Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Climate Data
2.3. Viticultural Indices
2.3.1. Winkler Index (WIN)
2.3.2. Huglin Heliothermal Index (HI)
2.3.3. Cool Nights Index (CI)
2.3.4. Dryness Index (DI)
2.4. Frequency of Unfavourable Weather Events
2.4.1. Spring Frost
2.4.2. High Summer Temperatures
2.4.3. Intensive Rainfall
2.5. Water Deficit
3. Results
3.1. Temperature and Precipitation Change
3.2. Viticultural Indices
3.3. Spring Frost
3.4. High Summer Temperatures
3.5. Intensive Rainfall during Ripening
3.6. Low Dormant Temperatures
3.7. Water Deficit
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fruit/Grape | Total Serbia (ha) | Northern Region (ha) | Central and Western Region (ha) | Southern and Eastern Region (ha) |
---|---|---|---|---|
Apples | 26,360 | 10,018 | 10,113 | 6229 |
Pears | 5036 | 1230 | 2707 | 1099 |
Plums | 73,010 | 5563 | 50,401 | 17,046 |
Sweet cherries | 4348 | 1793 | 1615 | 940 |
Sour cherries | 19,601 | 3283 | 3815 | 12,503 |
Apricots | 5985 | 3803 | 1419 | 763 |
Quinces | 1984 | 500 | 773 | 711 |
Peaches | 5106 | 2664 | 662 | 1780 |
Raspberries | 24,028 | 2242 | 19,268 | 2518 |
Grapes | 19,840 | 3805 | 8810 | 7225 |
Appendix B
Viticultural Index | Equation | Climate Categories |
---|---|---|
Winkler Index (WIN) [25] | Tn—Daily minimum temperature (°C) Tx—Daily maximum temperature (°C) | 2223–2700 °C Region V 1945–2222 °C Region IV 1668–1944 °C Region III 1389–1667 °C Region II 1111–1388 °C Region I |
Huglin Index (HI) [27] | T—Daily mean temperature (°C) Tx—Daily maximum temperature (°C) d—Coefficient for day length correction, as in [27] | >3000 °C Too hot 2700–3000 °C Very warm 2400–2700 °C Warm 2100–2400 °C Warm temperate 1800–2100 °C Temperate 1500–1800 °C Cold 1200–1500 °C Very cold <1200 °C Too cold |
Cool Nights Index (CI) [20] | Tn—Daily minimum temperature (°C) | >18 °C Warm nights 14–18 °C Temperate nights 12–14 °C Cool nights <12 °C Very cool nights |
Dryness Index (DI) [20] | W0—available soil water at the beginning of vegetation (200 mm) P—monthly precipitation Et—monthly transpiration Es—monthly bare soil evaporation PET—monthly potential evaporation [28] a—plant radiation absorption coefficient [20] Nef—monthly effective soil evaporation N—Number of days in a month | >150 mm Humid 50–150 mm Moderately dry −100–50 mm Sub-humid <−100 mm Very dry |
References
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef] [PubMed]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.-M.; Bochenek, B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. Assessment of agrometeorological indices over Southeast Europe in the context of climate change (1961–2018). Idojaras 2021, 125, 255–269. [Google Scholar] [CrossRef]
- Fischer, G.; Ramirez, F.; Casierra-Posada, F. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 2016, 34, 190–199. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate change impacts on food security–focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchene, E.; Gowdy, M.; Marguerit, E.; Peiri, P.; Parker, A.; de Resseguier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Vuković, A.; Vujadinović, M.; Rendulić, S.; Djurdjević, V.; Ruml, M.; Babić, P.; Popović, D. Global Warming Impact on Climate Change in Serbia. Therm. Sci. 2018, 22, 2267–2280. [Google Scholar] [CrossRef]
- Djurdjević, V.; Vuković, A.; Vujadinović Mandić, M. Observed Climate Change in Serbia and Projections of Future Climate Based on Different Scenarios of Future Emissions; United Nation’s Development Program: Belgrade, Serbia, 2018; p. 24. (In Serbian) [Google Scholar]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2021; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2021; p. 453.
- Keserović, Z.; Magazin, N.; Kurjakov, A.; Dorić, M.; Gošić, J. Fruit Production; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2014; p. 94. (In Serbian) [Google Scholar]
- Jakšić, D. Grape and Wine Production in Serbia; Center for Grape and Wine Production Niš: Niš, Serbia, 2019; p. 294. [Google Scholar]
- Lukač Bulatović, M. The State and Forecast of Fruit Production and Processing in Serbia; Faculty of Agriculture in Novi Sad: Novi Sad, Serbia, 2020; p. 159. (In Serbian) [Google Scholar]
- Stričević, R.; Lipovac, A.; Prodanović, S.; Ristovski, M.; Petrović Obradović, O.; Djurović, N.; Djurović, D. Vulnerability of agriculture to climate change in Serbia–Farmer’s assessment of impacts and damages. J. Agric. Sci. 2020, 65, 263–281. [Google Scholar] [CrossRef]
- Hydrometeorlogical Service of Serbia. Available online: https://www.hidmet.gov.rs/ciril/meteorologija/klimatologija_godisnjaci.php (accessed on 24 May 2022).
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Cvetkovic, B.; Rankovic-Vasic, Z.; Przic, Z.; Ruml, M.; Krzic, A. Fine scale climate change analysis: From global models to local impact studies in Serbia. In Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA), Kavala, Greece, 17–20 September 2015. [Google Scholar]
- Ivanisevic, D.; Jaksic, D.; Korac, N. Atlas of Viticulture; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2015; pp. 154–196. (In Serbian) [Google Scholar]
- Djurović, D.; Vulić, T.; Veličković, M.; Oparnica, Č.; Djordjević, A.; Milatović, D.; Nikolić, D.; Zec, G.; Fortirić-Akšić, M.; Djordjević, B.; et al. Zoning of Fruit Production in Belgrade, South and East Serbia; Project Report; University of Belgrade-Faculty of Agriculture: Belgrade, Serbia, 2020; p. 306. (In Serbian) [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V. Climate and Terroir: Impacts of Climate Variability and Change on Wine. In Fine Wine and Terroir—The Geoscience Perspective; Macqueen, R.W., Meinert, L.D., Eds.; Geological Association of Canada: St. John’s, NF, Canada, 2006; pp. 1–14. [Google Scholar]
- Fraga, H.; Malherio, A.C.; Moutinho-Pereira, J.; Jones, G.V.; Alves, F.; Pinto, J.G.; Santos, J.A. Very high resolution bioclimatic zoning of Portuguese wine regions: Present and future scenarios. Reg. Environ. Change 2014, 14, 295–306. [Google Scholar] [CrossRef]
- Fraga, H.; Malherio, A.C.; Santos, J.A. An overview of climate change impacts on European viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. Guidelines for Vitiviniculture Zoning Methodologies on a Soil and Climate Level, Resolution OVI-VITI 423-2012; International Organization of Vine and Wine: Paris, France, 2012; p. 19. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 4th ed; University of California Press: Berkeley, CA, USA, 1974; p. 740. [Google Scholar]
- The European Parliament and the Council. Regulation EU No 1308/2013. Off. J. Eur. Union 2013, 347, 671–854. [Google Scholar]
- Huglin, M.P. Nouveau Mode D’evaluation des Possibilities Heliothermiques d’un Milieu Viticole; Comptes Rendus de l’Academie d’Agriculture de France; Academie d’Agriculture de France: Paris, France, 1978; Volume 64, pp. 1117–1126. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Georg. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Luedeling, E.; Brown, P.H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 2011, 55, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Fadon, E.; Herrera, S.; Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Chilling and Heat Requirements of Temperature Fruit Trees (Prunus sp.). Agronomy 2020, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; Campoy, J.A.; Egea, J. Chilling and heat requirements of apricot cultivars for flowering. Environ. Exp. Bot. 2007, 61, 254–263. [Google Scholar] [CrossRef]
- Djaman, K.; Koudahe, K.; Darapuneni, M.; Irmak, S. Chilling and Heat Accumulation of Fruit and Nut Trees and Flower Bud Vulnerability to Early Spring Low Temperatures in New Mexico: Meteorological Approach. Sustainability 2021, 13, 2524. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.; Schouten, R.; Silva, A.P.; Goncalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 369–377. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper, No. 56; FAO: Rome, Italy, 1998; p. 174. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Teslic, N.; Vujadinovic, M.; Ruml, M.; Antolini, G.; Vukovic, A.; Parpinello, G.P.; Versari, A.; Ricci, A. Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961–2015. Clim. Res. 2017, 73, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Droulia, F.; Charalampopoulos, I. Future Climate Change Impacts on European Viticulture: A Review on Recent Scientific Advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; de Cortaz-Atauri, I.G.; Ollat, N.; Page, C.; van Leeuwen, C. The risk of tardive frost damage in French vineyards in a changing climate. Agric. For. Meteorol. 2018, 250, 226–242. [Google Scholar] [CrossRef]
- Vautard, R.; van Oldenborgh, G.J.; Bonnet, R.; Li, S.; Robin, Y.; Kew, S.; Philip, S.; Soubeyroux, J.M.; Dubuisson, B.; Viovy, N.; et al. Human influence on growing-period frosts like the early April 2021 in Central France. Nat. Hazards Earth Syst. Sci. Discuss 2022. in review. [Google Scholar] [CrossRef]
- Vitasse, Y.; Scneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Augspurger, C.K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 2013, 94, 41–50. [Google Scholar] [CrossRef]
- Liu, Q.; Piao, S.; Janssens, I.; Fu, Y.; Peng, S.; Lian, X.; Ciais, P.; Myneni, R.; Penuelas, J.; Wang, T. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 2018, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Lamichhane, J.R. Rising risks of late-spring frosts in a changing climate. Nat. Clim. Change 2021, 11, 554–555. [Google Scholar] [CrossRef]
Threshold Temperature (°C) | Fruits |
---|---|
10 | apricot, peach |
11 | peach, sweet cherry, sour cherry, plum, raspberry |
12 | apple, pear, quince, sour cherry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujadinović Mandić, M.; Vuković Vimić, A.; Ranković-Vasić, Z.; Đurović, D.; Ćosić, M.; Sotonica, D.; Nikolić, D.; Đurđević, V. Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere 2022, 13, 948. https://doi.org/10.3390/atmos13060948
Vujadinović Mandić M, Vuković Vimić A, Ranković-Vasić Z, Đurović D, Ćosić M, Sotonica D, Nikolić D, Đurđević V. Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere. 2022; 13(6):948. https://doi.org/10.3390/atmos13060948
Chicago/Turabian StyleVujadinović Mandić, Mirjam, Ana Vuković Vimić, Zorica Ranković-Vasić, Dejan Đurović, Marija Ćosić, Dunja Sotonica, Dragan Nikolić, and Vladimir Đurđević. 2022. "Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia" Atmosphere 13, no. 6: 948. https://doi.org/10.3390/atmos13060948
APA StyleVujadinović Mandić, M., Vuković Vimić, A., Ranković-Vasić, Z., Đurović, D., Ćosić, M., Sotonica, D., Nikolić, D., & Đurđević, V. (2022). Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia. Atmosphere, 13(6), 948. https://doi.org/10.3390/atmos13060948