Review: Particulate Matter Emissions from Aircraft
Abstract
:1. Introduction
2. nvPM Emissions from Regulated Aircraft Engines
2.1. Engine Emission Regulations
2.2. Combustion Technologies
2.2.1. Pollutant Formation in Combustion Chamber
2.2.2. Rich-Burn, Quick-Quench, Lean Burn (RQL) Technologies
2.2.3. Lean Burn (LB) Combustors
2.2.4. Future Technology and nvPM Control
2.3. Fuel Composition and PM Emissions
3. nvPM Emissions from Non-Regulated Engines
3.1. Introduction
3.2. Emission Profiles of Non-Regulated Engines
- Turbofan-type engines: Durdina et al. [37] observed maximum nvPM mass emission indices (EI) at approach and minimum at idle; a decrease in PM number EI was observed, with slightly higher PM number at idle than at approach. Like the small turbofan engines, APUs showed decrease in PM number and PM mass with increasing power from Honeywell GTC P85 engines [23,38]. Crayford and Johnson [39] observed lower SN at low power than at higher power from a Rolls Royce Artouste Mk113 engine. For military turbofan engines, Spicer et al. [40] observed increase in SN with increasing power, like the Artouste Mk113.
- Turboshaft: Measured turboshaft SN increased with increasing power, like the turbofan engines [41]. There were however differences in the particle mass and number EI. For small turboshaft engines, Drozd et al. [42], who measured at idle and cruise, observed lower PM mass EI at cruise than at idle from T63-A-700 engines. On the larger T700-GE engines, Corporan et al. [41] observed an increase in PM mass and number EI with increasing power.
- Turboprop: In the case of turboprop engines (all groups measured emissions on T56-A-15; [43,44,45]), SN increased significantly from the lowest power level, low speed ground idle (LSGI), to the next power level, high speed ground idle (HSGI). At higher power settings than HSGI, SN did not increase much. PM number EI decreased with increasing power after HSGI, remaining relatively the same from LSGI through HSGI to flight idle (FI). PM mass EIs also decreased slightly with increasing power.
4. Volatile Particulate Matter (vPM)
5. Emission Inventories
5.1. Airport Emission Inventories
5.2. Regional Level (Country, District)
5.3. Global Level Inventories
5.4. Methods to Derive PM Emissions
5.4.1. LTO nvPM Mass and Number Emission Estimates
5.4.2. Full-Flight nvPM Mass and Number Emissions
5.4.3. vPM Emissions
6. Dispersion Modelling
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, B.Y. Understanding Airport Air Quality and Public Health Studies Related to Airports; Transportation Research Board: Washington, DC, USA, 2015; Volume 135. [Google Scholar]
- Hu, Y.; Zang, Z.; Chen, D.; Ma, X.; Liang, Y.; You, W.; Pan, X.; Wang, L.; Wang, D.; Zhang, Z. Optimization and Evaluation of SO2 Emissions Based on WRF-Chem and 3DVAR Data Assimilation. Remote Sens. 2022, 14, 220. [Google Scholar] [CrossRef]
- COMEAP and references therein. Statement on the Evidence for Differential Health Effects of Particulate Matter According to Source or Components. 2015. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1093974/COMEAP_The_evidence_for_differential_health_effects_of_particulate_matter_according_to_source_or_components.pdf (accessed on 1 August 2022).
- Kinsey, J.S.; Timko, M.T.; Herndon, S.C.; Wood, E.C.; Yu, Z.; Miake-Lye, R.C.; Lobo, P.; Whitefield, P.; Hagen, D.; Wey, C.; et al. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX). J. Air Waste Manag. Assoc. 2012, 62, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boies, A.M.; Stettler, M.E.J.; Swanson, J.J.; Johnson, T.J.; Olfert, J.S.; Johnson, M.; Eggersdorfer, M.L.; Rindlisbacher, T.; Wang, J.; Thomson, K.; et al. Particle Emission Characteristics of a Gas Turbine with a Double Annular Combustor. Aerosol Sci. Technol. 2015, 49, 842–855. [Google Scholar] [CrossRef] [Green Version]
- Brem, B.T.; Durdina, L.; Siegerist, F.; Beyerle, P.; Bruderer, K.; Rindlisbacher, T.; Rocci-Denis, S.; Andac, M.G.; Zelina, J.; Penanhoat, O.; et al. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine. Environ. Sci. Technol. 2015, 49, 13149–13157. [Google Scholar] [CrossRef]
- Jonsdottir, H.R.; Delaval, M.; Leni, Z.; Keller, A.; Brem, B.T.; Siegerist, F.; Schönenberger, D.; Durdina, L.; Elser, M.; Burtscher, H.; et al. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Commun. Biol. 2019, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. (1994) 2021, 244, 117834. [Google Scholar] [CrossRef]
- AVIATOR Consortium. AVIATOR List of Publications. Available online: https://aviatorproject.eu/publications/ (accessed on 28 June 2022).
- ACACIA Consortium. ACACIA List of Publications. Available online: https://www.acacia-project.eu/publications.html (accessed on 28 June 2022).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10)‚ Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 28 June 2022).
- ICAO. ICAO International Standards and Recommended Practices, Annex 16 to the Convention on International Civil Aviation, Environmental Protection: Volume II—Aircraft Engine Emissions, 4th ed.; ICAO: Montreal, QC, Canada, 2017. [Google Scholar]
- ICAO. ICAO Engine Exhaust Emissions Databank. Available online: https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank (accessed on 20 August 2020).
- Liu, Y.; Sun, X.; Sethi, V.; Nalianda, D.; Li, Y.-G.; Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci. 2017, 94, 12–45. [Google Scholar] [CrossRef] [Green Version]
- ICAO Committee on Aviation Environmental Protection. Doc 10126: CAEP/11 Report, Independent Expert Integrated Review; ICAO Committee on Aviation Environmental Protection: Montreal, QC, Canada, 2019. [Google Scholar]
- Stickles, R.; Barrett, J. TAPS II Combustor Final Report; 2013. Available online: https://www.faa.gov/about/office_org/headquarters_offices/apl/research/aircraft_technology/cleen/reports/media/TAPS_II_Public_Final_Report.pdf (accessed on 1 August 2022).
- Palies, P.P.; Acharya, R.; Hoffie, A. Design and Challenges of Lean Fully Premixed Injectors for Gas Turbine Engines. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar] [CrossRef]
- Hicks, Y.; Tacina, K. Design Guidelines for Swirl-Venturi Fuel-Air Mixers for Lean Direct Injection Combustors; NASA/TM-20210011787; NASA: Cleveland, OH, USA, 2021. Available online: https://ntrs.nasa.gov/api/citations/20210011787/downloads/TM-20210011787.pdf (accessed on 1 August 2022).
- Beyersdorf, A.J.; Timko, M.T.; Ziemba, L.D.; Bulzan, D.; Corporan, E.; Herndon, S.C.; Howard, R.; Miake-Lye, R.; Thornhill, K.L.; Winstead, E.; et al. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos. Chem. Phys. 2014, 14, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Corbin, J.C.; Schripp, T.; Anderson, B.E.; Smallwood, G.J.; LeClercq, P.; Crosbie, E.C.; Achterberg, S.; Whitefield, P.D.; Miake-Lye, R.C.; Yu, Z.; et al. Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: Comparison of measurement techniques for mass, number, and size. Atmos. Meas. Tech. 2022, 15, 3223–3242. [Google Scholar] [CrossRef]
- Moore, R.H.; Shook, M.A.; Ziemba, L.D.; DiGangi, J.P.; Winstead, E.L.; Rauch, B.; Jurkat, T.; Thornhill, K.L.; Crosbie, E.C.; Robinson, C.; et al. Take-off engine particle emission indices for in-service aircraft at Los Angeles International Airport. Sci. Data 2017, 4, 170198. [Google Scholar] [CrossRef] [Green Version]
- Corporan, E.; Edwards, T.; Shafer, L.; DeWitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels. Energy Fuels 2011, 25, 955–966. [Google Scholar] [CrossRef]
- Lobo, P.; Christie, S.; Khandelwal, B.; Blakey, S.G.; Raper, D.W. Evaluation of Non-volatile Particulate Matter Emission Characteristics of an Aircraft Auxiliary Power Unit with Varying Alternative Jet Fuel Blend Ratios. Energy Fuels 2015, 29, 7705–7711. [Google Scholar] [CrossRef]
- Lobo, P.; Condevaux, J.; Yu, Z.; Kuhlmann, J.; Hagen, D.E.; Miake-Lye, R.C.; Whitefield, P.D.; Raper, D.W. Demonstration of a Regulatory Method for Aircraft Engine Nonvolatile PM Emissions Measurements with Conventional and Isoparaffinic Kerosene fuels. Energy Fuels 2016, 30, 7770–7777. [Google Scholar] [CrossRef]
- Schripp, T.; Anderson, B.; Crosbie, E.C.; Moore, R.H.; Herrmann, F.; Oßwald, P.; Wahl, C.; Kapernaum, M.; Köhler, M.; Le Clercq, P.; et al. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign. Environ. Sci. Technol. 2018, 52, 4969–4978. [Google Scholar] [CrossRef]
- Schripp, T.; Herrmann, F.; Oßwald, P.; Köhler, M.; Zschocke, A.; Weigelt, D.; Mroch, M.; Werner-Spatz, C. Particle emissions of two unblended alternative jet fuels in a full scale jet engine. Fuel 2019, 256, 115903. [Google Scholar] [CrossRef]
- Timko, M.T.; Yu, Z.; Onasch, T.B.; Wong, H.-W.; Miake-Lye, R.C.; Beyersdorf, A.J.; Anderson, B.E.; Thornhill, K.L.; Winstead, E.L.; Corporan, E.; et al. Particulate Emissions of Gas Turbine Engine Combustion of a Fischer−Tropsch Synthetic Fuel. Energy Fuels 2010, 24, 5883–5896. [Google Scholar] [CrossRef]
- Durand, E.; Lobo, P.; Crayford, A.; Sevcenco, Y.; Christie, S. Impact of fuel hydrogen content on non-volatile particulate matter emitted from an aircraft auxiliary power unit measured with standardised reference systems. Fuel 2021, 287, 119637. [Google Scholar] [CrossRef]
- Timko, M.T.; Fortner, E.; Franklin, J.; Yu, Z.; Wong, H.-W.; Onasch, T.B.; Miake-Lye, R.C.; Herndon, S.C. Atmospheric measurements of the physical evolution of aircraft exhaust plumes. Environ. Sci. Technol. 2013, 47, 3513–3520. [Google Scholar] [CrossRef]
- Williams, P.I.; Allan, J.D.; Lobo, P.; Coe, H.; Christie, S.; Wilson, C.; Hagen, D.; Whitefield, P.; Raper, D.; Rye, L. Impact of alternative fuels on emissions characteristics of a gas turbine engine—Part 2: Volatile and semivolatile particulate matter emissions. Environ. Sci. Technol. 2012, 46, 10812–10819. [Google Scholar] [CrossRef]
- Huang, C.-H.; Vander Wal, R.L. Effect of Soot Structure Evolution from Commercial Jet Engine Burning Petroleum Based JP-8 and Synthetic HRJ and FT Fuels. Energy Fuels 2013, 27, 4946–4958. [Google Scholar] [CrossRef]
- Kumal, R.R.; Liu, J.; Gharpure, A.; Wal, R.L.V.; Kinsey, J.S.; Giannelli, B.; Stevens, J.; Leggett, C.; Howard, R.; Forde, M.; et al. Impact of Biofuel Blends on Black Carbon Emissions from a Gas Turbine Engine. Energy Fuels 2020, 34, 4958–4966. [Google Scholar] [CrossRef] [PubMed]
- Liati, A.; Schreiber, D.; Alpert, P.A.; Liao, Y.; Brem, B.T.; Corral Arroyo, P.; Hu, J.; Jonsdottir, H.R.; Ammann, M.; Dimopoulos Eggenschwiler, P. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Environ. Pollut. 2019, 247, 658–667. [Google Scholar] [CrossRef]
- Saffaripour, M.; Thomson, K.A.; Smallwood, G.J.; Lobo, P. A review on the morphological properties of non-volatile particulate matter emissions from aircraft turbine engines. J. Aerosol Sci. 2020, 139, 105467. [Google Scholar] [CrossRef]
- Trueblood, M.B.; Lobo, P.; Hagen, D.E.; Achterberg, S.C.; Liu, W.; Whitefield, P.D. Application of a hygroscopicity tandem differential mobility analyzer for characterizing PM emissions in exhaust plumes from an aircraft engine burning conventional and alternative fuels. Atmos. Chem. Phys. 2018, 18, 17029–17045. [Google Scholar] [CrossRef] [Green Version]
- Elser, M.; Brem, B.T.; Durdina, L.; Schönenberger, D.; Siegerist, F.; Fischer, A.; Wang, J. Chemical composition and radiative properties of nascent particulate matter emitted by an aircraft turbofan burning conventional and alternative fuels. Atmos. Chem. Phys. 2019, 19, 6809–6820. [Google Scholar] [CrossRef] [Green Version]
- Durdina, L.; Brem, B.T.; Schönenberger, D.; Siegerist, F.; Anet, J.G.; Rindlisbacher, T. Nonvolatile Particulate Matter Emissions of a Business Jet Measured at Ground Level and Estimated for Cruising Altitudes. Environ. Sci. Technol. 2019, 53, 12865–12872. [Google Scholar] [CrossRef] [PubMed]
- Bulzan, D.; Anderson, B.; Wey, C.; Howard, R.; Winstead, E.; Beyersdorf, A.; Corporan, E.; DeWitt, M.J.; Klingshirn, C.; Herndon, S.; et al. Gaseous and Particulate Emissions Results of the NASA Alternative Aviation Fuel Experiment (AAFEX). In Power for Land, Sea, and Air, Proceedings of the Volume 2: Combustion, Fuels and Emissions, Parts A and B; ASME Turbo Expo 2010: Glasgow, UK, 14–18 June 2010; ASMEDC: Houston, TX, USA, 2010; pp. 1195–1207. ISBN 978-0-7918-4397-0. [Google Scholar] [CrossRef]
- Crayford, A.; Johnson, M. SAMPLE III: Contribution to Aircraft Engine PM Certification Requirement and Standard: First Specific Contract-Final Report; Studying, sAmpling, and Measuring of aircraft ParticuLate Emissions III—Specific Contract 01 EASA.2010.FC.10; European Aviation Safety Agency: Cologne, Germany, 2011. [Google Scholar]
- Spicer, C.W.; Holdren, M.W.; Miller, S.E.; Smith, R.N.D.L.; Kuhlman, M.R.; Hughes, D.P. Aircraft Emissions Characterization: TF41-A2, TF30-P103, and TF30-P109 Engines; ESL-TR-87-27; Battelle Columbus Division: Columbus, OH, USA, 1987. [Google Scholar]
- Corporan, E.; DeWitt, M.J.; Klingshirn, C.D.; Striebich, R.; Cheng, M.-D. Emissions Characteristics of Military Helicopter Engines with JP-8 and Fischer-Tropsch Fuels. J. Propuls. Power 2010, 26, 317–324. [Google Scholar] [CrossRef]
- Drozd, G.T.; Miracolo, M.A.; Presto, A.A.; Lipsky, E.M.; Riemer, D.D.; Corporan, E.; Robinson, A.L. Particulate Matter and Organic Vapor Emissions from a Helicopter Engine Operating on Petroleum and Fischer–Tropsch Fuels. Energy Fuels 2012, 26, 4756–4766. [Google Scholar] [CrossRef]
- Corporan, E.; DeWitt, M.J.; Belovich, V.; Pawlik, R.; Lynch, A.C.; Gord, J.R.; Meyer, T.R. Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer−Tropsch Jet Fuel. Energy Fuels 2007, 21, 2615–2626. [Google Scholar] [CrossRef]
- Spicer, C.W.; Holdren, M.W.; Cowen, K.A.; Joseph, D.W.; Satola, J.; Goodwin, B.; Mayfield, H.; Laskin, A.; Lizabeth Alexander, M.; Ortega, J.V.; et al. Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sampling of aircraft on the ground: Results for C-130 and F-15 aircraft. Atmos. Environ. 2009, 43, 2612–2622. [Google Scholar] [CrossRef]
- Chan, T.W.; Pham, V.; Chalmers, J.; Davison, C.; Chishty, W.; Poitras, P. Immediate impacts on particulate and gaseous emissions from a T56 turbo-prop engine using a biofuel blend. In SAE Technical Paper Series, Proceedings of the SAE 2013 AeroTech Congress & Exhibition, Montreal, QC, USA, 24–26 September 2013; SAE International 400 Commonwealth Drive: Warrendale, PA, USA, 2013. [Google Scholar]
- Swedish Defense Research Agency. Environmental Impact of Aircraft: FOI:s Confidential Database for Turboprop Engine Emissions. Available online: https://www.foi.se/en/foi/research/aeronautics-and-space-issues/environmental-impact-of-aircraft.html (accessed on 1 August 2022).
- Klapmeyer, M.E.; Marr, L.C. CO2, NOx, and particle emissions from aircraft and support activities at a regional airport. Environ. Sci. Technol. 2012, 46, 10974–10981. [Google Scholar] [CrossRef]
- Spicer, C.W.; Holdren, M.W.; Smith, D.L.; Hughes, D.P.; Smith, M.D. Chemical composition of exhaust from aircraft turbine engines. J. Eng. Gas Turbines Power 1992, 111–117. [Google Scholar] [CrossRef]
- Spicer, C.W.; Holdren, M.W.; Smith, D.L.; Miller, S.E.; Smith, R.N.; Hughes, D.P. Aircraft Emissions Characterization: F101 and F110 Engines; ESL-TR-89-13; Battelle Columbus Division: Columbus, OH, USA, 1989. [Google Scholar]
- Khandelwal, B.; Cronly, J.; Ahmed, I.S.; Wijesinghe, C.J.; Lewis, C. The effect of alternative fuels on gaseous and particulate matter (PM) emission performance in an auxiliary power unit (APU). Aeronaut. J. 2019, 123, 617–634. [Google Scholar] [CrossRef] [Green Version]
- Cain, J.; DeWitt, M.J.; Blunck, D.; Corporan, E.; Striebich, R.; Anneken, D.; Klingshirn, C.; Roquemore, W.M.; Vander Wal, R. Characterization of Gaseous and Particulate Emissions From a Turboshaft Engine Burning Conventional, Alternative, and Surrogate Fuels. Energy Fuels 2013, 27, 2290–2302. [Google Scholar] [CrossRef]
- Corporan, E.; DeWitt, M.; Wagner, M. Evaluation of soot particulate mitigation additives in a T63 engine. Fuel Process. Technol. 2004, 85, 727–742. [Google Scholar] [CrossRef]
- Kinsey, J.S.; Corporan, E.; Pavlovic, J.; DeWitt, M.; Klingshirn, C.; Logan, R. Comparison of measurement methods for the characterization of the black carbon emissions from a T63 turboshaft engine burning conventional and Fischer-Tropsch fuels. J. Air Waste Manag. Assoc. 2019, 69, 576–591. [Google Scholar] [CrossRef]
- Corporan, E.; Quick, A.; DeWitt, M.J. Characterization of particulate matter and gaseous emissions of a C-130H aircraft. J. Air Waste Manag. Assoc. 2008, 58, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-D.; Corporan, E.; DeWitt, M.J.; Spicer, C.W.; Holdren, M.W.; Cowen, K.A.; Laskin, A.; Harris, D.B.; Shores, R.C.; Kagann, R.; et al. Probing emissions of military cargo aircraft: Description of a joint field measurement Strategic Environmental Research and Development Program. J. Air Waste Manag. Assoc. 2008, 58, 787–796. [Google Scholar] [CrossRef]
- Wong, H.-W.; Jun, M.; Peck, J.; Waitz, I.A.; Miake-Lye, R.C. Detailed Microphysical Modeling of the Formation of Organic and Sulfuric Acid Coatings on Aircraft Emitted Soot Particles in the Near Field. Aerosol Sci. Technol. 2014, 48, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.-W.; Jun, M.; Peck, J.; Waitz, I.A.; Miake-Lye, R.C. Roles of Organic Emissions in the Formation of Near Field Aircraft-Emitted Volatile Particulate Matter: A Kinetic Microphysical Modeling Study. J. Eng. Gas Turbines Power 2015, 137, 072606. [Google Scholar] [CrossRef]
- Peck, J.; Yu, Z.; Miake-Lye, R.; Liscinsky, D.S. A Volatile Particle Microphysical Simulation Model for the Evolution of Surrogate Organic Emissions in an Aircraft Exhaust Plume. In Proceedings of the TAC-4 Proceedings, Bad Kohlgrub, Germany, 22–25 June 2015; pp. 21–26. [Google Scholar]
- Yu, Z.; Timko, M.T.; Herndon, S.C.; Miake-Lye, R.C.; Beyersdorf, A.J.; Ziemba, L.D.; Winstead, E.L.; Anderson, B.E. Mode-specific, semi-volatile chemical composition of particulate matter emissions from a commercial gas turbine aircraft engine. Atmos. Environ. 2019, 218, 116974. [Google Scholar] [CrossRef]
- Celikel, A.; Duchene, N.; Fleuti, E.; Fuller, I.; Hofmann, P.; Moore, T.; Silue, M. Airport Local Air Quality Studies Case Study: Emission Inventory for Zurich Airport with Different Methodologies EEC/SEE/2004/010. 2004. Available online: https://www.eurocontrol.int/publication/airport-local-air-quality-studies-case-study-emission-inventory-zurich-airport (accessed on 28 June 2022).
- Fleuti, E.; Maraini, S. Air Quality Assessment Sensitivities: Zurich Airport Case Study. 2012. Available online: https://www.flughafen-zuerich.ch/-/jssmedia/airport/portal/dokumente/das-unternehmen/politics-and-responsibility/environmental-protection/technische-berichte/2012-05_zrh_air-quality-assessment-sensitivities_v2.pdf?vs=1 (accessed on 28 June 2022).
- Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC (Text with EEA Relevance). Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L2284&from=EN (accessed on 1 August 2022).
- Guidelines for Reporting Emissions and Projections Data under the Convention on Long-Range Transboundary Air Pollution; ECE/EB.AIR/128; United Nations Economic Commission for Europe, United Nations Publication: Geneva, Switzerland, 2015.
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2019//EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories; Aviation; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9480-098-5. [Google Scholar]
- U.S. Environmental Protection Agency, EPA. 2019 National Emission Inventory Technical Support Document: Point Data Category EPA-454/R-22-001, 2022. 63. Available online: https://www.epa.gov/system/files/documents/2022-02/nei2019_tsd_point_feb2022.pdf (accessed on 1 August 2022).
- U.S. Environmental Protection Agency, EPA. 2017 National Emissions Inventory: January 2021 Updated Release, Technical Support Document. 2021. Available online: https://www.epa.gov/sites/default/files/2021-02/documents/nei2017_tsd_full_jan2021.pdf (accessed on 1 August 2022).
- ICAO. 2019 Environmental Report: Aviation and Environment. 2019. Available online: https://www.icao.int/environmental-protection/Documents/ICAO-ENV-Report2019-F1-WEB%20%281%29.pdf (accessed on 1 August 2022).
- ICAO Committee on Aviation Environmental Protection. Models and Databases. Available online: https://www.icao.int/environmental-protection/Pages/modelling-and-databases.aspx (accessed on 28 June 2022).
- Agarwal, A.; Speth, R.L.; Fritz, T.M.; Jacob, S.D.; Rindlisbacher, T.; Iovinelli, R.; Owen, B.; Miake-Lye, R.C.; Sabnis, J.S.; Barrett, S.R.H. SCOPE11 Method for Estimating Aircraft Black Carbon Mass and Particle Number Emissions. Environ. Sci. Technol. 2019, 53, 1364–1373. [Google Scholar] [CrossRef]
- Boucher, O.D.; Randall, P.; Artaxo, C.; Bretherton, G.; Feingold, P.; Forster, V.-M.; Kerminen, Y.; Kondo, H.; Liao, U.; Lohmann, P.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- ICAO. ICAO Doc 9889: Airport Air Quality Manual, 2nd ed.; ICAO: Montreal, QC, Canada, 2020. [Google Scholar]
- Teoh, R.; Stettler, M.E.; Majumdar, A.; Schumann, U.; Graves, B.; Boies, A.M. A methodology to relate black carbon particle number and mass emissions. J. Aerosol Sci. 2019, 132, 44–59. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Wang, J. A number-based inventory of size-resolved black carbon particle emissions by global civil aviation. Nat. Commun. 2019, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Teoh, R.; Stettler, M.E.J.; Majumdar, A.; Schumann, U. Aircraft black carbon particle number emissions—A New Predictive Method and Uncertainty Analysis. In Proceedings of the 21st ETH-Conference on Combustion Generated Nanoparticles, Zurich, Switzerland, 19–22 June 2017. [Google Scholar]
- Stettler, M.E.J.; Boies, A.M. Aircraft non-volatile particle emissions: Estimating number from mass. In Proceedings of the 18th ETH Conference on Combustion Generated Nanoparticle, Zurich, Switzerland, 22–25 June 2014. [Google Scholar]
- Cameron, M.A.; Jacobson, M.Z.; Barrett, S.R.H.; Bian, H.; Chen, C.C.; Eastham, S.D.; Gettelman, A.; Khodayari, A.; Liang, Q.; Selkirk, H.B.; et al. An intercomparative study of the effects of aircraft emissions on surface air quality. J. Geophys. Res. Atmos. 2017, 122, 8325–8344. [Google Scholar] [CrossRef]
- DuBois, D.; Paynter, G.C. “Fuel Flow Method2” for Estimating Aircraft Emissions. SAE Trans. J. Aerosp. 2006, 115, 1–14. [Google Scholar] [CrossRef]
- Doppelheuer, A.; Lecht, M. Influence of Engine Performance on Emission Characteristics. In Gas Turbine Engine Combustion, Emissions and Alternative Fuels, Proceedings of the RTO/AVT Symposium: Lisboa, Portugal, 12–16 October 1998; North Atlantic Treaty Organization: Brussel, Belgium, 1999. [Google Scholar]
- Hileman, J.I.; Ortiz, D.S.; Bartis, J.T.; Wong, H.M.; Donohoo, P.E.; Weiss, M.A.; Waitz, I.A. Near-Term Feasibility of Alternative Jet Fuels; PARTNER-COE-2009-001, Final report of PARTNER Project 17. 2009. Available online: https://stuff.mit.edu/afs/athena/dept/aeroastro/partner/reports/proj17/altfuelfeasrpt.pdf (accessed on 1 August 2022).
- Defense Energy Support Center (DESC). Petroleum Quality Information System Report; DESC: Fort Belvoir, Virginia, 1999–2006. [Google Scholar]
- ICAO. 2010 Environmental Report: Aviation and Climate Change. 2010. Available online: https://www.icao.int/environmental-protection/Documents/Publications/ENV_Report_2010.pdf (accessed on 1 August 2022).
- Department for Transport. Project for the Sustainable Development of Heathrow (PSDH); Department for Transport, UK. 2006. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20061011120000/http://www.dft.gov.uk/stellent/groups/dft_aviation/documents/divisionhomepage/032204.html (accessed on 1 August 2022).
- Arunachalam, S.; Valencia, A.; Woody, M.C.; Snyder, M.G.; Huang, J.; Weil, J.; Soucacos, P.; Webb, S. Dispersion Modeling Guidance for Airports Addressing Local Air Quality Health Concerns; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Kim, B.; Rachami, J.; Robinson, D.; Robinette, B.; Wyle, K.N.; Arunachalam, S.; Davis, N.; Baek, B.H.; Shankar, U.; Talgo, K.; et al. Guidance for Quantifying the Contribution of Airport Emissions to Local Air Quality; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Ruf, C. Airport Local Air Quality: Zurich Airport Regional Air Quality Study 2013. 2013. Available online: https://www.flughafen-zuerich.ch/-/jssmedia/airport/portal/dokumente/das-unternehmen/politics-and-responsibility/environmental-protection/technische-berichte/2013_localairquality_e_final.pdf?vs=1 (accessed on 1 August 2022).
- Barrett, S.R.; Britter, R.E.; Waitz, I.A. Impact of aircraft plume dynamics on airport local air quality. Atmos. Environ. 2013, 74, 247–258. [Google Scholar] [CrossRef]
- Janicke, U. Derivation of Smooth & Shift Parameters to Account for Source Dynamics in ALAQS-AV Emission Grids; EEC/SEE/2005/016. 2005. Available online: https://www.eurocontrol.int/sites/default/files/library/038_Derivation_of_Smooth_and_Shift_Parameters_for_ALAQS-AV.pdf (accessed on 1 August 2022).
Studies | Type of Engine | Description of Data | Measured/Reported Compounds |
---|---|---|---|
Durdina et al., 2019 [37] | Turbofan < 26.7 kN | Measured nvPM emissions from a Dassault 900EX carrying three Honeywell TFE731-60 engines were similar in profile to larger engine measurements. | nvPM mass and number, GMD |
Klapmeyer and Marr (2012) [47] | Turbofan < 26.7 kN | Plume measurements, during regular airport operations, of NOx, CO2, and PM from Cessna C560 aircrafts carrying two Pratt & Whitney (PW) JTD15-5 engines during idle/taxi and at take-off. | NOx, Particle number, CO2 |
ICAO EEDB [13] | Turbofan < 26.7 kN | Pratt & Whitney reported emissions from JT15D series (-1, -4, -5, -5A, -5B, -5C) and corrected as prescribed by ICAO. Allied Signal reported emissions from TFE731-2-2B and TF3731-3 engines | Reported on ICAO EEDB; HC, CO, NOx, SN |
Spicer et al., 2009, 1992, 1989, 1987 [40,44,48,49] | Military turbofans | Military turbofan engines have different power modes than non-military turbofan engines including an afterburn power mode. However, excluding afterburn power mode for which emissions data are very scarce, military turbofan engine emission profiles are like other turbofan engines. Particle emissions measured as smoke numbers showed highest smoke numbers at 75% to intermediate power and lowest at idle to 30% of normal rated power. Measured airplane engines include F110, F101, F100-PE-100, TF41-42, TF30-P103, TF30-P109. | (JP-4 fuel; [44]: JP-8 + 100) HC, CO, NOx, SN |
Bulzan et al., 2010; Crayford and Johnson, 2011; Khandelwal et al., 2019; Kinsey et al., 2012 Lobo et al., 2015 [4,23,38,39,50] | APUs | Generally, APUs show similar CO and HC emission profiles to larger turbofan engines. Observed NOx emissions were different; while some studies observed no change in NOx emissions, others observed some increase in NOx emission with increasing power [38,39]. Particle mass EIs decreased with increasing power demand for GTCP85 series [4,23,38], whereas a Rolls Royce Artouste Mk113 APU had higher PM mass concentration (mg/m3) at full power than at idle [39]. Lobo et al. (2015) observed lowest PM number EIs at highest power. Kinsey et al.’s (2012) study was inconclusive in PM number EIs as different research groups in the same campaign showed different particle number EI profiles; some were u-shaped with maximum at highest power, others showed no variation with power. For the Kinsey et al.’s group (2012), using Fischer Tropsch fuel (FT; synfuel) reduced PM number and mass EI, and had a clear profile of decreasing EIs with increasing exhaust gas temperature. Crayford et al. observed higher smoke number (SN) and PM number concentrations (number/cm3) at full power than at idle [39]. | [38] (JP-8, and FT-2): HC, NOx, CO, nvPM mass and number [39]: HC, CO, NOx, SN [4] (JP-8, and FT-2): SO2, HC, CO, NOx, nvPM mass and number [23] (Jet A1): nvPM mass and number [50] (Jet A1): CO and NOx |
Cain et al., 2013; Corporan et al., 2007, 2010, 2004; Drozd et al. 2012; Kinsey et al., 2019 [41,42,43,51,52,53] | Turboshaft engines (primarily used on helicopters) | Variable observations were made for particulate emissions, probably due to differences in sampling methods. There was a general agreement in particle number emissions. Particulate number and mass emissions (concentrations and EIs) and geometric mean diameter (GMD) increased with increasing power. General emission profiles of emissions of CO, NOx, and HC are like those of turbofan engines. PM emissions were significantly reduced with FT fuel. | [51] (JP-8): CO2, CO, PM mass and number, particle size distribution (PSD) [22,41,43,52,54] (JP-8, FT): GMD, SN, CO, NOx, PM mass and number [42] (JP-8, FT): PM mass, CO, CO2, HC [53] (JP-8, FT): GMD, CO, CO2, HC |
Chan et al., 2013; Cheng et al., 2008; Corporan et al., 2008; Spicer et al., 2009 [44,45,54,55] | Turboprop engines (primarily on military aircraft) | Emission measurements were primarily conducted on turboprop engines for military purposes as in the T56 series III engines on C-130 Hercules (C-130H) aircraft. Power in turboprop engines is reported as shaft horsepower (shp). The gaseous emission profiles observed for the T56 series engines are like those of turboshaft engines. Particle number and mass emissions tended to decrease with an increase in power. | [55] (JP-8): CO, NOx, CO2, SOx [54] (JP-8): SN, PM number and mass, GMD, CO, NOx, CO2 [44] (JP8): CO, NOx, OC [45] (F-34, 50-50 F34/Camelina-HEFA blend): PM number and mass, NOx, CO, HC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owen, B.; Anet, J.G.; Bertier, N.; Christie, S.; Cremaschi, M.; Dellaert, S.; Edebeli, J.; Janicke, U.; Kuenen, J.; Lim, L.; et al. Review: Particulate Matter Emissions from Aircraft. Atmosphere 2022, 13, 1230. https://doi.org/10.3390/atmos13081230
Owen B, Anet JG, Bertier N, Christie S, Cremaschi M, Dellaert S, Edebeli J, Janicke U, Kuenen J, Lim L, et al. Review: Particulate Matter Emissions from Aircraft. Atmosphere. 2022; 13(8):1230. https://doi.org/10.3390/atmos13081230
Chicago/Turabian StyleOwen, Bethan, Julien G. Anet, Nicolas Bertier, Simon Christie, Michele Cremaschi, Stijn Dellaert, Jacinta Edebeli, Ulf Janicke, Jeroen Kuenen, Ling Lim, and et al. 2022. "Review: Particulate Matter Emissions from Aircraft" Atmosphere 13, no. 8: 1230. https://doi.org/10.3390/atmos13081230
APA StyleOwen, B., Anet, J. G., Bertier, N., Christie, S., Cremaschi, M., Dellaert, S., Edebeli, J., Janicke, U., Kuenen, J., Lim, L., & Terrenoire, E. (2022). Review: Particulate Matter Emissions from Aircraft. Atmosphere, 13(8), 1230. https://doi.org/10.3390/atmos13081230