Numerical Simulation of a Giant-Hail-Bearing Mediterranean Supercell in the Adriatic Sea
Abstract
:1. Introduction
2. Synoptic Description and Observations
3. Numerical Experiment and Set Up
- GFS09: run initialized at 00:00 UTC, 9 July 2019, forced with the GFS analyses/forecasts;
- IFS09: run initialized at 00:00 UTC, 9 July 2019, forced with the IFS analyses /forecasts;
- GFS10: run initialized at 00:00 UTC, 10 July 2019, forced with the GFS analyses/forecasts;
- IFS10: run initialized at 00:00 UTC, 10 July 2019, forced with the IFS analyses forecasts.
- GFS (Global Forecast System), run operatively at the NCEP at the resolution of 0.25º, provided at 34 pressure levels;
- IFS (Integrated Forecasting System), run operatively at the ECMWF (https://www.ecmwf.int) at the resolution of 0.125º; for the present runs 26 standard pressure levels are extracted to force the WRF model.
4. Results and Discussion
4.1. Comparison with the Observations
4.2. Development of the Supercell
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasmussen, R.M.; Heymsfield, A.J. Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci. 1987, 44, 2754–2763. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.J.; Kumjian, M.R. The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci. 2017, 74, 641–663. [Google Scholar] [CrossRef]
- Martius, O.; Hering, A.; Kunz, M.; Manzato, A.; Mohr, S.; Nisi, L.; Trefalt, S. Challenges and recent advances in hail research. Bull. Am. Meteorol. Soc. 2018, 99, ES51–ES54. [Google Scholar] [CrossRef] [Green Version]
- Raupach, T.H.; Martius, O.; Allen, J.T.; Kunz, M.; Lasher-Trapp, S.; Mohr, S.; Rasmussen, K.L.; Trapp, R.J.; Zhang, Q. The effects of climate change on hailstorms. Nat. Rev. Earth Environ. 2021, 2, 213–226. [Google Scholar] [CrossRef]
- Sánchez, J.L.; Marcos, J.L.; Dessens, J.; López, L.; Bustos, C.; García-Ortega, E. Assessing sounding-derived parameters as storm predictors in different latitudes. Atmos. Res. 2009, 93, 446–456. [Google Scholar] [CrossRef]
- Nisi, L.; Martius, O.; Hering, A.; Kunz, M.; Germann, U. Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Q. J. R. Meteorol. Soc. 2016, 142, 1590–1604. [Google Scholar] [CrossRef]
- Bluestein, H.B.; Lindsey, D.T.; Bikos, D.; Reif, D.W.; Wienhoff, Z.B. The Relationship between Overshooting Tops in a Tornadic Supercell and Its Radar-Observed Evolution. Mon. Weather Rev. 2019, 147, 4151–4176. [Google Scholar] [CrossRef]
- Punge, H.; Bedka, K.; Kunz, M.; Reinbold, A. Hail frequency estimation across Europe based on a combination of overshooting top detections and the era-interim reanalysis. Atmos. Res. 2017, 198, 34–43. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.C.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. Illuminating water cycle modifications and earth system resilience in the anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef] [Green Version]
- Punge, H.J.; Bedka, K.; Kunz, M.; Werner, A. A new physically based stochastic event catalog for hail in Europe. Nat. Hazards 2014, 73, 1625–1645. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Manzato, A.; Rotunno, R. Characteristics and Predictability of a Supercell during HyMeX SOP1. Q. J. R. Meteorol. Soc. 2016, 142, 2839–2853. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mazon, J.; Rotunno, R. Numerical simulations of a tornadic supercell over the Mediterranean. Weather Forecast. 2017, 32, 1209–1226. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mazon, J.; Motola, V.; Pasini, A. Effect of a positive Sea Surface Temperature anomaly on a Mediterranean tornadic supercell. Sci. Rep. 2017, 7, 12828. [Google Scholar] [CrossRef] [Green Version]
- Manzato, A. Hail in NE Italy: Climatology and bivariate analysis with the sounding–derived indices. J. Appl. Meteorol. Clim. 2012, 51, 449–467. [Google Scholar] [CrossRef]
- Manzato, A.; Cicogna, A.; Pucillo, A. 6-hour maximum rain in Friuli Venezia Giulia: Climatology and ECMWF-based forecasts. Atmos. Res. 2016, 169, 465–484. [Google Scholar] [CrossRef]
- Montopoli, M.; Picciotti, E.; Baldini, L.; Di Fabio, S.; Marzano, F.S.; Vulpiani, G. Gazing inside a giant-hail-bearing Mediterranean supercell by dual-polarization Doppler weather radar. Atmos. Res. 2021, 264, 105852. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Davolio, S. Dynamical forcings in heavy precipitation events over Italy: Lessons from the HyMeX SOP1 campaign. Hydrol. Earth Syst. Sci. 2022, 3, 627–646. [Google Scholar] [CrossRef]
- Manzato, A.; Riva, V.; Tiesi, A.; Miglietta, M.M. Observational analysis and simulations of a severe hailstorm in northeastern Italy. Q. J. R. Meteorol. Soc. 2020, 146, 3587–3611. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; No. NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Brimelow, J.C.; Reuter, G.W.; Poolman, E.R. Modeling maximum hail size in Alberta thunderstorms. Weather Forecast. 2002, 17, 1048–41062. [Google Scholar] [CrossRef]
- Adams-Selin, R.D.; Ziegler, C.L. Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Weather Rev. 2016, 144, 4919–4939. [Google Scholar] [CrossRef]
- Adams-Selin, R.D.; Clark, A.J.; Melick, C.J.; Dembek, S.R.; Jirak, I.L.; Ziegler, C.L. Evolution of WRF-HAILCAST during the 2014–16 NOAA/hazardous weather testbed spring forecasting experiments. Weather Forecast. 2019, 34, 61–79. [Google Scholar] [CrossRef]
- Dotzek, N.; Groenemeijer, P.; Feuerstein, B.; Holzer, A.M. Overview of essl’s severe convective storms research using the european severe weather database eswd. Atmos. Res. 2009, 93, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; American Meteorological Society: Boston, MA, USA. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Malečić, B.; Prtenjak, M.T.; Horvath, K.; Jelić, D.; Jurković, P.M.; Ćorko, K.; Mahović, N.S. Performance of HAILCAST and the Lightning Potential Index in simulating hailstorms in Croatia in a mesoscale model—Sensitivity to the PBL and microphysics parameterization schemes. Atmos. Res. 2022, 272, 106143. [Google Scholar] [CrossRef]
- Fujita, T.T. Manual of Downburst Identification for Project Nimrod; Satellite and Mesometeorology Research Paper; Department of Geophysical Sciences, University of Chicago: Chicago, IL, USA, 1978; p. 156. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiesi, A.; Mazzà, S.; Conte, D.; Ricchi, A.; Baldini, L.; Montopoli, M.; Picciotti, E.; Vulpiani, G.; Ferretti, R.; Miglietta, M.M. Numerical Simulation of a Giant-Hail-Bearing Mediterranean Supercell in the Adriatic Sea. Atmosphere 2022, 13, 1219. https://doi.org/10.3390/atmos13081219
Tiesi A, Mazzà S, Conte D, Ricchi A, Baldini L, Montopoli M, Picciotti E, Vulpiani G, Ferretti R, Miglietta MM. Numerical Simulation of a Giant-Hail-Bearing Mediterranean Supercell in the Adriatic Sea. Atmosphere. 2022; 13(8):1219. https://doi.org/10.3390/atmos13081219
Chicago/Turabian StyleTiesi, Alessandro, Simone Mazzà, Dario Conte, Antonio Ricchi, Luca Baldini, Mario Montopoli, Errico Picciotti, Gianfranco Vulpiani, Rossella Ferretti, and Mario Marcello Miglietta. 2022. "Numerical Simulation of a Giant-Hail-Bearing Mediterranean Supercell in the Adriatic Sea" Atmosphere 13, no. 8: 1219. https://doi.org/10.3390/atmos13081219
APA StyleTiesi, A., Mazzà, S., Conte, D., Ricchi, A., Baldini, L., Montopoli, M., Picciotti, E., Vulpiani, G., Ferretti, R., & Miglietta, M. M. (2022). Numerical Simulation of a Giant-Hail-Bearing Mediterranean Supercell in the Adriatic Sea. Atmosphere, 13(8), 1219. https://doi.org/10.3390/atmos13081219