossRef]
- Zahid, M.; Rasul, G. Frequency of extreme temperature and precipitation events in Pakistan 1965–2009. Sci. Int. 2011, 23, 313–319. [Google Scholar]
- Thakur, M.K.; Lakshmi Kumar, T.V.; Dwivedi, S.; Narayanan, M.S. On the rainfall asymmetry and distribution in tropical cyclones over Bay of Bengal using TMPA and GPM rainfall products. Nat. Hazards 2018, 94, 819–832. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef]
- Emanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An advanced three-dimensional circulation model for shelves, coasts and estuaries, Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. In DRP Technical Report DRP-92-6; Department of the Army, US Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1992. [Google Scholar]
- Lin, N.; Emanuel, K. Grey swan tropical cyclones. Nat. Clim. Chang. 2016, 6, 106–111. [Google Scholar] [CrossRef]
- Walsh, K.J.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.C.; Sobel, A.; et al. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Murakami, H.; Wang, Y.; Yoshimura, H.; Mizuta, R.; Sugi, M.; Shindo, E.; Adachi, Y.; Yukimoto, S.; Hosaka, M.; Kusunoki, S.; et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 2012, 25, 3237–3260. [Google Scholar] [CrossRef]
- Murakami, H.; Sugi, M.; Kitoh, A. Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim. Dyn. 2013, 40, 1949–1968. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Clim. Chang. 2017, 7, 885–889. [Google Scholar] [CrossRef]
- Bell, S.S.; Chand, S.S.; Tory, K.J.; Ye, H.; Turville, C. North Indian Ocean tropical cyclone activity in CMIP5 experiments: Future projections using a model-independent detection and tracking scheme. Int. J. Climatol. 2020, 40, 6492–6505. [Google Scholar] [CrossRef]
- Zhang, W.; Vittal, H.; Villarini, G. Potential impacts of anthropogenic forcing on the frequency of tropical depressions In the North Indian Ocean in 2018. J. Mar. Sci. Eng. 2019, 7, 436. [Google Scholar] [CrossRef]
- Kripalani, R.; Oh, J.; Kulkarni, A. South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor. Appl. Climatol. 2007, 90, 133–159. [Google Scholar] [CrossRef]
- Hamadalnel, M.; Zhu, Z.; Lu, R.; Shahid, S.; Ali, M.; Abdalla, I.; Elkanzi, M.; Bilal, M.; Bleiweiss, M.P. Spatio-temporal investigations of monsoon precipitation and its historical and future trend over Sudan. Earth Syst. Environ. 2021, 5, 519–529. [Google Scholar] [CrossRef]
- Rajendran, K.; Kitoh, A. Indian summer monsoon in future climate projection by a super high-resolution global model. Curr. Sci. 2008, 95, 1560–1569. [Google Scholar]
- Gayathri, R.; Murty, P.L.N.; Bhaskaran, P.K.; Srinivasa Kumar, T. A numerical study of hypothetical storm surge and coastal inundation for AILA cyclone in the Bay of Bengal. Environ. Fluid Mech. 2016, 16, 429–452. [Google Scholar] [CrossRef]
- Murty, P.L.N.; Siva Srinivas, K.; Rama Rao, E.P.; Bhaskaran, P.K.; Shenoi, S.S.C.; Padmanabham, J. Improved cyclonic wind fields over the Bay of Bengal and their application in storm surge and wave computations. Appl. Ocean. Res. 2020, 95, 102048. [Google Scholar] [CrossRef]
- Levinson, D.H.; Diamond, H.J.; Knapp, K.R.; Kruk, M.C.; Gibney, E.J. Toward a homogenous global tropical cyclone best-track dataset. Bull. Am. Meteorol. Soc. 2010, 91, 377–380. [Google Scholar]
- Knapp, K.R.; Diamond, H.J.; Kossin, J.P.; Kruk, M.C.; Schreck, C.J. International Best Track Archive for Climate Stewardship (IBTrACS) Project 2018; Version 4; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018. [CrossRef]
- De Winter, J.C. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 2013, 18, 10. [Google Scholar]
- Ghahraman, B. Time trend in the mean annual temperature of Iran. Turk. J. Agric. For. 2006, 30, 439–448. [Google Scholar]
- Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 13 April 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 3–22. [Google Scholar]
- TRMM Earth Data. Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary (accessed on 22 August 2021).
- Larson, J.; Zhou, Y.; Higgins, R.W. Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Clim. 2005, 18, 1247–1262. [Google Scholar] [CrossRef]
- Jiang, H.; Zipser, E.J. Contribution of Tropical Cyclones to the Global Precipitation from Eight Seasons of TRMM Data: Regional, Seasonal, and Interannual Variations. J. Clim. 2010, 23, 1526–1543. [Google Scholar] [CrossRef]
- Dare, R.A.; Davidson, N.E.; McBride, J.L. Tropical Cyclone Contribution to Rainfall over Australia. Mon. Weather. Rev. 2012, 140, 3606–3619. [Google Scholar] [CrossRef]
- Cry, G.W. Effects of Tropical Cyclone Rainfall on the Distribution of Precipitation over the Eastern and Southern United States; US Department of Commerce, Environmental Science Services Administration: Washington DC, USA, 1967; 67p.
- Englehart, P.J.; Douglas, A.V. The role of eastern North Pacific tropical storms in the rainfall climatology of western Mexico. Int. J. Climatol. J. R. Meteorol. Soc. 2001, 21, 1357–1370. [Google Scholar] [CrossRef]
- Dolling, K.; Ritchie, E.A.; Tyo, J.S. The use of the deviation angle variance technique on geostationary satellite imagery to estimate tropical cyclone size parameters. Weather Forecast. 2016, 31, 1625–1642. [Google Scholar] [CrossRef]
- Stark, C.S.; Ritchie, E.A.; Tyo, J.S. Modelling tropical cyclone wind radii in the Australian region using the deviation angle variance. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9342–9345. [Google Scholar] [CrossRef]
- Piñeros, M.F.; Ritchie, E.A.; Tyo, J.S. Objective measures of tropical cyclone structure and intensity change from remotely sensed infrared image data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3574–3580. [Google Scholar] [CrossRef]
- GES DISC Earth Data. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary (accessed on 2 January 2022).
- Ram, A.R.; Brook, M.S.; Cronin, S.J. Engineering geomorphological investigation of the Kasavu landslide, Viti Levu, Fiji. Landslides 2019, 16, 1341–1351. [Google Scholar] [CrossRef]
- Fowler, A.M.; Boswijk, G.; Gergis, J.; Lorrey, A. ENSO history recorded in Agathis australis (kauri) tree rings. Part A: Kauri’s potential as an ENSO proxy. Int. J. Climatol. J. R. Meteorol. Soc. 2008, 28, 1–20. [Google Scholar] [CrossRef]
- Powell, M.D.; Reinhold, T.A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 2007, 88, 513–526. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Camargo, S.J. Past and Projected Changes in Western North Pacific Tropical Cyclone Exposure. J. Clim. 2016, 29, 5725–5739. [Google Scholar] [CrossRef]
- Tran, T.L.; Ritchie, E.A.; Perkins-Kirkpatrick, S.E. A 50-Year Tropical Cyclone Exposure Climatology in Southeast Asia. J. Geophys. Res. Atmos. 2022, 127, e2021JD036301. [Google Scholar] [CrossRef]
Bay of Bengal | Arabian Sea | |||||
---|---|---|---|---|---|---|
1989–1998 | 1999–2008 | 2009–2018 | 1989–1998 | 1999–2008 | 2009–2018 | |
Maximum Track Length (km) | 642.0 | 525.2 | 392.4 | 346.0 | 179.1 | 266.9 |
Mean Duration (days) | 1.87 | 1.53 | 1.23 | 1.07 | 0.47 | 0.82 |
Speed (km/hr) | 17.8 | 18.6 | 15.3 | 14.5 | 14.2 | 14.3 |
Bay of Bengal | Arabian Sea | |||||
---|---|---|---|---|---|---|
Pre-Monsoon | Monsoon | Post-Monsoon | Pre-Monsoon | Monsoon | Post-Monsoon | |
Maximum Track Length (km) | 909 | 2141 | 1061 | 703 | 829 | 812 |
30-year mean track length | 413 | 815 | 336 | 181 | 392 | 250 |
Maximum Duration (days) | 2.1 | 8.0 | 6.3 | 2.4 | 1.8 | 3.3 |
30-year mean Duration (days) | 0.8 | 2.4 | 1.2 | 0.6 | 1.0 | 0.9 |
Maximum Speed (km/hr) | 46.5 | 41.9 | 56.5 | 14.5 | 25.7 | 37.5 |
30-year mean Speed (km/hr) | 23.0 | 16.5 | 16.1 | 13.0 | 15.2 | 14.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, R.; Ritchie, E.A.; Stark, C. Tropical Cyclone Exposure in the North Indian Ocean. Atmosphere 2022, 13, 1421. https://doi.org/10.3390/atmos13091421
Kabir R, Ritchie EA, Stark C. Tropical Cyclone Exposure in the North Indian Ocean. Atmosphere. 2022; 13(9):1421. https://doi.org/10.3390/atmos13091421
Chicago/Turabian StyleKabir, Rubaiya, Elizabeth A. Ritchie, and Clair Stark. 2022. "Tropical Cyclone Exposure in the North Indian Ocean" Atmosphere 13, no. 9: 1421. https://doi.org/10.3390/atmos13091421
APA StyleKabir, R., Ritchie, E. A., & Stark, C. (2022). Tropical Cyclone Exposure in the North Indian Ocean. Atmosphere, 13(9), 1421. https://doi.org/10.3390/atmos13091421