Assessment and Impacts of Air Pollution from Brick Kilns on Public Health in Northern Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Particulate Matter and Air Pollutants Analysis
2.3. Qualitative Data Collection and Analysis
3. Results
3.1. Concentrations of Particulate Matter
3.2. Concentrations of CO2
3.3. Concentrations of Other Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Household Air Pollution and Health. Fact Sheet 292. Available online: https://www.WHO.int/mediacentre/,2012.factsheets/fs292/en/ (accessed on 15 February 2017).
- Ladrigan, P.J.; Fuller, R.; Acostta, N.I.R.; Adayi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The lancet commission on pollution and health. Lancet 2018, .391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Fereidoun, H.; Nourddin, M.S.; Rreza, N.A.; Mohsen, A.; Ahmad, R.; Pouria, H. The effect of long-term exposure to particulate pollution on the lung function of Teheranian and Zanjanian students. Pak. J. Physiol. 2007, 3, 1–5. [Google Scholar]
- Coyle, E.D.; Simmons, R. DA Understanding the Global Energy Crisis; Purdue University Press E-Books: West Lafayette, IN, USA, 2014. [Google Scholar]
- Ismail, M.; Muhammad, D.; Khan, F.U.; Munsif, F.; Ahmad, T.; Ali, S.; Khalid, M.; Haq, N.U.; Ahmad, M. Effect of brick kilns emissions on heavy metal (Cd and Cr) content of contiguous soil and plants. Sarhad J. Agric. 2012, 28, 165–170. [Google Scholar]
- WHO. Air Pollution. World Health Organization. Available online: https://www.who.int/topics/airpollution/en:2013 (accessed on 23 April 2018).
- Singh, A.L.; Asgher, M.S. Impact of brick kilns on land use/land cover changes around Aligarh city, India. Habitat Int. 2005, 29, 591–602. [Google Scholar] [CrossRef]
- WHO. Guidelines for Air Quality.; World Health Organization: Geneva, Switzerland, 2000. Available online: http://www.rshm.saglik.gov.tr/hki/pdf/Guidelines-for-Air-Quality.pdf (accessed on 20 March 2021).
- NRDC. Tar Sands Crude Oil: Health Effects of a Dirty and Destructive Fuel. Natural Resources Defense Council (NRDC). Issue brief IB:14-02-B. 2014. Available online: http://www.nrdc.org/energy/files/tar-sands-health-effectsIB.pdf (accessed on 18 February 2016).
- Geng, G.; Zhang, Q.; Martin, R.V.; Van Donkelaar, A.; Huo, H.; Che, H.; Lin, J.; He, K. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens Environ. 2015, 166, 262–270. [Google Scholar] [CrossRef]
- Baum, E. Black Carbon from Brick Kilns; Clean Air Task Force: Boston, MA, USA, 2010; Available online: http://goo.gl/nJupe (accessed on 2 January 2014).
- Naeher, L.P.; Brauer, M.; Lipstt, M.; Zelikoff, J.T.; Simpson, C.D.; Koening, J.Q.; Smith, K.R. Wood smoke health effect: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef]
- WB. Nepal-Country Environmental Analysis: Strengthening Institutions and Management Systems for Enhanced Environmental Governance. Nepal J. Environ. Public Health 2007. Available online: https://openknowledge.worldbank.org/handle/10986/7996 (accessed on 2 May 2021).
- Kumar, R.; Barth, M.C.; Pfster, G.G.; Nair, V.S.; Ghude, S.D.; Ojha, N. What controls the seasonal cycle of black carbon aerosols in India? J. Geophys. Res. Atmos. 2015, 120, 7788–7812. [Google Scholar] [CrossRef] [Green Version]
- WHO. Burden of Diseases. World Health Organization. 2014. Available online: http://www.who.int/gho/phe/outdoor-air-pollution/burden-text/en/ (accessed on 15 February 2016).
- Coccia, M. The impact of first and second wave of the COVID-19 pandemic in society: Comparative analysis to support control measures to cope with negative effects of future infectious diseases. Environ. Res. 2021, 197, 111099. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Bontempi, E.; Coccia, M.; Kumar, M.; Domingo, J.L. SARS-CoV-2 and other pathogenic microorganisms in the environment. Environ. Res. 2021, 201, 111606. [Google Scholar] [CrossRef]
- Coccia, M. High health expenditures and low exposure of population to air pollution as critical factors that can reduce fatality rate in COVID-19 pandemic crisis: A global analysis. Environ. Res. 2021, 199, 111339. [Google Scholar] [CrossRef]
- Colbeck, I.; Nasir, Z.A.; Ali, Z. The state of ambient air quality in Pakistan—A review. Environ. Sci. Pollut. Res. 2010, 17, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Triana, E.; Enriquez, S.; Afzal, J.; Nakagawa, A.; Khan, A.S. Cleaning Pakistan’s Air. In Policy Options to Address the Cost of Outdoor Air Pollution; World Bank Publications: Washington, DC, USA, 2014. [Google Scholar]
- Ilyass, Z. Environmental Simulation in Quetta, Pakistan; Unpublished. Ph.D. Thesis, University of Baluchistan, Quetta, Pakistan, 2005. [Google Scholar]
- Khan, K.; Aslam, M.; Orfi, S.D.; Khan, H.M. Norm and associated radiation hazards in bricks fabricated in various localities of the North-West Frontier Province (Pakistan). J. Environ. Radioact. 2002, 58, 59–66. [Google Scholar] [CrossRef]
- Ishaq, M.; Murad, A.K.; Akbar, J.; Ahmad, I. Heavy metals in brick kiln located area using atomic absorption spectrosphotometer: A case study from the city of Peshawar, Pakistan. Environ. Monit. Assess. 2010, 166, 409–420. [Google Scholar] [CrossRef]
- Adrees, M.; Ibrahim, M.; Mehmood, A.; Abbas, F.; Saleem, F.; Rizwan, M.; Hina, S.; Jabeen, F.; Ali, S. Gaseous pollutants from brick kilns industry decreased the growth, photosynthesis, and yield of wheat. Environ. Monit. Assess. 2016, 188, 267. [Google Scholar] [CrossRef]
- Ahmad, W.; Nisa, S.; Mohammad, N.; Hussain, R. Assessment of PM10 & PM2.5 and associated health problems in different areas of cement industry, Hattar, Haripur. J. Sci. Technol. 2013, 37, 7–15. [Google Scholar]
- Pervaiz, S.; Akram, M.A.N.; Khan, F.Z.; Javid, K.; Zahid, Y. Brick Sector and Air Quality: An Integrated Assessment towards 2020 Challenge of Environment Development. Environ. Nat. Resour. J. 2021, 19, 153–164. [Google Scholar] [CrossRef]
- Liu, T.; Tian, L.; Yang, L.; Yan, D.; Huang, Q.; Lu, G.; Huang, Z. Emissions of BTEXs, NMHC, PAHs, and PCDD/Fs from Co-processing of Oil-based Drilling Cuttings in Brick Kilns. J. Environ. Manag. 2022, 304, 114170. [Google Scholar] [CrossRef] [PubMed]
- Groneberg, D.A.; Nowak, D.; Wussow, A.; Fischer, A. Chronic cough due to occupational factors. J. Occup. Med. Toxicol. 2006, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- US EPA; Anonymous. “Particulate Matter|Air & Radiation|US EPA, 2011”. 6 July. Available online: http://www.epa.gov/pm/ (accessed on 22 July 2011).
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Health Counc. Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Rasheed, A.; Aneja, V.P.; Aiyyer, A.; Rafique, U. Measurements and analysis of air quality in Islamabad, Pakistan. Earth Future 2014, 2, 303–314. [Google Scholar] [CrossRef]
- Cacciotolo, M.; Wang, X.; DriscolL, I.; Woodward, N.; Safari, A.; Reyes, J.; Serre, M.L.; Vizuete, W.; Sioutas, C.; Morgan, T.E.; et al. Particulate air pollutants, APOE alleles and their contribution to cognitive impairment in older women and in a oogenesis in experimental model. Transl. Psychiatry 2017, 7, 1022. [Google Scholar] [CrossRef]
- Qian, Z.; He, Q.; Kong, L.; Xu, F.; Wei, F.; Champman, R.S.; Chen, W.; Edwards, R.D.; Bascom, R. Respiratory to diverse indoor combustion air pollution sources. Indoor Air 2007, 17, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden diseases and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic system for the Global Burden of Diseases Study of 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Saud, B.; Paudel, G. The Threat of Ambient Air Pollution in Kathmandu, Nepal. J. Environ. Public Health 2018, 2018, 1504591. [Google Scholar] [CrossRef] [Green Version]
- Bharwana, S.A.; Ali, S.; Farid, M.; Jamshaid, M.; Azeem, M.; Shakoor, M.B.; Ahmad, R.; Hannan, F. Noise and ambient air pollution monitoring and its effects on local community in Faisalabad, Pakistan. J. Environ. Sci. 2014, 2, 015–028. [Google Scholar]
- Khan, A.; Ahmad, S.S. Application of GAINS model for assessing selected air pollutants in Khyber Pakhtunkhwa and Baluchistan, Pakistan. Arab. J. Geosci. 2018, 11, 217. [Google Scholar] [CrossRef]
- Gent, J.F.; Triche, E.W.; Holford, T.R.; Belanger, K.; Bracken, M.B.; Beckett, W.S. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA 2003, 290, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Pruss-Ustun, A.; Bonjour, S.; Corvalan, C. The impact of the environment on health by country: A meta-synthesis. J. Environ. Health 2008, 7, 7. [Google Scholar] [CrossRef] [Green Version]
S. No | Sampling Location | Code | Coordinates | Wind Speed Km/h | Distance from a Brick Kiln in Meter |
---|---|---|---|---|---|
1 | Mummen Khan Kaly | MKK | 34.2139 N/71.5452 E | 3.5 | 140 m |
2 | Ghano Shah A | GSA | 34.2046 N/71.5353 E | 3.5 | 230 m |
3 | Qamer Ghai Kaly | QGK | 34.2036 N/71.5447 E | 3.6 | 295 m |
4 | Ghano Shah B | GSB | 34.2043 N/71.5345 E | 3.5 | 400 m |
5 | Ghulfur Kaly | GK | 34.2034 N/71.5437 E | 3.4 | 515 m |
6 | Haji Rahman Din Kaly | HRDK | 34.2139 N/71.5508 E | 3.6 | 520 m |
7 | Dheri Kaly | DK | 34.2146 N/71.58516 E | 3.4 | 790 m |
8 | Camp Kaly | CK | 34.2045 N/71.5333 E | 3.5 | 790 m |
9 | Khader Khel Kaly | KKK | 34.2032 N/71.5425 E | 3.5 | 840 m |
10 | Madeena Kaly | MK | 34.2013 N/71.5416 E | 3.4 | 66 m |
11 | Aman Kaly A | AMA | 34..2016 N/71.5429 E | 3.1 | 320 m |
12 | Aman Kaly B | AKB | 34.2022 N/71.5435 E | 3.4 | 231 m |
13 | Baree Shah Kaly | BSK | 34.2144 N/71.5354 E | 3.4 | 243 m |
14 | Presado Kaly | PK | 34.2139 N/71.5329 E | 3.6 | 647 m |
15 | Gadbano Kaly | GK | 34.2146 N/71.5314 E | 3.1 | 1046 m |
16 | Meeraman Kaly A | MKA | 34.1954 N/71.5409 E | 3.3 | 596 m |
17 | Meeraman Kaly B | MKB | 34.22017 N/71.535 E | 3.5 | 680 m |
18 | Meeraman Kaly C | MKC | 34.2032 N/71.5342 E | 3.6 | 688 m |
S. No | Parameter | Instrument |
---|---|---|
1. | PM1 | HAZ dust particulate air monitoring equipment model: EPAM-5000 USA |
2. | PM2.5 | HAZ dust particulate air monitoring equipment model: EPAM-5000 USA |
3. | PM10 | HAZ dust particulate air monitoring equipment model: EPAM-5000 USA |
4. | CO2 | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
5. | CO | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
6. | NO | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
7. | NO2 | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
8. | H2S | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
9. | NH3 | ambient air monitoring analyzer NOVA model 600-2-3-4-5-7-10 Canada |
CO | NO | NO2 | NH3 | H2S | ||
---|---|---|---|---|---|---|
1st | MK | 0 | 0 | 12.4 | 0 | 2 |
HRDK | 0 | 0 | 8.1 | 0 | 0 | |
DK | 0 | 0 | 18.8 | 0 | 0 | |
2nd | GSKA | 0 | 0 | 7.5 | 0 | 2.3 |
GSKB | 0 | 0 | 5 | 0 | 2.5 | |
CK | 0 | 0 | 4.4 | 0 | 3 | |
3rd | QGK | 0 | 0 | 15.3 | 0 | 2.3 |
GK | 0 | 0 | 6.9 | 0 | 0 | |
KKK | 0 | 0 | 16.8 | 0 | 0 | |
4th | MK | 0 | 0 | 5.1 | 0 | 5.1 |
AMA | 0 | 0 | 14.3 | 0 | 3.5 | |
AMA | 0 | 0 | 14.3 | 0 | 3.5 | |
5th | BSK | 0 | 0 | 9.9 | 0 | 3 |
PK | 0 | 0 | 16 | 0 | 2.5 | |
GK | 0 | 0 | 15.7 | 0 | 0 | |
6th | MKA | 0 | 0 | 12.4 | 0 | 4.3 |
MKB | 0 | 0 | 10.3 | 0 | 3.5 | |
MKC | 0 | 0 | 7.4 | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhanullah, M.; Ullah, S.; Javed, M.F.; Ullah, R.; Akbar, T.A.; Ullah, W.; Baig, S.A.; Aziz, M.; Mohamed, A.; Sajjad, R.U. Assessment and Impacts of Air Pollution from Brick Kilns on Public Health in Northern Pakistan. Atmosphere 2022, 13, 1231. https://doi.org/10.3390/atmos13081231
Subhanullah M, Ullah S, Javed MF, Ullah R, Akbar TA, Ullah W, Baig SA, Aziz M, Mohamed A, Sajjad RU. Assessment and Impacts of Air Pollution from Brick Kilns on Public Health in Northern Pakistan. Atmosphere. 2022; 13(8):1231. https://doi.org/10.3390/atmos13081231
Chicago/Turabian StyleSubhanullah, Muhammad, Siddique Ullah, Muhammad Faisal Javed, Rafi Ullah, Tahir Ali Akbar, Waheed Ullah, Shams Ali Baig, Mubashir Aziz, Abdullah Mohamed, and Raja Umer Sajjad. 2022. "Assessment and Impacts of Air Pollution from Brick Kilns on Public Health in Northern Pakistan" Atmosphere 13, no. 8: 1231. https://doi.org/10.3390/atmos13081231
APA StyleSubhanullah, M., Ullah, S., Javed, M. F., Ullah, R., Akbar, T. A., Ullah, W., Baig, S. A., Aziz, M., Mohamed, A., & Sajjad, R. U. (2022). Assessment and Impacts of Air Pollution from Brick Kilns on Public Health in Northern Pakistan. Atmosphere, 13(8), 1231. https://doi.org/10.3390/atmos13081231