Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensors Tested
2.2. Grassland Prescribed Burn Measurements
2.3. Missoula Fire Lab Controlled Burns
2.4. Statistical Evaluation of Sensor Performance
3. Results and Discussion
3.1. Evaluation of Cairpol and Aeroqual CO Sensors
3.2. Evaluation of Aeroqual CO2 Sensors
3.3. Evaluation of Cairpol and Aeroqual NO2 Sensors
3.4. Evaluation of Other Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Period | Sensor | r2 | Slope | se | Intercept | se | N |
---|---|---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol CO (2617) | 0.94 | 0.591 | 0.009 | 0.075 | 0.059 | 256 |
Konza (15 March 2017) | Cairpol CO (2618) | 0.96 | 0.574 | 0.008 | 0.057 | 0.048 | 256 |
Konza (16 March 2017) | Cairpol CO (2617) | 0.94 | 0.715 | 0.010 | 0.177 | 0.060 | 335 |
Konza (17 March 2017) | Cairpol CO (2617) | 0.30 | 0.202 | 0.029 | 3.605 | 0.490 | 116 |
Konza (17 March 2017) | Cairpol CO (2618) | 0.34 | 0.211 | 0.028 | 3.359 | 0.469 | 116 |
1 Konza (17 March 2017) | Cairpol CO (2617) | 0.93 | 0.782 | 0.021 | 0.607 | 0.183 | 114 |
1 Konza (17 March 2017) | Cairpol CO (2618) | 0.95 | 0.775 | 0.016 | 0.445 | 0.143 | 114 |
Konza (20 March 2017) | Cairpol CO (2617) | 0.32 | 0.270 | 0.020 | 3.549 | 0.244 | 390 |
Konza (20 March 2017) | Cairpol CO (2618) | 0.34 | 0.278 | 0.020 | 3.519 | 0.240 | 390 |
1 Konza (20 March 2017) | Cairpol CO (2617) | 0.99 | 0.782 | 0.004 | 0.360 | 0.029 | 187 |
1 Konza (20 March 2017) | Cairpol CO (2618) | 0.99 | 0.775 | 0.004 | 0.394 | 0.030 | 188 |
Konza (10 November 2017) | Cairpol CO (2617) | 0.87 | 0.442 | 0.013 | 0.844 | 0.114 | 187 |
Konza (10 November 2017) | Cairpol CO (2618) | 0.92 | 0.490 | 0.011 | 0.748 | 0.094 | 188 |
Tallgrass (13 November 2017) | Cairpol CO (2617) | 0.81 | 0.531 | 0.013 | 0.907 | 0.121 | 387 |
Tallgrass (13 November 2017) | Cairpol CO (2618) | 0.75 | 0.512 | 0.015 | 1.105 | 0.140 | 386 |
Tallgrass (15 November 2017) | Cairpol CO (2617) | 0.95 | 0.674 | 0.010 | 0.652 | 0.109 | 246 |
Konza (16 March 2017) | Aeroqual CO (1.8) | 0.66 | 0.803 | 0.032 | −0.127 | 0.193 | 336 |
Konza (16 March 2017) | Aeroqual CO (1.9) | 0.45 | 0.621 | 0.037 | 0.196 | 0.239 | 357 |
Konza (17 March 2017) | Aeroqual CO (1.8) | 0.36 | 0.429 | 0.055 | 5.037 | 0.700 | 110 |
Konza (17 March 2017) | Aeroqual CO (1.9) | 0.43 | 0.452 | 0.049 | 4.381 | 0.646 | 116 |
Konza (20 March 2017) | Aeroqual CO (1.8) | 0.50 | 0.686 | 0.035 | 2.913 | 0.318 | 383 |
Konza (20 March 2017) | Aeroqual CO (1.9) | 0.41 | 0.643 | 0.039 | 3.482 | 0.355 | 384 |
Konza (10 November 2017) | Aeroqual CO (2.10) | 0.53 | 0.401 | 0.027 | 2.613 | 0.389 | 196 |
2 Tallgrass (13 November 2017) | Aeroqual CO (2.8) | 0.43 | 0.00066 | 0.000038 | 0.028 | 0.0005 | 401 |
2 Tallgrass (15 November 2017) | Aeroqual CO (2.8) | 0.60 | 0.00151 | 0.000078 | 0.015 | 0.001 | 251 |
Tallgrass (15 November 2017) | Aeroqual CO (2.10) | 0.59 | 0.692 | 0.036 | 3.869 | 0.461 | 251 |
Missoula (2018) | Cairpol CO (2617) | 0.96 | 0.470 | 0.0016 | 0.407 | 0.0075 | 3185 |
Missoula (2018) | Cairpol CO (2618) | 0.96 | 0.467 | 0.016 | 0.449 | 0.0074 | 3185 |
Missoula (2018) | Aeroqual (3.8) | 0.88 | 0.897 | 0.0060 | −0.933 | 0.028 | 3185 |
Missoula (2018) | Aeroqual (3.10) | 0.74 | 0.924 | 0.0098 | −0.668 | 0.046 | 3185 |
Period | Sensor | Accuracy | Median ΔX | Mean ΔX | RMSE |
---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol CO (2617) | 61.30% | −0.236 | −1.289 | 2.675 |
Konza (15 March 2017) | Cairpol CO (2618) | 59.10% | −0.239 | −1.362 | 2.748 |
Konza (16 March 2017) | Cairpol CO (2617) | 75.94% | −0.454 | −0.971 | 1.722 |
Konza (17 March 2017) | Cairpol CO (2617) | 68.83% | 0.074 | −2.313 | 13.157 |
Konza (17 March 2017) | Cairpol CO (2618) | 66.42% | −0.026 | −2.492 | 12.996 |
1 Konza (17 March 2017) | Cairpol CO (2617) | 88.96% | 0.083 | −0.623 | 2.187 |
1 Konza (17 March 2017) | Cairpol CO (2618) | 85.39% | −0.018 | −0.824 | 2.087 |
Konza (20 March 2017) | Cairpol CO (2617) | 82.17% | −0.168 | −1.146 | 8.734 |
Konza (20 March 2017) | Cairpol CO (2618) | 82.54% | −0.125 | −1.122 | 8.618 |
1 Konza (20 March 2017) | Cairpol CO (2617) | 93.12% | −0.165 | −0.39 | 0.942 |
1 Konza (20 March 2017) | Cairpol CO (2618) | 93.38% | −0.123 | −0.374 | 0.957 |
Konza (10 November 2017) | Cairpol CO (2617) | 62.81% | 0.296 | −1.686 | 4.856 |
Konza (10 November 2017) | Cairpol CO (2618) | 65.30% | 0.302 | −1.591 | 4.327 |
Tallgrass (13 November 2017) | Cairpol CO (2617) | 69.54% | −0.071 | −1.679 | 4.326 |
Tallgrass (13 November 2017) | Cairpol CO (2618) | 71.33% | 0.115 | −1.573 | 4.542 |
Tallgrass (15 November 2017) | Cairpol CO (2617) | 75.22% | −1.745 | −2.057 | 3.349 |
Konza (16 March 2017) | Aeroqual CO (1.8) | 77.29% | −0.670 | −0.943 | 2.911 |
Konza (16 March 2017) | Aeroqual CO (1.9) | 66.41% | −0.730 | −1.512 | 4.022 |
Konza (17 March 2017) | Aeroqual CO (1.8) | 82.49% | 1.960 | 1.183 | 8.785 |
Konza (17 March 2017) | Aeroqual CO (1.9) | 95.45% | 1.020 | 0.336 | 8.338 |
Konza (20 March 2017) | Aeroqual CO (1.8) | 81.86% | 0.360 | 1.067 | 5.314 |
Konza (20 March 2017) | Aeroqual CO (1.9) | 76.40% | 0.600 | 1.387 | 5.977 |
Konza (10 November 2017) | Aeroqual CO (2.10) | 80.53% | 0.189 | −1.260 | 9.210 |
2 Tallgrass (13 November 2017) | Aeroqual CO (2.8) | 0.48% | −2.665 | −6.604 | 11.730 |
2 Tallgrass (15 November 2017) | Aeroqual CO (2.8) | 0.32% | −8.567 | −8.908 | 12.442 |
Tallgrass (15 November 2017) | Aeroqual CO (2.10) | 87.48% | 0.245 | 1.119 | 5.754 |
Missoula (2018) | Cairpol CO (2617) | 59.93% | −0.700 | −1.265 | 2.236 |
Missoula (2018) | Cairpol CO (2618) | 60.88% | −0.664 | −1.235 | 2.229 |
Missoula (2018) | Aeroqual (3.8) | 60.11% | −1.364 | −1.259 | 1.746 |
Missoula (2018) | Aeroqual (3.10) | 71.21% | −1.086 | −0.909 | 2.118 |
Period | Sensor | r2 | Slope | se | Intercept | se | N |
---|---|---|---|---|---|---|---|
Konza (10 November 2017) | Aeroqual CO2 (2.5) | 0.49 | 0.602 | 0.045 | 238.829 | 24.984 | 196 |
Konza (10 November 2017) | Aeroqual CO2 (2.6) | 0.47 | 0.488 | 0.037 | 250.211 | 20.957 | 196 |
Tallgrass (13 November 2017) | Aeroqual CO2 (2.5) | 0.77 | 0.906 | 0.025 | 94.036 | 14.086 | 401 |
Tallgrass (13 November 2017) | Aeroqual CO2 (2.6) | 0.76 | 0.788 | 0.022 | 101.793 | 12.524 | 401 |
Tallgrass (15 November 2017) | Aeroqual CO2 (2.5) | 0.82 | 0.900 | 0.027 | 130.208 | 18.994 | 251 |
Tallgrass (15 November 2017) | Aeroqual CO2 (2.6) | 0.81 | 0.804 | 0.024 | 128.756 | 17.090 | 251 |
Missoula (2018) | Aeroqual CO2 (3.5) | 0.97 | 0.948 | 0.0029 | 1.672 | 1.672 | 3185 |
1 Missoula (2018) | Aeroqual CO2 (3.6) | 0.94 | 0.948 | 0.0056 | 1.804 | 3.258 | 1779 |
Period | Sensor | Accuracy | Median ΔX | Mean ΔX | RMSE |
---|---|---|---|---|---|
Konza (10 November 2017) | Aeroqual CO2 (2.5) | 94.47% | 28.233 | 29.148 | 144.225 |
Konza (10 November 2017) | Aeroqual CO2 (2.6) | 96.22% | −1.633 | −19.946 | 141.399 |
Tallgrass (13 November 2017) | Aeroqual CO2 (2.5) | 92.12% | 40.600 | 42.841 | 97.389 |
Tallgrass (13 November 2017) | Aeroqual CO2 (2.6) | 97.57% | −10.833 | −13.181 | 85.827 |
Tallgrass (15 November 2017) | Aeroqual CO2 (2.5) | 90.40% | 54.267 | 63.677 | 117.199 |
Tallgrass (15 November 2017) | Aeroqual CO2 (2.6) | 99.81% | 8.767 | −1.249 | 96.718 |
Missoula (2018) | Aeroqual CO2 (3.5) | 95.46% | 29.300 | 25.544 | 32.246 |
1 Missoula (2018) | Aeroqual CO2 (3.6) | 95.11% | −31.700 | −27.579 | 41.277 |
Period | Sensor | r2 | Slope | se | Intercept | se | N |
---|---|---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol NO2 (2057) | 0.93 | 0.615 | 0.011 | −2.307 | 0.665 | 256 |
Konza (15 March 2017) | Cairpol NO2 (2058) | 0.93 | 0.566 | 0.010 | −2.870 | 0.638 | 256 |
Konza (16 March 2017) | Cairpol NO2 (2057) | 0.73 | 0.707 | 0.024 | −5.464 | 1.462 | 335 |
Konza (16 March 2017) | Cairpol NO2 (2058) | 0.74 | 0.685 | 0.022 | −6.625 | 1.358 | 335 |
Konza (17 March 2017) | Cairpol NO2 (2057) | 0.76 | 0.376 | 0.020 | 0.249 | 3.139 | 119 |
Konza (17 March 2017) | Cairpol NO2 (2058) | 0.72 | 0.391 | 0.022 | −0.413 | 3.550 | 119 |
Konza (20 March 2017) | Cairpol NO2 (2057) | 0.70 | 0.368 | 0.012 | −2.270 | 1.594 | 416 |
Konza (20 March 2017) | Cairpol NO2 (2058) | 0.70 | 0.358 | 0.012 | −4.601 | 1.443 | 413 |
Konza (10 November 2017) | Cairpol NO2 (2061) | 0.90 | 0.565 | 0.014 | 0.293 | 2.032 | 186 |
Tallgrass (13 November 2017) | Cairpol NO2 (2062) | 0.84 | 0.685 | 0.016 | −5.295 | 1.573 | 360 |
Tallgrass (15 November 2017) | Cairpol NO2 (2062) | 0.90 | 0.884 | 0.025 | −1.341 | 2.743 | 149 |
Konza (15 March 2017) | Aeroqual NO2 (1.1) | 0.42 | 0.458 | 0.034 | 164.83 | 3.127 | 261 |
Konza (15 March 2017) | Aeroqual NO2 (1.7) | 0.37 | 0.504 | 0.042 | 73.309 | 3.912 | 257 |
Konza (16 March 2017) | Aeroqual NO2 (1.1) | 0.51 | 0.66 | 0.035 | 135.471 | 3.006 | 340 |
Konza (16 March 2017) | Aeroqual NO2 (1.7) | 0.64 | 0.764 | 0.031 | 51.985 | 2.613 | 343 |
Konza (17 March 2017) | Aeroqual NO2 (1.1) | 0.45 | 0.313 | 0.030 | 144.433 | 8.129 | 131 |
Konza (17 March 2017) | Aeroqual NO2 (1.7) | 0.56 | 0.406 | 0.032 | 52.863 | 8.463 | 131 |
Konza (20 March 2017) | Aeroqual NO2 (1.1) | 0.09 | 0.138 | 0.022 | 137.42 | 3.116 | 419 |
Konza (20 March 2017) | Aeroqual NO2 (1.7) | 0.20 | 0.243 | 0.024 | 47.322 | 3.409 | 419 |
Konza (10 November 2017) | Aeroqual NO2 (2.4) | 0.88 | 0.602 | 0.016 | 91.963 | 3.076 | 196 |
Tallgrass (13 November 2017) | Aeroqual NO2 (2.4) | 0.82 | 0.878 | 0.020 | 72.332 | 3.485 | 401 |
Tallgrass (15 November 2017) | Aeroqual NO2 (2.4) | 0.90 | 1.023 | 0.022 | 103.919 | 5.575 | 251 |
Missoula (2018) | Cairpol NO2 (2059) | 0.80 | 0.659 | 0.0058 | −9.317 | 0.275 | 3180 |
Missoula (2018) | Cairpol NO2 (2061) | 0.81 | 0.649 | 0.0055 | −6.730 | 0.259 | 3183 |
Period | Sensor | Accuracy | Median ΔX | Mean ΔX | RMSE |
---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol NO2 (2057) | 51.67% | −1.100 | −11.361 | 26.130 |
Konza (15 March 2017) | Cairpol NO2 (2058) | 44.59% | −1.700 | −13.277 | 30.141 |
Konza (16 March 2017) | Cairpol NO2 (2057) | 54.68% | −4.000 | −15.409 | 30.825 |
Konza (16 March 2017) | Cairpol NO2 (2058) | 49.03% | −4.200 | −17.331 | 31.325 |
Konza (17 March 2017) | Cairpol NO2 (2057) | 37.83% | −18.400 | −58.403 | 102.800 |
Konza (17 March 2017) | Cairpol NO2 (2058) | 38.63% | −19.800 | −57.647 | 101.897 |
Konza (20 March 2017) | Cairpol NO2 (2057) | 34.18% | −47.800 | −57.213 | 89.061 |
Konza (20 March 2017) | Cairpol NO2 (2058) | 30.31% | −54.300 | −58.272 | 86.265 |
Konza (10 November 2017) | Cairpol NO2 (2061) | 56.88% | −5.416 | −35.080 | 68.118 |
Tallgrass (13 November 2017) | Cairpol NO2 (2062) | 59.65% | −11.555 | −24.255 | 41.646 |
Tallgrass (15 November 2017) | Cairpol NO2 (2062) | 86.33% | −1.060 | −8.855 | 30.377 |
Konza (15 March 2017) | Aeroqual NO2 (1.1) | −354.40% | 160.600 | 147.256 | 161.744 |
Konza (15 March 2017) | Aeroqual NO2 (1.7) | −73.24% | 69.600 | 56.995 | 92.618 |
Konza (16 March 2017) | Aeroqual NO2 (1.1) | −197.88% | 125.900 | 121.605 | 133.320 |
Konza (16 March 2017) | Aeroqual NO2 (1.7) | −4.66% | 47.700 | 42.407 | 62.438 |
Konza (17 March 2017) | Aeroqual NO2 (1.1) | 70.94% | 114.300 | 42.951 | 177.002 |
Konza (17 March 2017) | Aeroqual NO2 (1.7) | 76.31% | 19.800 | −35.011 | 159.105 |
Konza (20 March 2017) | Aeroqual NO2 (1.1) | 35.07% | 79.500 | 59.023 | 123.402 |
Konza (20 March 2017) | Aeroqual NO2 (1.7) | 76.31% | −6.500 | −21.533 | 102.768 |
Konza (10 November 2017) | Aeroqual NO2 (2.4) | 51.33% | 80.284 | 50.581 | 89.443 |
Tallgrass (13 November 2017) | Aeroqual NO2 (2.4) | 37.20% | 68.963 | 60.587 | 85.136 |
Tallgrass (15 November 2017) | Aeroqual NO2 (2.4) | 40.70% | 111.203 | 108.070 | 123.970 |
Missoula (2018) | Cairpol NO2 (2059) | 39.85% | −19.300 | −21.507 | 25.939 |
Missoula (2018) | Cairpol NO2 (2061) | 46.06% | −16.800 | −19.275 | 24.030 |
References
- Baron, R.; Saffell, J. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review. ACS Sens. 2017, 2, 1553–1566. [Google Scholar] [CrossRef] [PubMed]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S.P.N.; Zimmerman, N.; Kara, L.B.; Presto, A.A.; Subramanian, R. Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.; Kaufman, A.; Hanley, T.; Rice, J.; Garvey, S. Evaluation of field-Deployed Low Cost PM Sensors; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; EPA/600/R-14/464 (NTIS PB 2015-102104).
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; EPA/600/R-14/159 (NTIS PB2015-100610).
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Thoma, E.D.; Brantley, H.L.; Oliver, K.D.; Whitaker, D.A.; Mukerjee, S.; Mitchell, B.; Wu, T.; Squier, B.; Escobar, E.; Cousett, T.A.; et al. South Philadelphia passive sampler and sensor study. J. Air Waste Manag. Assoc. 2016, 66, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Feinberg, S.N.; Williams, R.; Hagler, G.; Low, J.; Smith, L.; Brown, R.; Garver, D.; Davis, M.; Morton, M.; Schaefer, J.; et al. Examining spatiotemporal variability of urban particulate matter and application of high-time resolution data from a network of low-cost air pollution sensors. Atmos. Environ. 2019, 213, 579–584. [Google Scholar] [CrossRef]
- Baker, K.R.; Woody, M.C.; Tonnesen, G.S.; Hutzell, W.; Pye, H.O.T.; Beaver, M.R.; Pouliot, G.; Pierce, T. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches. Atmos. Environ. 2016, 140, 539–554. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.T.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K.; et al. Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environ. Sci. Technol. 2020, 54, 11838–11847. [Google Scholar] [CrossRef]
- Rappold, A.G.; Stone, S.L.; Cascio, W.E.; Neas, L.M.; Kilaru, V.J.; Carraway, M.S.; Szykman, J.J.; Ising, A.; Cleve, W.E.; Meredith, J.T.; et al. Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance. Environ. Health Perspect. 2011, 119, 1415–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.J.S.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [Green Version]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Radeloff Volker, C.; Helmers David, P.; Kramer, H.A.; Mockrin Miranda, H.; Alexandre Patricia, M.; Bar-Massada, A.; Butsic, V.; Hawbaker Todd, J.; Martinuzzi, S.; Syphard Alexandra, D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duvall, R.M.; Hagler, G.S.W.; Clements, A.L.; Benedict, K.; Barkjohn, K.; Kilaru, V.; Hanley, T.; Watkins, N.; Kaufman, A.; Kamal, A.; et al. Deliberating Performance Targets: Follow-on workshop discussing PM10, NO2, CO, and SO2 air sensor targets. Atmos. Environ. 2021, 246, 118099. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Doraiswamy, P.; Levy, R.; Pikelnaya, O.; Maibach, J.; Feenstra, B.; Polidori, A.; Kiros, F.; Mills, K.C. Impact of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations. GeoHealth 2018, 2, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Landis, M.S.; Long, R.W.; Krug, J.; Colón, M.; Vanderpool, R.; Habel, A.; Urbanski, S.P. The U.S. EPA wildland fire sensor challenge: Performance and evaluation of solver submitted multi-pollutant sensor systems. Atmos. Environ. 2021, 247, 118165. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Comparative Assessment of the Impacts of Prescribed Fire Versus Wildfire (CAIF): A Case Study in the Western U.S.; EPA/600/R-21/197; U.S. Environmental Protection Agency: Washington, DC, USA, 2021.
- Clements, A.L.; Griswold, W.G.; RS, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef] [Green Version]
- Long, R.; Beaver, M.; Williams, R.; Kronmiller, K.; Garvey, S. Procedures and Concepts of EPA’s Ongoing Sensor Evaluation Efforts; EM (Air & Waste Management Association): Pittsburgh, PA, USA, 2014; Volume 8. [Google Scholar]
- Watkins, T. Draft Roadmap for Next Generation Air Monitoring; U.S. Environmental Protection Agency: Washington, DC, USA, 2013; Volume 2.
- Williams, R.; Long, R.; Beaver, M.; Kaufman, A.; Zeiger, F.; Heimbinder, M.; Hang, I.; Yap, R.; Acharya, B.; Ginwald, B. Sensor Evaluation Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; pp. 21–28.
- Duvall, R.M.; Long, R.W.; Beaver, M.R.; Kronmiller, K.G.; Wheeler, M.L.; Szykman, J.J. Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide. Sensors 2016, 16, 1698. [Google Scholar] [CrossRef]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Holder, A.L.; Mebust, A.K.; Maghran, L.A.; McGown, M.R.; Stewart, K.E.; Vallano, D.M.; Elleman, R.A.; Baker, K.R. Field Evaluation of Low-Cost Particulate Matter Sensors for Measuring Wildfire Smoke. Sensors 2020, 20, 4796. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Gantt, B.; Clements, A.L. Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor. Atmos. Meas. Tech. 2021, 14, 4617–4637. [Google Scholar] [CrossRef]
- Bauerová, P.; Šindelářová, A.; Rychlík, Š.; Novák, Z.; Keder, J. Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory. Atmosphere 2020, 11, 492. [Google Scholar] [CrossRef]
- Berthelot, B.; Daoud, A.B.; Hellio, B.; Akiki, R. Cairsens NO2: A Miniature Device Dedicated to the Indicative Measurement of Nitrogen Dioxide in Ambient Air. Proceedings 2017, 1, 473. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and calibration of Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide. Atmos. Environ. 2015, 100, 111–116. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Envea. Cairsens Micro-Sensors—Technical Specification. Available online: https://www.envea.global/design/medias/ENVEA_Cairsens_Specification-sheet_EN.pdf (accessed on 30 March 2022).
- Aeroqual Limited. Portable & Fixed Monitor Sensor Specifications (MRK-D-0008 V9). Available online: https://support.aeroqual.com/Document/35IZX4rKjDvXDiDX/Handheld+and+fixed+sensor+specifications.pdf (accessed on 30 March 2022).
- Briggs, J.M.; Gibson, D.J. Effect of fire on tree spatial patterns in a tallgrass prairie landscape. Bull. Torrey Bot. Club 1992, 119, 300–307. [Google Scholar] [CrossRef]
- Briggs, J.M.; Hoch, G.A.; Johnson, L.C. Assessing the rate, mechanisms, and consequences of the conversion of tallgrass prairie to Juniperus virginiana forest. Ecosystems 2002, 5, 578–586. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Briggs, J.M.; Goodin, D.G.; Luo, L.; Mohler, R.L.; Nippert, J.B.; Obermeyer, B. Assessing the Potential for Transitions from Tallgrass Prairie to Woodlands: Are We Operating Beyond Critical Fire Thresholds? Rangel. Ecol. Manag. 2016, 69, 280–287. [Google Scholar] [CrossRef]
- Collins, S.L. Interaction of disturbances in tallgrass prairie: A field experiment. Ecology 1987, 68, 1243–1250. [Google Scholar] [CrossRef]
- Collins, S.L. Introduction: Fire as a natural disturbance in tallgrass prairie ecosystems. In Fire in North. American Tallgrass Prairies; University of Oklahoma Press: Norman, OK, USA, 1990; pp. 3–7. [Google Scholar]
- Reichman, O.J. Konza Prairie: A Tallgrass Natural History; University Press of Kansas: Lawrence, KS, USA, 1988. [Google Scholar]
- Baker, K.; Koplitz, S.; Foley, K.; Avey, L.; Hawkins, A. Characterizing grassland fire activity in the Flint Hills region and air quality using satellite and routine surface monitor data. Sci. Total Environ. 2019, 659, 1555–1566. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Maghirang, R.; Devlin, D.; Blocksome, C. Estimating Contributions of Prescribed Rangeland Burning in Kansas to Ambient PM2.5 through Source Apportionment with the Unmix Receptor Model. Trans. ASABE 2016, 59, 1267–1275. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Murphy, J.P.; Maghirang, R. Contributions of Kansas rangeland burning to ambient O3: Analysis of data from 2001 to 2016. Sci. Total Environ. 2018, 618, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Whitehill, A.R.; George, I.; Long, R.; Baker, K.R.; Landis, M. Volatile Organic Compound Emissions from Prescribed Burning in Tallgrass Prairie Ecosystems. Atmosphere 2019, 10, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, R.W.; Whitehill, A.; Habel, A.; Urbanski, S.; Halliday, H.; Colón, M.; Kaushik, S.; Landis, M.S. Comparison of ozone measurement methods in biomass burning smoke: An evaluation under field and laboratory conditions. Atmos. Meas. Tech. 2021, 14, 1783–1800. [Google Scholar] [CrossRef] [PubMed]
- Landis, M.S.; Edgerton, E.S.; White, E.M.; Wentworth, G.R.; Sullivan, A.P.; Dillner, A.M. The impact of the 2016 Fort McMurray Horse River Wildfire on ambient air pollution levels in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 2018, 618, 1665–1676. [Google Scholar] [CrossRef]
- Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef] [Green Version]
- Masey, N.; Gillespie, J.; Ezani, E.; Lin, C.; Wu, H.; Ferguson, N.S.; Hamilton, S.; Heal, M.R.; Beverland, I.J. Temporal changes in field calibration relationships for Aeroqual S500 O3 and NO2 sensor-based monitors. Sens. Actuators B Chem. 2018, 273, 1800–1806. [Google Scholar] [CrossRef]
- Isiugo, K.; Newman, N.; Jandarov, R.; Grinshpun, S.A.; Reponen, T. Assessing the accuracy of commercially available gas sensors for the measurement of ambient ozone and nitrogen dioxide. J. Occup. Environ. Hyg. 2018, 15, 782–791. [Google Scholar] [CrossRef]
- Aeroqual Limited. Nitrogen Dioxide Sensor 0-1ppm. Available online: https://www.aeroqual.com/products/sensors/nitrogen-dioxide-sensor-0-1ppm (accessed on 30 March 2022).
Company | Species | Model | Range (ppmv) | Resolution (ppmv) | MDL (ppmv) | Type |
---|---|---|---|---|---|---|
Aeroqual | CO | ECM | 0–25 | 0.01 | 0.05 | EC |
Aeroqual | CO2 | CD | 0–2000 | 1 | 10 | NDIR |
Aeroqual | NO2 | ENW | 0–1 | 0.001 | 0.005 | EC |
Aeroqual | VOC | VOC | 0–20 | 0.01 | 0.01 | PID |
Aeroqual | NMHC | VN | 0–25 | 0.01 | 0.1 | SC |
Aeroqual | NH3 | ENG | 0–100 | 0.1 | 0.2 | EC |
Aeroqual | H2S | EHS | 0–10 | 0.01 | 0.04 | EC |
Envea | CO | 0–20 | 0.001 | 0.05 | EC | |
Envea | NO2 | 0–0.25 | 0.001 | 0.02 | EC | |
Envea | H2S | 0–1 | 0.001 | 0.01 | EC | |
Envea | NH3 | 0–25 | 0.001 | 0.5 | EC | |
Envea | NMVOC | 0–2 | 0.001 | 0.2 | PID |
Period | Temperature (°C) | Relative Humidity (%) | Pressure (mbar) |
---|---|---|---|
Konza (11 October 2017) | 6.3 | 38.3 | 972.1 |
Tallgrass (13 October 2017) | 10.2 | 68.9 | 976.6 |
Tallgrass (15 October 2017) | 16.1 | 34.5 | 975.3 |
Period | Cairpol | Aeroqual | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | NO2 | H2S | NH3 | O3+NO2 | nmVOC | O3 | CO | NO2 | CO2 | VOC | NMHC | NH3 | H2S | |
Konza (15 March 2017) | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |||||||
Konza (16 March 2017) | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |||||||
Konza (17 March 2017) | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |||||||
Konza (20 March 2017) | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |||||||
Konza (10 November 2017) | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | |
Tallgrass (13 November 2017) | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | |
Tallgrass (15 November 2017) | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | |
Missoula (Sect. 2.3) | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 3 |
Date | Sensor | Collocated Precision | Deming Slope (95% CI) | Deming Intercept (95% CI) | R2 |
---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol CO | 6.63% | 0.964 (0.938, 0.990) | 0.001 (−0.031, 0.033) | 0.995 |
Konza (17 March 2017) | Cairpol CO | 5.37% | 0.984 (0.957, 1.012) | −0.098 (−0.181. −0.157) | 0.992 |
Konza (20 March 2017) | Cairpol CO | 3.41% | 0.997 (0.987, 1.007) | 0.039 (0.002, 0.075) | 0.995 |
Konza (10 November 2017) | Cairpol CO | 6.04% | 0.979 (0.948, 1.011) | 0.098 (0.044, 0.151) | 0.992 |
Tallgrass (13 November 2017) | Cairpol CO | 7.19% | 1.018 (0.997, 1.038) | 0.052 (0.008, 0.096) | 0.985 |
Konza (16 March 2017) | Aeroqual CO | 28.69% | 0.992 (0.919, 1.065) | −0.131 (−0.307, 0.045) | 0.846 |
Konza (17 March 2017) | Aeroqual CO | 22.75% | 0.891 (0.803, 0.980) | −0.168 (−0.721, 0.386) | 0.829 |
Konza (20 March 2017) | Aeroqual CO | 11.93% | 1.026 (1.000, 1.053) | 0.102 (−0.083, 0.288) | 0.941 |
Date | Sensor | Collocated Precision | Deming Slope (95% CI) | Deming Intercept (95% CI) | R2 |
---|---|---|---|---|---|
Konza (15 March 2017) | Cairpol NO2 | 19.03% | 0.960 (0.908,1.011) | −1.013 (−1.359,−0.668) | 0.988 |
Konza (17 March 2017) | Cairpol NO2 | 13.19% | 0.958 (0.940,0.975) | −1.134 (−1.477,−0.791) | 0.991 |
Konza (17 March 2017) | Cairpol NO2 | 13.69% | 1.043 (0.980,1.106) | −1.106 (−2.163,−0.050) | 0.973 |
Konza (20 March 2017) | Cairpol NO2 | 12.59% | 0.973 (0.948,0.999) | −2.100 (−2.609,−1.592) | 0.978 |
Konza (15 March 2017) | Aeroqual NO2 | 34.89% | 0.839 (0.348,1.330) | 104.497 (63.792,145.201) | 0.873 |
Konza (17 March 2017) | Aeroqual NO2 | 33.51% | 0.971 (0.859,1.082) | 81.780 (74.010,89.550) | 0.911 |
Konza (17 March 2017) | Aeroqual NO2 | 28.07% | 0.869 (0.749,0.988) | 93.400 (82.300,104.500) | 0.921 |
Konza (20 March 2017) | Aeroqual NO2 | 39.66% | 0.831 (0.483,1.179) | 92.258 (69.980,114.530) | 0.711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitehill, A.R.; Long, R.W.; Urbanski, S.P.; Colón, M.; Habel, A.; Landis, M.S. Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes. Atmosphere 2022, 13, 877. https://doi.org/10.3390/atmos13060877
Whitehill AR, Long RW, Urbanski SP, Colón M, Habel A, Landis MS. Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes. Atmosphere. 2022; 13(6):877. https://doi.org/10.3390/atmos13060877
Chicago/Turabian StyleWhitehill, Andrew R., Russell W. Long, Shawn P. Urbanski, Maribel Colón, Andrew Habel, and Matthew S. Landis. 2022. "Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes" Atmosphere 13, no. 6: 877. https://doi.org/10.3390/atmos13060877
APA StyleWhitehill, A. R., Long, R. W., Urbanski, S. P., Colón, M., Habel, A., & Landis, M. S. (2022). Evaluation of Cairpol and Aeroqual Air Sensors in Biomass Burning Plumes. Atmosphere, 13(6), 877. https://doi.org/10.3390/atmos13060877