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Abstract: A growing number of companies have started commercializing low-cost sensors (LCS)
that are said to be able to monitor air pollution in outdoor air. The benefit of the use of LCS is the
increased spatial coverage when monitoring air quality in cities and remote locations. Today, there
are hundreds of LCS commercially available on the market with costs ranging from several hundred
to several thousand euro. At the same time, the scientific literature currently reports independent
evaluation of the performance of LCS against reference measurements for about 110 LCS. These
studies report that LCS are unstable and often affected by atmospheric conditions—cross-sensitivities
from interfering compounds that may change LCS performance depending on site location. In
this work, quantitative data regarding the performance of LCS against reference measurement are
presented. This information was gathered from published reports and relevant testing laboratories.
Other information was drawn from peer-reviewed journals that tested different types of LCS in
research studies. Relevant metrics about the comparison of LCS systems against reference systems
highlighted the most cost-effective LCS that could be used to monitor air quality pollutants with a
good level of agreement represented by a coefficient of determination R2 > 0.75 and slope close to 1.0.
This review highlights the possibility to have versatile LCS able to operate with multiple pollutants
and preferably with transparent LCS data treatment.

Keywords: electrochemical sensors; metal oxide sensors; optical particle counters; nephelometers;
citizen science; performance evaluation; sensor validation; air quality monitoring

1. Introduction

The increase of the commercial availability of micro-sensor technology is contributing to the
rapid adoption of low-cost sensors for air quality monitoring by both citizen science initiatives and
public authorities [1]. In general, public authorities want to increase the density of monitoring and
measurements and often want to rely on low-cost sensors because they cannot afford sufficient reference
air quality monitoring stations (AQMS) [2]. Low-cost sensors can provide real time measurements
at lower cost, allowing higher spatial coverage than the current reference methods for air pollutant
measurements. Additionally, the monitoring of air pollution with reference measurement methods
requires skilled operators for the maintenance and calibration of measuring devices, which are described
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in detailed standard operational procedures [3–7]. Conversely, it is expected that low-cost sensors
can be operated without human intervention, making it possible for unskilled users to monitor air
pollution without the need for additional technical knowledge.

Plenty of institutes in charge of air quality monitoring for regulatory purposes, as well as local
authorities, are considering including low-cost sensors among their routine methods of measurements
to supplement monitoring with reference measurements. However, the lack of exhaustive and accessible
information in order to compare the performance of low-cost sensors and the wide commercial offerings
make it difficult to select the most appropriate low-cost sensors for monitoring purposes.

For classification and understanding of sensor deployment, one should distinguish between
the sole sensor detectors produced by original equipment manufacturers (hereafter such sensors are
called OEM, or OEM sensors) and sensor systems (SSys), which include OEM sensors together with a
protective box, sampling system, power system, electronic hardware, and software for data acquisition,
analogue to digital conversion, data treatment, and data transfer [8]. Hereafter, OEMs and SSys are
referred to as low-cost sensors (LCS). From a user point of view, SSys are ready-to-use out of the
box systems, while OEM users need to add hardware and software components for protection from
meteorological conditions, data storage, data pushing, interoperability of data, and generally the
calibration of LCS. The use of LCS is of major interest for citizen science initiatives. Therefore, small
and medium enterprises have made SSys available that can be deployed by citizens who want to
monitor the air quality in a chosen environment.

Although a number of reviews of the suitability of LCS for ambient air quality have been
published [1,9–15], quantitative data for comparing and evaluating the agreement between LCS
and reference data are mostly missing from the existing reviews. Several protocols have been
developed by research institutes worldwide (for example: [16,17] and http://www.aqmd.gov/docs/
default-source/aq-spec/protocols/sensors-field-testing-protocol.pdf?sfvrsn=0) or are currently being
standardized (CEN/TC 264 Air quality—Performance evaluation of air quality sensors—Part 1:
Gaseous pollutants in ambient air and Part 2: Performance evaluation of sensors for the determination
of concentrations of particulate matter (PM10; PM2.5) in ambient air; WI 00264179ASTM Work
Item Number WK64899 Standard Test Method for the Performance Evaluation of Ambient Air
Quality Sensors and other Sensor-based Instruments; US-EPA: Draft Performance Parameters and
Test Protocols for Ozone Air Sensors and Draft Performance Parameters and Test Protocols for
Fine Particulate Matter Air Sensors) by national standardization institutes, or have been published
very recently (http://ecolibrary.me.go.kr/nier/search/DetailView.ax?cid=5668661). These protocols set
different requirements, including sensor data treatment, levels and duration of tests, seasonality of
tests, sensor averaging time, and type of reference measurements to which sensor data are compared to.
In the absence of an internationally accepted standardized protocol for testing LCS [18], there is a lack
of harmonization of the tests being carried out. Consequently, the conditions of tests and the metrics
reported are generally diverse, making it difficult to compare the performance of LCS in different
evaluation studies.

Among the available tests for LCS, there are clear indications that the accuracy of LCS measurements
can be questionable [19,20] when comparing LCS values and reference measurements. Even though the
sources of these inaccuracies are known, accurate models able to correct for these effects are currently
unavailable. The main sources of these inaccuracies are related to the selectivity of gas sensors being
generally poor because the principles of measurement of sensors are not specific to the gas compound
of interest. Some factors related to this process are as follows:

(1) For gas sensors, electrochemical gas sensors measure currents of electrons of several possible
redox reactions, and hence several possible species. Metal-oxide sensors measure the conductance
of charges on semiconductor material of species undergoing either reduction or oxidation with
reactive oxygen.

(2) The calibration function is generally set at one reference station and it is likely to introduce biases
when used at other locations due to different air composition and meteorological conditions.

http://www.aqmd.gov/docs/default-source/aq-spec/protocols/sensors-field-testing-protocol.pdf?sfvrsn=0
http://www.aqmd.gov/docs/default-source/aq-spec/protocols/sensors-field-testing-protocol.pdf?sfvrsn=0
http://ecolibrary.me.go.kr/nier/search/DetailView.ax?cid=5668661
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(3) For PM, optical sensors measure light scattering converted by computation to mass concentration.
Light scattering is strongly affected by parameters such as particle density, particle hygroscopicity,
refraction index, and particle composition. All of these factors vary from site to site and
with seasonality.

At the present time there is no common protocol to test LCS against a reference measurement.
As a consequence, sensor data can be of variable quality. Therefore, it is of fundamental importance to
evaluate LCS in order to choose the most appropriate ones for routine measurements or other case
studies [21]. However, only a few independent tests are reported in academic publications.

Hereafter, the results of the exhaustive review of existing literature on LCS evaluation are presented,
which are not available elsewhere. The main purpose of this review was to estimate the agreement
between LCS data against reference measurements, both with field tests and controlled conditions
tests, carried out by laboratories and research institutes independent from sensor manufacturers and
commercial interests. This can provide all stakeholders with exhaustive information for selection of
the most appropriate LCS. Quantitative information was gathered from the existing literature about
the performance of LCS according to the following criteria:

(1) Agreement between LCS and reference measurements.
(2) Availability of raw data and transparency of data treatment, making a posteriori

calibration possible.
(3) Capability to measure multiple pollutants.
(4) Affordability of LCS considering the number of provided OEMs.

2. Sources of Available Information, Method of Classification and Evaluation

2.1. Origin of Data

The research was focused on LCS for measurement of particulate matter (PM), ozone (O3), nitrogen
dioxide (NO2), and carbon monoxide (CO), the pollutants that are included into the European Union
Air Quality Directive [2]. References were also included for nitrogen monoxide LCS (NO).

Approximately 1423 independent laboratory or field tests of LCS versus reference measurements
(called “records” in the rest of the manuscript) were gathered from peer-reviewed studies of LCS
available in the Scopus database, the World-Wide Web, the AirMontech website (http://db-airmontech.
jrc.ec.europa.eu/search.aspx), ResearchGate, Google search, and reports from research laboratories.
Sensor validation studies provided by LCS manufacturers or other sources with concern of a possible
conflict of interest were not considered. In total, 64 independent studies were found from different
sources, including reports and peer-reviewed papers.

Additionally, a significant number of test results came from reports published by research institutes.
In fact, the rapid technological progress of LCS, the difficulty to publish LCS data that do not agree
with reference measurements, and the time needed to publish studies in academic journals means
the publication of articles is not the preferred route. Instead, a great part of the available information
is found in “grey” literature, mainly in the form of reports. A substantial quantity of presented
results come from research institutes having a LCS testing program in place, e.g., the Air Quality
Sensor Performance Evaluation Center (AQ-SPEC) [19], the European Union Joint Research Centre
(EU JRC) [9,20,22–28], and the United States Environmental Protection Agency (US EPA) [14,29–32].

A significant portion of the data comes from the first French field inter-comparison exercise [33]
for gas and particle LCS carried out in January–February of 2018. This exercise was carried out by two
members of the French Reference Laboratory for Air Quality Monitoring (LCSQA). The objective of the
study was to test LCS under field conditions at urban air quality monitoring stations of situated at
the IMT Lille Douai research facilities in Dorignies. A large number of different SSys and OEMs were
installed in order to evaluate their ability to monitor the main pollutants of interest in the ambient
air: NO2, O3, and PM2.5/PM10. This exercise involved nearly five French laboratories in charge of air

http://db-airmontech.jrc.ec.europa.eu/search.aspx
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pollution monitoring, 10 companies (manufacturers or distributors/sellers), and 23 SSys and OEMs of
different design and origin (France, Netherlands, United Kingdom, Spain, Italy, Poland, United States),
for a total of more than sixty devices when considering replicates.

Within another project, called AirLab (http://www.airlab.solutions/), many LCS were tested
through field and indoor tests. Results are reported based on the integrated performance index (IPI)
developed by Fishbain et al. [34], which is an integrated indicator of correlation, bias, failure, source
apportionment with LCS, accuracy, and time series variability of LCS and reference measurements.
Since the IPI is not available in other studies and cannot be compared with the metrics used in the
current review, it was decided not to include the AirLab results in the current work.

A shared database of laboratory and field test results and the associated scripts for summary
statistics were created using the collected information. It will be possible to update the database with
future results of LCS tests. The purpose of this development was to setup a structured repository to be
used to compare the performances of LCS.

Each database “record” describing laboratory or field LCS test results was included in the database
only if comparison against a reference measurement (hereinafter defined as “comparison”) was
provided. The comparison data allowed evaluation of the correlation between LCS data and reference
measurements. Most of the reviewed studies only reported regression parameters obtained from the
comparison between LCS and reference measurements, generally without more sophisticated metrics
such as root mean square error and measurement uncertainty (see Section 3).

2.2. Classification of Low-Cost Sensors

For each model of SSys, the OEM manufacturer was identified along with the manufacturer of the
SSys. Overall, we found 112 models of LCS, including both OEMs (31) and SSys (81), manufactured by
77 manufacturers (16 OEMs and 61 SSys).

In addition, 19 projects evaluating OEMs, SSys, or both, and reporting quantitative comparisons of
LCS data and reference measurements were identified. They include the Air Quality Egg, Air Quality
Station, AirCasting [19,35–37], Carnegie Mellon [36,38], CitiSense [30], Cairsense [39], Developer
Kit [19], HKEPD/14-02771 [40], making-sense.eu [41], communitysensing.org [32], MacPoll.eu [20],
OpenSense II [42,43], Proof of Concept AirSensEUR [22], and SNAQ Heathrow [44,45]. Out of the
1423 records collected from literature, we identified 1188 records (197 OEMs and 991 SSys) from 89
alive LCS (24 OEMs and 65 SSys) and 235 records (123 OEMs and 112 SSys) from 23 “non active” (or
discontinued) LCS (7 OEMs and 16 SSys).

“Low-cost” refers to the purchase price of LCS [9] compared to the purchase and operating
cost of reference analyzers [46] for the monitoring of regulated inorganic pollutants and PM, which
can easily be an order of magnitude more costly. More recently, ultra-affordable OEMs have started
to appear on the market for PM monitoring [47–49]. Many of them are designed to be integrated
into Internet of Things (IoT) networks of interconnected devices. Currently, for PM detection it is
possible to purchase optical sensors that cost between several tens and several hundreds of euro.
Those devices are manufactured in emerging economies, such as the Republic of China and the
Republic of Korea [50]. Some of these LCS can achieve similar performance to more expensive
OEMs [18,19,29–31,37,48,49,51–56].

The data treatment of LCS can be classified into two distinct categories:

(1) Processing of LCS data performed by “open source” software tuned according to several calibration
parameters and environmental conditions. All data treatments from data acquisition until the
conversion to pollutant concentration levels is known to the user. There were 234 records
identified, comprising 108 OEMs and 126 SSys using open source software for data management.
These 401 records came from 34 unique LCS. Usually, outputs from these LCS are already in
the same measurement units as the reference measurements. In this category, LCS devices are
generally connected to a custom-made data acquisition system to acquire LCS raw data. Generally,
users are expected to set a calibration function in order to convert LCS raw data to validated

http://www.airlab.solutions/
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pollutant concentrations. The calibration equations are set by fitting a model (see Section 4.1)
during a calibration time interval (typically 1 or 2 weeks) when sensor and reference data are
co-located. Subsequently, the calibration is applied to compute pollutant levels outside the
calibration time interval. Two-thirds of calibration functions are established by fitting LCS raw
data versus reference measurements, and vice versa.

(2) LCS with calibration algorithms whose data treatment is unknown and without the possibility to
change any parameter have been identified as “black boxes”. This is due to the impossibility for
the user to know the complete chain of data treatment. 1189 records were identified, made up
of 212 OEMs and 977 SSys that did not use an open source software for data treatment. These
1189 records came from 83 unique LCS. In most cases, these SSys are pre-calibrated against a
reference system, or the calibration parameters can be remotely adjusted by the manufacturer.
Finally, we should point out that some LCS used for the detection of PM (such as the Alphasense
(Great Notley, UK) OPC-N2 and OPC-N3, and the PMS series from Plantower (Beijing, CN) could
be used as open source devices if users compute PM mass concentration using the available counts
per bins. However, these PM sensors are mostly used as a “black box”, with mass concentration
computed by unknown algorithms developed by manufacturers.

Clear definitions and examples of the principles of operations used by the different types of
sensors (electrochemical, metal oxides, optical particulate counter, optical sensors) are reported in a
recent work by World Meteorological Organization [8]. This work also describes observed limitations
of each type of sensor, such as interference by meteorological parameters, cross-sensitivities to other
pollutants, drift, and aging effect. To date, there is a larger number of active and commercially available
LCS (Figure 1). However, while most of the OEMs are open source, allowing end-users to integrate
them into SSys, most of the SSys themselves were found to be “black-box” devices. This is a limitation,
as the SSys might need a posteriori calibration in addition to the one provided by the manufacturer,
but raw data are unavailable.

LCS are also classified according to their commercial availability. LCS were assigned to the
“commercial” category if they could be purchased and operated by any user. LCS fell under the
“non-commercial” category when it was not possible to find a commercial supplier selling them.
Typically, this type of LCS are used for research and publication, while it is difficult for any user to
repeat the same sensor setup.

Atmosphere 2019, 10, x FOR PEER REVIEW 5 of 46 

 

2) LCS with calibration algorithms whose data treatment is unknown and without the possibility 

to change any parameter have been identified as “black boxes”. This is due to the impossibility 

for the user to know the complete chain of data treatment. 1189 records were identified, made 

up of 212 OEMs and 977 SSys that did not use an open source software for data treatment. These 

1189 records came from 83 unique LCS. In most cases, these SSys are pre-calibrated against a 

reference system, or the calibration parameters can be remotely adjusted by the manufacturer. 

Finally, we should point out that some LCS used for the detection of PM (such as the Alphasense 

(Great Notley, UK) OPC-N2 and OPC-N3, and the PMS series from Plantower (Beijing, CN) 

could be used as open source devices if users compute PM mass concentration using the 

available counts per bins. However, these PM sensors are mostly used as a “black box”, with 

mass concentration computed by unknown algorithms developed by manufacturers.  

Clear definitions and examples of the principles of operations used by the different types of sensors 

(electrochemical, metal oxides, optical particulate counter, optical sensors) are reported in a recent work 

by World Meteorological Organization [8]. This work also describes observed limitations of each type 

of sensor, such as interference by meteorological parameters, cross-sensitivities to other pollutants, 

drift, and aging effect. To date, there is a larger number of active and commercially available LCS 

(Figure 1). However, while most of the OEMs are open source, allowing end-users to integrate them 

into SSys, most of the SSys themselves were found to be “black-box” devices. This is a limitation, as the 

SSys might need a posteriori calibration in addition to the one provided by the manufacturer, but raw 

data are unavailable. 

LCS are also classified according to their commercial availability. LCS were assigned to the 

“commercial” category if they could be purchased and operated by any user. LCS fell under the “non-

commercial” category when it was not possible to find a commercial supplier selling them. Typically, 

this type of LCS are used for research and publication, while it is difficult for any user to repeat the 

same sensor setup.  

Figure 1 shows the number of LCS, either OEMs or SSys, still active or discontinued, with open 

or “black box” type of data treatment, and that are commercially available. 

 

Figure 1. Number of LCS models gathered from the literature review highlighting their open data 

treatment (open source vs. black box) and commercial availability. 

Figure 1. Number of LCS models gathered from the literature review highlighting their open data
treatment (open source vs. black box) and commercial availability.



Atmosphere 2019, 10, 506 6 of 41

Figure 1 shows the number of LCS, either OEMs or SSys, still active or discontinued, with open or
“black box” type of data treatment, and that are commercially available.

2.3. Recent Tests Per Pollutant and Per Sensor Type

Table 1 reports the number of “records”, by pollutant and sensor technology, gathered in literature
regarding validation and testing of LCS against a reference system. Records were collected from
laboratory (133) and field tests (1290). The majority of records refer to commercially available OEMs
and SSys, even though a few references regarding non-commercial LCS were also picked up.

Table 1. Number of analyzed “records” for LCS by pollutant and by type of technology.

Pollutant Type n. Records
Field

n. Records
Laboratory References

CO electrochemical 51 9

AQ-SPEC [19], Jiao [39], Sun [40], Marjovi [57], Karagulian [22],
Mead [44], Popoola [45], Borrego [53], Castell [10], Cross [58],

Gerboles [23], Wei [59], Gillooly [60], Zimmerman [61],
Spinelle [24,27]

CO MOs 27 2 AQ-SPEC [19], Piedrahita [62], Spinelle [24]

NO electrochemical 44 6
Jiao [39], Bigi [42], Karagulian [22], Mead [44], Popoola [45],

AQ-SPEC [19], Castell [10], Borrego [53], Cross [58],
Gillooly [60], Spinelle [24], Gerboles [23], Wei [59], Crunaire [33]

NO MOs 1 - Crunaire [33]

NO2 electrochemical 137 21

AQ-SPEC [19], Jiao [39], Williams [30], Sun [40], Mijling [41],
Vaughn [32], Spinelle [20], Mueller [43], Bigi [42], Marjovi [57],

Cordero [63], Karagulian [22], Mead [44], Popoola [45],
Borrego [53], Castell [10], Cross [58], Spinelle [26], Duvall [64],

Gillooly [60], Gerboles [23], Wei [59], Sun [65], Zimmerman [61],
Lin [66], Crunaire [33]

NO2 MOs 28 10 AQ-SPEC [19], Vaughn [32], Williams [30], US-EPA [67],
Borrego [53], Piedrahita [62], Spinelle [20], Crunaire [33]

O3 electrochemical 65 10
AQ-SPEC [19], Jiao [39], Spinelle [20], Mueller [43], Marjovi [57],

Karagulian [22], Borrego [53], Castell [10], Cross [58],
Duvall [64], Feinberg [36], Gerboles [23], Wei [59], Crunaire [33]

O3 MOs 54 3 AQ-SPEC [19],Jiao [39], Spinelle [20], Borrego [53], Feinberg [36]

O3 UV 9 1 Sun [40], AQ-SPEC [19]

PM2.5 Electrical 6 - AQ-SPEC [19]

PM2.5 nephelometer 129 24

AQ-SPEC [19]], Borghi [37], Jiao [39], Feinberg [36], US-EPA [67],
Williams [31], Manikonda [54], Zikova [55], Wang [68],

Alvarado [69], Chakrabarti [70], Sousan [56],Borrego [53],
Olivares [71],Sun [40], Pillarisetti [72], Holstius [51], Austin [73],
Gao [74], Kelly [75], Karagulian [28], Badura [49], Crunaire [33]

PM2.5 OPC 428 27

AQ-SPEC [19], Mukherjee [35], Feinberg [36], Jiao [39],
Cavaliere [76], Borrego [53], Viana [77], Williams [31],

Manikonda [54], Northcross [78], Holstius [51], Steinle [79],
Han [80], Jovasevic [81], Dacunto [82], Gillooly [60], Sousan [83],

Crilley [84], Badura [49], Kelly [75], Zheng [85], Laquai [48],
Budde [47], Liu [52], Crunaire [33]

PM1 Electrical 6 - AQ-SPEC [19]

PM1 nephelometer 1 - Crunaire [33]

PM1 OPC 102 8 AQ-SPEC [19], Williams [31], Sousan [83], Crilley [84],
Crunaire [33]

PM10 nephelometer 26 1 AQ-SPEC [19], Borrego [53], Alvarado [69], Crunaire [33]

PM10 OPC 176 11
AQ-SPEC [19], Cavaliere [76], Borrego [53], Feinberg [36],

Manikonda [54], Sousan [56], Han [80], Jovasevic [81],
Williams [31], Sousan [83], Crilley [84], Budde [47], Crunaire [33]

For the detection of PM, the largest number of LCS tests were carried out for optical particle
counters (OPC) with 752 records, followed by nephelometers with 181 records (see Table 1). Both
systems detect PM by measuring the light scattered by particles, with the OPC being able to directly
count particles according to their size. On the other hand, nephelometers estimate particle density
that is subsequently converted into particle mass. For the detection of gaseous pollutants, such as CO,
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NO, NO2, and O3, the largest number of tests were performed using electrochemical sensors with
343 records, followed by metal oxides sensors (MOs) with 125 records (see Table 1). Electrochemical
sensors are based on a chemical reaction between gases in the air and the working electrode of
an electrochemical cell that is dipped into an electrolyte. In a MOs, also named a resistive sensor
or semiconductor, gases in the air react on the surface of a semiconductor and exchange electrons,
modifying its conductance.

Table A2 reports the OEM models currently used to monitor PM and gaseous pollutants (NO2,
O3, NO, and CO) according to their type of technology. SSys models measuring concentration of PM
and gaseous pollutants are reported in Table A3. We want to point out that several SSys can use the
same set of OEMs. In a few cases, the same model of SSys was tested using different types of OEMs
when performing validation tests [22,23].

“Living” LCS are devices currently available for commercial or research purposes. Considering
only the “living” LCS from Tables A2 and A3, one may observe that there are fewer OEMs (24) than
SSys (65), and therefore different SSys are using the same sets of OEMs. Additionally, there is a lack
of laboratory tests for the OEMs compared to SSys. Among the reviewed records only ~11% were
attributed to laboratory tests. Most LCS (~90%) were calibrated at a few field sites where it is not
possible to isolate the effect of single pollutants or meteorological parameters, since in ambient air
many of these parameters are correlated with each other. Establishing calibration models relying only
on field results obtained at few sites might lead to the situation where parameters that have no effect on
the sensor data but that are correlated with other variables that do have an effect are taken into account
in the calibration. Consequently, the performance of such calibration models can be poor when LCS
are used at sites other than the ones used for calibration where the relationship between the parameter
used for calibration and the ones having an effect on the response of LCS may change [43,86,87]. If the
performance of sensors at sites other than the calibration sites worsen, it is likely that the calibration
model should be improved because of its lack of fit.

The research covered the period between 2010 and 2019 (year of publication). As shown in
Figure 2, only a few preliminary studies on the evaluation of performance of LCS were published
between 2010 and 2014. In 2015, we recorded the largest number of references with 27 different works
publishing results on performances of LCS for air quality monitoring. For the test studies carried out
by AQ-SPEC [19], records were evaluated per model of LCS.
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Overall, 34 references reporting field tests with LCS co-located at urban sites were found, as well
as 8 references for rural sites, and 10 references for traffic sites. Most of the laboratory and field tests
reported hourly data (610 records for 86 models of LCS). We also found 253 records for 40 LCS using
daily data and 248 records for 42 LCS using 5-minute averages (Table A1). Therefore, records from
hourly data were considered statistically more significant.

3. Method of Evaluation

The European Union Air Quality Directive indicates that measurement uncertainty [88] shall be
the main indicator used for the evaluation of the data quality objective of air pollution measurement
methods [2]. However, the evaluation of this metric is cumbersome [89,90] and it is not included in
the majority of sensor studies (see Table 2). For the performance criteria used to evaluate air quality
modeling applications [91], the set of statistical indicators includes the root mean square error (RMSE),
the bias, the standard deviation (SD), and the correlation coefficient (R), of which RMSE is thought to
be the most explicative one. The statistical indicators can be better visualized in a target diagram [20].
Unfortunately, Table 2 also shows that RMSE is mainly unreportable in the literature. As already
mentioned above, integrated indicators, such as the IPI [34], would breach our objective to use solely
quantitative and comparable indicators. Additionally, it is impossible to compute IPIs a posteriori,
since time series are mainly not available in literature.

Table 2. Number of records gathered by metrics available in literature.

Metrics n. Field Tests n. Laboratory Tests

Total tests 1290 133
R2, calibrations 218 60
R2, comparisons 1160 72

slope of regression line 1063 55
intercept 1027 54

RMSE 285 5
Measurement uncertainty (U) 153 29

MAE 40 0
Bias 19 3

Therefore, we had to rely on the most common metrics, i.e., the coefficient of determination
R2 and the slope and intercept of the linear regression line between LCS data and the reference
measurement. R2 can be viewed as a measure of goodness of fit (how close evaluation data is to
the reference measurements) and the slope of the regression as the level of accuracy. R2 measures
the strength of the association between two variables but it is insensitive to bias between LCS and
reference data—either relative bias (slope different from 1) or absolute bias (intercept different from
0). R2 is a partial measure of how much LCS data agree with reference measurements according to
a regression model [92]. A larger R2 reflects an increase in the predictive precision of the regression
model. The majority of the reviewed works reported R2 value as a main metric when comparing
LCS with reference measurements. Table 2 clearly shows that only a few records were found for the
measurements reporting mean absolute error (MAE), bias, and RMSE [42,49,52–54,56]. However, we
would like to stress that other statistical parameters, such as the mean normalized bias (MNB), mean
normalized error (MNE), and the root mean square error (RMSE), are also very important in evaluating
the relationship between LCS and reference instruments.

An increase of R2 may not be the result of an improvement of LCS data quality, since R2 may
increase when the range of reference measurements increases [93] or according to the seasonality of
sampling reported in different studies. Because of the different time ranges and seasonality reported in
the reviewed records, it was not possible to have a homogeneous dataset with the same meteorological
trends and conditions. This might represent a limitation of the present work and could be an element to
improve future LCS comparison for the characterization of their calibration performances. Moreover,
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since LCS are affected by long time drift and ageing, longer field studies are more likely to report lower
R2 than shorter ones.

Nearly all published studies report the coefficient of determination (R2) between reference and
LCS data (see Table 2). Fortunately, the majority of these studies also report the slope and intercept of
the regression line between LCS data and reference measurements that describe the possible bias of
LCS data. A few studies also report the RMSE [10,20,22,36,41–43,51,52,58,60,62,63,85] which clearly
indicates that the magnitude of the error in LCS data is also sensitive to extreme values and outliers.
Only a few studies report the measurement uncertainty [10,22,25,30,48,52,59,61]. Therefore, for the
purpose of this work, we only focused on the analysis of the comparison of laboratory and field tests
of LCS.

Table 2 also gives the R2 of calibration that was found in the literature. Generally, these studies
also present the model equations used for calibration. The number of studies reporting the R2 of
calibration represents about 10% of the studies reporting R2 of comparison of calibrated LCS and
reference data using linear regressions.

Although the data set of R2 for calibration is limited in size, we have investigated if the type of
calibration has an influence on the agreement between calibrated LCS data and reference measurements.

In order to estimate the efficiency of calibration models, the reported coefficient of determination
R2 was used as an indicator of the amount of total variability explained by the model (see calibration
of LCS). This can be used as an indication of performance of the calibration model chosen to validate
the LCS against a reference system.

Using the highest R2 of comparison together with the slope of the comparison line near to 1.0,
a shorter set of best performing LCS will be drawn together with their sensor technology. It was
decided to drop the analysis of intercepts differing from 0, accepting that LCS may produce unscaled
data with bias provided that LCS data would vary in the same range as reference measurements due
to the slope being close to 1. In any case, the extent of deviation from 0 of the intercepts did not
contribute significantly to the bias of LCS data for the best performing LCS as shown in Section 5 and
in Appendix A.

4. Evaluation of Sensor Data Quality

4.1. Calibration of Sensors

The method used for the calibration of LCS is generally considered confidential information by
the majority of LCS manufacturers and little information can be found about the calibration of LCS that
fall under the category “black box” compared to the ones that fall under the category “open source”.
In fact, several studies can be found on the calibration of “open source” LCS, both with laboratory and
field tests. Calibration consists of setting a mathematical model describing the relationship between
LCS data and reference measurements. However, most of the calibrations were carried out during
field tests, while only a limited number of laboratory based calibration experiments were found.

Out of a total of 1423 records in the database, 352 records (25%) included information about
LCS calibration giving details of used statistical or deterministic models (see Table 3). However,
among these 352 records with details of the calibration method, about 20% do not report R2, that is,
the principal metrics used for LCS performance evaluation. This is typically the case for artificial
neural networks, random forest, and support vector regression calibration methods (see below), and it
explains why the number of R2 found for calibration in Table 2 is lower than 352.
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Table 3. Types of calibration models used for the calibration of LCS.

Pollutant Calibration
Model

n.
Records References Median R2

Calibration
Median R2

Comparison

CO ANN 2 Wastine [94], Spinelle [24] - 0.58

CO linear 12
Sun [40], Wastine [94], Castell [10],

Cross [58], Gerboles [23], Spinelle [24],
Zimmerman [61]

0.85 0.15

CO MLR 21
Jiao [39], Karagulian [22], Wastine [94],
Wei [59], Piedrahita [62], Spinelle [24],

Zimmerman [61]
0.89 0.83

CO quad 12 AQ-SPEC [19] 0.63 -

CO RF 1 Zimmerman [61] 0.91 -

NO ANN 2 Wastine [94], Spinelle [24] - 0.57

NO linear 8
Wastine [94], Castell [10], Cross [58],

Spinelle [24], Karagulian [22],
Crunaire [33]

0.96 0.032

NO MLR 20 Jiao [39], Bigi [42], Karagulian [22],
Wastine [94], Spinelle [24], Wei [59] 0.92 0.91

NO RF 2 Bigi [42] - 0.9

NO SVR 2 Bigi [42] - 0.90

NO2 ANN 7 Cordero [63], Spinelle [20], Wastine [94],
Wastine [95] 0.87 0.94

NO2 linear 25

Sun [40], Spinelle [20], Wastine [94],
Wastine [95], Castell [10], Cross [58],
Karagulian [22], Zimmerman [61],

Lin [66], Crunaire [33]

0.25 0.17

NO2 log 1 Vaughn [32] 0.89 -

NO2 MLR 48

Jiao [39], Sun [65], Mijling [41],
Spinelle [20], Mueller [43], Bigi [42],

Cordero [63], Karagulian [22],
Wastine [94], Wastine [95], Piedrahita [62],

Wei [59], Zimmerman [61]

0.81 0.81

NO2 quad 6 AQ-SPEC [19] 0.61 -

NO2 RF 7 Bigi [42], Cordero [63], Zimmerman [61] 0.86 0.91

NO2 SVM 4 Cordero [63] 0.85 0.94

NO2 SVR 2 Bigi [42] - 0.78

O3 ANN 2 Spinelle [20], Wastine [94] - 0.89

O3 linear 13
Sun [40], Spinelle [20], Wastine [94],

Castell [10], Cross [58], Karagulian [22],
AQ-SPEC [19], Crunaire [33]

0.84 0.53

O3 log 1 Vaughn [32] 0.88 -

O3 MLR 20 Jiao [39], Spinelle [20], Karagulian [22],
Wastine [94], Spinelle [25], Wei [59] 0.91 0.88

O3 quad 9 AQ-SPEC [19] 0.72 -

PM1 Kholer 2 Di Antonio [96] - 0.74

PM1 log 6 AQ-SPEC [19] 0.76 -

PM10 exp 6 AQ-SPEC [19] 0.59 -

PM10 linear 3 Cavaliere [76], Jovanovic [81],
AQ-SPEC [19] 0.77 0.73

PM10 log 7 AQ-SPEC [19] 0.58 -

PM10 quad 1 Alvarado [69] 0.65 -

PM10-2.5 linear 4 Sousan [56], Han [80], Jovasevic [81] 0.63 0.98

PM2.5 exp 3 Dacunto [82], Kelly [75], Austin [73] 0.91 0.97

PM2.5 Kholer 2 Crilley [84], Di Antonio [96] - 0.78
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Table 3. Cont.

Pollutant Calibration
Model

n.
Records References Median R2

Calibration
Median R2

Comparison

PM2.5 linear 37

Mukherjee [35], Wang [68], Alvarado [69],
Cavaliere [76], Jovasevic [81],

Olivares [71], Kelly [75], Zheng [85],
Holstius [51]

0.84 0.64

PM2.5 log 7 AQ-SPEC [19], Laquai [48] 0.73 -

PM2.5 MLR 17 Jiao [39], Sun [65], Zheng [85],
Holstius [51], Liu [52] 0.81 0.65

PM2.5 quad 8 Chakrabarti [70], Alvarado [69],
Zheng [85] Gao [74] 0.87 0.88

PM2.5 RF 3 Liu [52] - 0.79

PM2.5–0.5 linear 9 Northcross [78], Steinle [79], Han [80],
Jovasevic [81] 0.84 0.98

PM2.5–0.5 MLR 1 Jiao [39] 0.6 0.45

PM2.5–0.5 quad 6 AQ-SPEC [19], Manikonda [54] 0.82 -

The linear model and the multi-linear regression model (MLR), which includes the use of covariates
to improve the quality of the calibration, are the most widely used techniques to calibrate the LCS
data against a reference measurement. Other calibration approaches use the exponential, logarithmic,
and quadratic methods, the Kohler theory of particle growing factor, and several types of supervised
learning techniques, including artificial neural networks (ANN), random forest (RF), support vector
machine (SVM), and support vector regression (SVR). Most of the MLR models use covariates such as
meteorological parameters (temperature and relative humidity) and cross-sensitivities from gaseous
interferents, such as NO2, NO, and O3, in order to improve LCS calibration. LCS data time-drift was
rarely included in the list of calibration covariates [39,62]. Several works have demonstrated how
electrochemical and metal-oxides LCS are dependent on temperature, humidity, and other gaseous
interferent compounds. This dependency is related to the physico-chemical properties of the sensors
according to the type of electrolyte, electrode, or semiconductor material used in the sensor; it is
not repeated here since it can be found in the literature [97–99]. LCS used for the detection of PM
are sensitive to the effect of relative humidity. As explained below, relative humidity larger than
70–80% contributes to particle growth with consequent erroneous reading of the particulate number
counts. One of the solutions for this shortcoming consists of implementing a theory for the growth of
particulates due to humidity when converting particulate numbers into mass concentrations [48,84,96].

When R2 is both available for calibration and comparison, the median of R2 is higher for calibration
(mean of R2 = 0.70) than for comparison (median of R2 = 0.58). This is to be expected, as it is easier to
fit a model on a short calibration dataset than correctly forecast LCS data using the calibration model
at later dates. For gaseous LCS, calibration using a linear model was shown to be the worst R2 for field
comparison (see Table 3). Therefore, linear calibration should be avoided for gas LCS.

For CO and NO, we observed that the calibration method giving the highest R2 (about 0.90) is the
MLR method using temperature or relative humidity as covariates. The use of supervised learning
techniques (ANN, RF, or SVR) either did not improve performance for CO or gave similar results
as MLR for NO. This is in slight contradiction with other studies on the performance of supervised
techniques [100,101]. In the majority of cases, these tested LCS consisted of electrochemical sensors.
Only for NO2 did we observe that supervised learning techniques (ANN, RF, SVM) performed slightly
better than MLRs when looking at the R2 of comparison tests in the field, except for SVR, which is in
slight contradiction with other studies [101]. However, the number of records is much higher for MLR
than for supervised learning techniques. MLR was applied to both MOs and electrochemical sensors,
which resulted in scattered R2 when looking at individual studies. Additionally, supervised learning
techniques may be more sensitive to re-location than MLR [86,87].
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For O3, ANN and MLR calibration gave similar R2 of comparison (median value about 0.90). As
for NO2, the higher number of studies makes the R2 of the MLR method more significant than the one
for ANN.

In general, all machine-learning techniques are able to account for multiple and unknown effects
resulting in a more accurate prediction of the outputs based on training data and depending on
the correctness of the list of input parameters. For CO, the lower R2 values of the ANN calibration
method were likely caused by an incorrect choice of input parameters. For O3 and NO, the R2 values
were already high (about 0.9, as indicated in the manuscript) for both MLR and supervised learning
techniques, leaving little room for improvement using supervised learning techniques. For NO2, the
higher R2 values when calibrating with supervised learning techniques likely came from using O3

as input parameters, a quantitative interferent for electrochemical NO2 sensors. The ratio of O3/NO2

distinguishing the type of field site often has a direct influence on the performance of electrochemical
NO2 sensors.

For PM, the R2 for comparison tests are very scattered over the calibration methods. Some high
values (R2 higher than 0.95) were reported for studies using a linear calibration, while MLR did not
perform well (R2 < 0.5). These results are misleading, since the good results with linear calibration
are generally obtained by discarding LSC data obtained with relative humidity exceeding a threshold
between 70 and 80%, above which humidity is responsible for particle growth [84,96]. This effect
is more important for PM10 than for PM1 and PM2.5. Other studies did not discard high relative
humidity, they took into consideration the particle growth factor, either on mass concentration with
an exponential calibration model ([73,75,82]) with a median R2 of 98 or using the Kölher theory on
PM mass concentration [80], or directly for the particle beans of each OPC bin [96], leading to R2 of
about 0.80.

Figure 3 shows a summary of all mean R2 obtained from the calibration of SSys against reference
measurements. Results were grouped by model of SSys and averaged per reference work. For the same
SSys we can observe R2 ranging between 0.40 and 1.00. This shows the variability of the performance
of SSys depending on the type of calibration, type of testing sites, and seasonality, making it difficult to
compare the results of the different studies.

Calibration of LSC against a reference analyzer was found to be carried out using different
averaging times. Test results with hourly data are presented in Figure A1 and test results with minute
data time are given in Figure A2.

The best performance, according to the time average availability in the literature and tests in the
laboratory or in the field, were as follows:

• For the measurement of PM2.5, values of R2 close to 1 were found for hourly data of PMS1003
and PMS3003 by Plantower [75] DC1100 PRO and DC1700 by Dylos (Riverside, USA) for minute
data [14,19,79]. Strangely, higher R2 were reported for the Plantower and Dylos when calibrated
with minute data than for hourly data. The OPC-N2 by AlphaSense [19] reported values of R2

falling within the range of 0.7–1.0. The same OPC-N2 reported values of R2 just above 0.7 when
measuring PM1, while it did not show a good performance when measuring PM10 [19] (R2 less
than 0.5). We need to stress that optical sensors, such as OPCs and nephelometers, are somewhat
limited in coping with gravity effects when detecting coarse PM because of the low-efficiency
of the sampling system. Most of the regression models used for the calibration of LCS used
hourly data.

• For the calibration of O3 LCS, the highest values of R2 for hourly data was reported for FIS SP-61
by FIS (Osaka, Japan) and O3-3E1F [20] by CityTechnology (Figure A1) (Portsmouth., UK). On
the other hand, for minute data, values of R2 close to 1 were found for AirSensEUR (V.2) [22] by
LiberaIntentio (Malnate, IT), as well as for the S-500 [19] by Aeroqual (Figure A2) (Auckland, NZ).
AirSensEUR used a built-in AlphaSense OX-A431 OEM. We want to point out that most of the
MLR models used to calibrate O3 LCS need NO2 to correct for the strong NO2 cross-sensitivity.
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• For the calibration of NO2 LCS, we found values of R2 for hourly data within the range of 0.7–1.0
for the NO2-B42F [59] (by Alphasense), for the AirSensEUR (v.2) [22] by LiberaIntentio, and for
the minute values of MAS [40] (see Figure 3). The NO2 measurement by AirSensEUR (v.2) is
carried out using the NO2-B43F OEM by AlphaSense.

• Most of the records of the calibration of CO LCS showed high values of R2. As shown in Figure A1,
the OEMs CO 3E300 [23] by City Technology and CO-B4 [59] by Alphasense reported R2~1 for
hourly data. High values of R2 were also reported for the SSys AirSensEUR (v.2) when calibrating
CO minute data [22] (Figure A2). Other LCS reporting values of R2 within the range of 0.7–1.0 for
hourly data consisted of the MICS-4515 [62] by SGX Sensortech (Corcelles-Cormondreche, CH),
the Smart Citizen Kit [19] by Acrobotic (https://acrobatic.com), and RAMP [61].
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4.2. Comparison of Calibrated Low-Cost Sensors with Reference Measurements

In this review, records describing the comparison of LCS data with reference measurements came
from “open source” and “black box” LCS. As for the records collected from the calibration of LCS,
comparison with reference systems was carried out at different time-resolutions. Here, we only report
comparisons of hourly data with 565 and 151 records from SSys and OEMs, respectively. In Figure 4,
we show the R2 values for SSys per reference averaged for all pollutants measured by each SSys. One
can observe scattered R2 for a few SSys that are tested in several references in different locations,
seasons, and durations.

https://acrobatic.com
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Figures A3 and A4 show the distribution of R2 of LCS hourly and minute values measuring PM10,
PM2.5, PM1, O3, NO, NO2, and CO against reference measurements:

• For the SSys, PA-II by PurpleAir [19] and PATS + by Berkley Air [72] showed the highest
R2 with values between 0.8 and 1.0. Other LCS with R2 values ranging between 0.7 and 1.0
included PMS-SYS-1 by Shinyei (Kobe, JPN) , Dylos 1100 PRO by Dylos, MicroPEM by RTI
(Research Triangle Park, USA), AirNUT by Moji (Beijing, CN), the Egg (2018) by Air Quality
Egg (https://airqualityegg.com/home), AQT410 v.1.15 by Vaisala (Helsinki, Finland), AirVeraCity
by AirVeraCity (Lausane, CH), NPM2 [33] by MetOne (Grants Pass, OR, USA), and the Air

https://airqualityegg.com/home
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Quality Station [19] by AS LUNG. Nevertheless, we need to point out that the performance of
LCS measuring PM10, on average, was very poor.

• For the hourly PM measurements of OEMs (Figure A5), the OPC-N2, OPC-N3 [19,35,36,49,84]
and the SDS011 [49] by Nova Fitness (Jinan, CN) showed R2 values in the range of 0.7–1.0. For the
24-hour PM measurements of OEMs (Figure A6), we found R2 within the range of 0.7–1.0 for the
OPC-N2 and the OPC-N3 [19].

• For the 24-hour PM measurements of SSys (Figure A7), PA-II [19] and AirQUINO [76] by CNR
(Firenze, IT) showed R2 values close to 1 for PM2.5

• For gaseous pollutants, high R2 values ranging between 0.7 and 1.0 were found for the following
multipollutant LCS: AirSensEUR [22] by LiberaIntentio, AirVeraCity, AQY and S-500 by Aeroqual,
and SNAQ by the University of Cambridge (Cambridge, UK) (Figure A3).

• For the hourly gaseous measurements (Figure A5), we found very few OEMs with R2 in the range
of 0.7–1.0. These included CairClip O3/NO2 [20,30,36,64] by CairPol (Poissy, France), Aeroqual
Series 500 (and SM50) [33] and O3-3E1F [20,23,36] by CityTechnology, and NO2-B43F [61,65] by
Alphasense. On the other hand, we found very few records for SSys using daily data. Additionally,
one can notice when comparing Figures A4 and A5 that the performance of OEMs is generally
enhanced when they are integrated inside SSys, except for PM10.

Figures A8 and A10 show selected SSys that gave the slope of the linear regression line of hourly
LCS data versus reference measurements from 0.5 to 1.5 and R2 higher than 0.7. This selection includes
AirSensEUR, AirVeracity, and S-500 for gaseous pollutants and AirNut, AQY v0.5, Egg v.2 (PM), NPM2
for hourly data and AIRQuino, AQY v0.5, Egg v.2 (PM), and PA-I for daily data.

Figures A9 and A11 show the same selection as Figure A8, but for OEMs. This list includes the
SM50, CairClip O3/NO2, S-500 (NO2, O3), and NO2-B4F (NO2) for gaseous measurements, Nova
Fitness SDS011 for PM2.5 measurements for hourly data, and the OPC-N2 by Alphasense and DataRAM
for daily data.

The influence of the type of reference methods was evaluated by plotting the R2 of sensor data
versus reference measurements. In total, 657 of the studies used GRIMM Environmental Dust Monitor
(Airing, GE) (58%), Beta Attenuation Monitor (BAM) (36%), DustTrack (<1%), and Aerodynamic
Particle Sizer (<1%), all based on light scattering, the same principle as PM sensors. Other studies
used the Tapered Element Oscillating Microbalance method (TEOM) (5%) and Gravimetry (<1%). The
25%, 50%, and 75% percentiles of R2 were 0.56, 0.78, and 0.91 for GRIMM and 0.41, 0.66, and 0.81 for
BAM, respectively. Consequently, it was not possible to identify any significant difference for the two
mainly used analyzers (GRIMM, BAM) because of the overlap of the distributions of R2. In fact, the
effect of the type of reference method must be considered together with the background conditions at
which the comparison is carried out. These conditions might have a non-negligible effect on the PM
concentration measured by the sensor, and therefore may influence the value of R2 more than the type
of reference measurement. Additionally, the relationship between R2 (obtained from the comparison
of LCS with reference instruments) and the maximum reference concentration of each study did not
show any trend.

5. Cost of Purchase

For the evaluation of the price of LCS, we considered all SSys manufactured by commercial
companies. Operating costs, such as calibration, maintenance, deployment, and data treatment, were
not included in the estimated price of SSys.

Figure 5 shows the commercial price of LCS by model and number of measured pollutants and
Figure A13 shows the prices for OEMs. There are a large number of SSys measuring one pollutant and
only a few measuring multiple pollutants. Most OEMs are open source devices (Figure A13). On the
other hand, most of the SSys are “black box” devices (Figure 5). Therefore, most of the SSys cannot be
easily re-calibrated by users. In fact, most SSys are intended to be ready-to-use air quality monitors.
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Figure 5. Prices of SSys grouped by model. Numbers on the right indicate the number of pollutants
measured by each SSys, with open source in blue and black box in black. The x-axis uses a logarithmic
scale. Names of “living” and “non-living” SSys are indicated in black and red colors on the labels of
the y-axis, respectively. NC indicates commercially unavailable sensors.

In Figure 6 we have shortlisted the best SSys according to their level of agreement with reference
systems. Figure 6 includes SSys with hourly and daily data showing R2 higher than 0.85 and slopes
ranging between 0.8 and 1.2. The figure shows the price, the number of pollutants being measured,
the averaging time, and the data openness of the selected SSys. Table 4 reports the SSys shortlisted in
Figure 6 with the R2 and slope mean values, the list of pollutants being measured, the openness of
data, their commercial availability, and price.
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Figure 6. Price of low-cost SSys. Numbers in bold indicate the number of pollutants measured by
open source (blue) and black box (black) sensors. Only records with R2 > 0.85 and 0.8 < slope < 1.2 are
shown. Names of “living” and “updated” and “non-living” sensors are indicated in black and red on
the labels of the x-axis, respectively. NC indicates commercially unavailable sensor. Labels reporting
hourly/daily indicate the averaging time of reviewed records.

Table 4. Shortlist of SSys showing good agreement with reference systems (R2 > 0.85; 0.8 < slope < 1.2)
for 1 h time-averaged data.

Model Pollutant Mean R2 Mean
Slope

Mean
Absolute
Intercept

Open/Close Living Commercial Price
(EUR)

AirNut PM2.5 0.86 0.88 8.6 black box Y commercial 132
PA-I PM1 0.95 0.92 0.52 black box N commercial 132
PA-II PM1 0.99 0.82 1.8 black box Y commercial 176

Egg (2018) PM1 0.87 0.85 0.095 black box Y commercial 219
PATS+ PM2.5 0.96 0.92 0.05 black box Y commercial 440
S-500 NO2, O3 0.88 0.97 0.27 black box Y commercial 440

CairClip O3/NO2 O3 0.88 0.88 12 black box Y commercial 600
Portable AS-LUNG PM1 0.89 0.87 1.0 Black Box Y non-commercial 880

AirSensEUR (v.1) NO2, O3,
CO, NO 0.95 0.98 - open source Y commercial 1600

AirSensEUR (v.2) NO2, O3,
CO, NO 0.89 1.1 5.7 open source Y commercial 1600

Met One (NM) PM2.5 0.86 1.1 2.8 black box Y commercial 1672
Air Quality Station PM1 0.88 0.90 0.85 black box Y non-commercial 1760

AQY v0.5 PM2.5 0.87 0.97 4.0 black box updated commercial 2640
Vaisala AQT410 v.1.15 CO 0.87 0.97 0.23 black box Y commercial 3256

2B Tech. (POM) * O3 1.00 1.00 0.74 black box Y commercial 3960
AQMesh v.3.0 NO 0.87 0.88 0.76 black box N commercial 8800

Note: * The 2B Tech. (POM) is a miniaturized reference method, UV photometry, which explains the perfect R2 And
slope of 1.

Among “open source” SSys, we identified the AirSensEUR by LiberaIntentio and the AIRQuino
by CNR. The remaining shortlisted SSys were identified as “black box”. AirSensEUR (v.2) resulted in a
mean R2 value of 0.90 and a slope of 0.94, while AIRQuino resulted in a mean R2 value of 0.91 and
a slope of 0.97. We need to point out that, to date, AIRQuino can be used for the detection of up to
five pollutants (NO2, CO, O3, NO, and PM). However, only data for PM were available at the time of
this review.
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Figure 7 shows the relationship between the mean R2 of SSys and the decimal logarithm of the
price of LCS. In Figure 7, only the “living” LCS are compared. This shows that for OEMs there is not a
significant linear relationship between the price of OEMs and the value of R2. Conversely, there is a
significant increase in R2 with the logarithm of the price of SSys. The regression equations indicated
in Figure 7 shows that R2 can increase 14 ± 6% for a 10-fold increase of the prices of SSys, which is a
limited increase at high cost. Figure 7 also shows a higher scattering of R2 at the low end of the price
scale at SSys price lower than 500 euro, with more fluctuation of the SSys performance.Atmosphere 2019, 10, x FOR PEER REVIEW 20 of 46 
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Figure 7. Relationship between prices of LCS and R2 for field test only. A logarithmic scale has been
set for both axes. Open source and black box models are indicated with red open dots and black solid
dots, respectively. Names of “living” and “non-living” sensors are indicated by black and blue colors,
respectively. R2 refers to data averaged over 1 h. Grey shade in the fit plots indicate a pointwise 95%
confidence interval on the fitted values.

6. Conclusions

There is little information available in the literature regarding calibration of LCS. Nevertheless, it
was possible to list the calibration methods giving the highest R2 when applied to the results of field
tests. For CO and NO, our review showed that the MLR models were the most suitable for calibration.
ANN gave the same level of performance as MLR only for NO. For NO2 and O3, supervised learning
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models, such as, SVR, SVM (though not for O3), ANN, and RF, followed by MLR models, proved to be
the most suitable method of calibration. Regarding PM2.5, the best results were obtained with linear
models. However, these models were applied only to PM2.5 with relative humidity data < 75–80%.
For higher relative humidity, models accounting for the growth of the particulates must be further
developed. So far, the calibration using the Khöler theory seems to be the most promising method.

A list of SSys with R2 and slope close to 1.0 were drawn from the whole database of records of
comparison tests of LCS data versus reference measurements, which indicates the best performance
of SSys, as shown in Figure 8. In fact, in Figure 8 the blue background represents the best selection
region for SSys. The best SSys would be the one that reaches the point with coordinates R2 = 1 and
slope = 1. Within the blue background region, the following SSys can be found: 2B Tech. (POM), PA-II,
AirSensEUR (v.1), PA-I, S-500, AirSensEUR (v.1), SNAQ, Vaisala AQT410 v.15, MetOne (NM), the Egg
(v.2), AQY v0.5, CairClip O3/NO2, AQMesh v3.0, AQT410 v.11, and AirVeraCity. Additionally, Figure 8
shows that there are more SSys underestimating reference measurements with slopes lower than 1
than SSys overestimating reference measurements.
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Analyzing the SSys and their price, it was found that R2 increases of 14% results in a 10-fold
increase of the price of SSys—a limited improvement for a large price increase.

This review work clearly shows that there is a considerable number of field-work carried out
with LCS. Therefore, field-calibrations were performed to correct outputs from LCS. However, as
shown in recent work [27], during filed-calibrations it is not always possible to distinguish the single
effect of each covariate that might affect the correct operation of the LCS. While this is only possible at
controlled laboratory conditions, this could be overcome by co-locating clusters of sensors at reference
sites to provide calibration outside of laboratory conditions.

Although this paper gives an exhaustive survey of the independent LCS evaluations, the concept
of comparing LCS field tests from different studies can be difficult and may result in misleading
conclusions. This is difficult because of the lack of uniformity in the metrics representing LCS data
quality between studies and makes them difficult to compare. Comparing field tests of LCS may
also be misleading, as in order to consider the highest number of studies it was necessary to rely
on the coefficient of determination, R2. However, R2 is overly dependent on the range of reference
measurements, on the duration of the test field, and on the season and location of the tests, meaning
changes of R2 are not completely dependent on LCS data quality or on calibration methods. This
shortcoming makes the standardization of a protocol for evaluation of LCS at the international level a
high priority, while inter-comparison exercises where LCS are gathered at the same test sites and at the
same time are greatly needed.
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Appendix A

Table A1. Number of analyzed records and sensor models by averaging time.

Averaging Time n. Records n. OEMs and SSys

hourly 610 86
5 min 253 40
daily 248 42
1 min 214 33

Table A2. Model of OEMs by pollutant, type, openness, and price.

Model Pollutant Type Reference Open/Close Living Price

CO-B4 CO electrochemical Wei [59] open source N 50
CO 3E300 CO electrochemical Gerboles [23] open source Y 100

DataRAM pDR-1200 PM2.5 nephelometer Chakrabarti [70] black box N -
DiscMini PM OPC Viana [77] open source Y 11,000

DN7C3CA006 PM2.5 nephelometer Sousan [83] open source Y 10
DSM501A PM2.5 nephelometer Wang [68], Alvarado [69] open source Y 15
FIS SP-61 O3 MOs Spinelle [26] open source Y 50

GP2Y1010AU0F PM2.5, PM10 nephelometer
Olivares [71], Manikonda [54],

Sousan [83], Alvarado [69],
Wang [68]

open source Y 10

MiCS-2710 NO2 MOs Spinelle [20], Williams [30] open source N 7
MICS-4514 CO, NO2 MOs Spinelle [20,24] open source Y 20
NO-3E100 NO electrochemical Spinelle [24], Gerboles [23] open source Y 120

NO-B4 NO electrochemical Wei [59] open source Y 50
NO2-3E50 NO2 electrochemical Spinelle [20], Gerboles [23] open source Y 100
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Table A2. Cont.

Model Pollutant Type Reference Open/Close Living Price

NO2-A1 NO2 electrochemical Williams [30] black box Y 50
NO2-B4 NO2 electrochemical Spinelle [20,25] open source N 50

NO2-B42F NO2 electrochemical Wei [59] open source N 50
NO2-B43F NO2 electrochemical Sun [65] open source Y 50

O3-B4 O3 electrochemical Spinelle [20,25], Wei [59] open source N 50
O3-3E1F O3 electrochemical Spinelle [20,25], Gerboles [23] open source Y 500

OPC-N2 PM1, PM2.5 OPC

AQ-SPEC [19], Mukherjee [35],
Sousan [83], Feinberg [36],
Crilley [84], Badura [49],

Crunaire [33]

open source,
black box N 362

OPC-N3 PM1, PM2.5 OPC AQ-SPEC [19] open source Y 338
PMS1003 PM2.5 OPC Kelly [75] black box Y 20

PMS3003 PM2.5 OPC Zheng [85], Kelly [75] open source,
black box Y 30

PMS5003 PM2.5 OPC Laquai [48] black box Y 15
PMS7003 PM2.5 OPC Badura [49] black box Y 20

PPD42NS PM2.5, PM3,
PM2

nephelometer Wang [68], Holstius [51],
Austin [73], Gao [74], Kelly [75] open source Y 15

SDS011 PM2.5, OPC Budde [47], Laquai [48],
Badura [49], Liu [52] open source Y 30

SM50 O3 MOs Feinberg [36] open source Y 500
TGS-5042 CO MOs Spinelle [24] open source Y 40

TZOA-PM Research
Sensors PM nephelometer Feinberg [36] open source Y 90

ZH03A PM2.5 nephelometer Badura [49] black box Y 20

Table A3. Models of Sensor Systems by pollutant, type, openness, and price.

Model Pollutant Type Reference Open/Close Living Price

2B Tech. (POM) O3 UV AQ-SPEC [19] black box Y 4500
Aeroqual-SM50 O3 MOs Jiao [39] black box Y 2000

AGT ATS-35
NO2 NO2 MOs Williams [30] black box N -d

Air Quality
Station PM1, PM2.5 OPC AQ-SPEC [19] black box Y 2000

AirAssure PM2.5 nephelometer AQ-SPEC [19], Feinberg [36],
Manikonda [54] black box Y 1500

AirBeam PM2.5 OPC, nephelometer
AQ-SPEC [19], Mukherjee [35],

Feinberg [36], Borghi [37],
Jiao [39], Crunaire [33]

black box Y 200

AirCube NO2, O3,
NO electrochemical Mueller [43], Bigi [42] black box Y 3538

AirMatrix PM1, PM2.5 nephelometer Crunaire [33] black box Y 60
AirNut PM2.5 nephelometer AQ-SPEC [19] black box Y 150

AIRQino PM2.5 OPC Cavaliere [76] open source Y 1000
AirSensEUR

(v.1)
NO, NO2,

O3
electrochemical Crunaire [33] black box Y 1600

AirSensEUR
(v.2)

CO, NO,
NO2, O3

electrochemical Karagulian [22] open source Y 1600

AirSensorBox NO2, CO, O3
electrochemical,

MOs, nephelometer Borrego [53] black box Y 280

AirThinx PM1, PM2.5 OPC AQ-SPEC [19] black box Y 1000

AirVeraCity CO, NO2, O3
electrochemical,

MOs Marjovi [57] black box Y 10000

AirVisual Pro PM2.5 nephelometer AQ-SPEC [19] black box Y 270
AQMesh v.3.0 CO, NO electrochemical Jiao [39] black box N 10000

AQMesh v.4.0 NO2, CO,
NO, O3

electrochemical
Cordero [63], AQ-SPEC [19],

Castell [10], Borrego [53],
Crunaire [33]

black box updated 10000

AQT410 v.1.11 O3 electrochemical AQ-SPEC [19] black box Y 3700

AQT-420 NO2,O3,
PM2.5

electrochemical,
OPC Crunaire [33] black box Y 3256

AQY v0.5 PM2.5, NO2,
O3

OPC,
electrochemical,

MOs
AQ-SPEC [19] black box updated 3000

ARISense NO2, CO,
NO, O3

electrochemical Cross [58] black box Y -

Atmotrack PM1, PM2.5 nephelometer Crunaire [33] black box Y 2500
BAIRS PM2.5–0.5 OPC Northcross [78] open source N 475
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Table A3. Cont.

Model Pollutant Type Reference Open/Close Living Price

Cair PM2.5,
PM10–2.5

OPC AQ-SPEC [19] black box Y 200

CairClip
O3/NO2 O3, NO2 electrochemical

Jiao [39], Spinelle [25],
Williams [30], Duvall [64],

Feinberg [36]
black box Y 600

CairClip NO2-F NO2 electrochemical Spinelle [20], Duvall [64],
Crunaire [33] black box Y 600

CairClip PM2.5 PM2.5 nephelometer Williams [31] black box Y 1500

CAM
PM10, PM2.5,

NO2, CO,
NO

OPC,
electrochemical Borrego [53] black box Y -

CanarIT PM nephelometer Williams [31] black box N 1500
Clarity Node PM2.5 nephelometer AQ-SPEC [19] black box Y 1300

Dylos DC1100 PM2.5–0.5 OPC Jiao [39], Williams [31],
Feinberg [36]

black box,
open source Y 300

Dylos DC1100
PRO

PM2.5–0,
PM10–2.5,

PM10

OPC Jiao [39], AQ-SPEC [19],
Feinberg [36], Manikonda [54]

black box,
open source Y 300

Dylos DC1700

PM2.5–0.5,
PM10,

PM10–2.5,
PM3, PM2,

PM2.5

OPC

Manikonda [54], Sousan [83],
Northcross [78], Holstius [51],

Steinle [79], Han [80],
Jovasevic [81], Dacunto [82]

open source Y 475

e-PM PM10, PM2.5 nephelometer Crunaire [33] black box Y 2500
E-Sampler PM2.5 OPC AQ-SPEC [19] black box Y 5500

ECN_Box PM10, PM2.5,
NO2, O3

nephelometer,
electrochemical Borrego [53] black box Y 274

Eco PM PM1 OPC Williams [31] black box N

ECOMSMART
NO2, O3,

PM1, PM10,
PM2.5

electrochemical,
OPC Crunaire [33] black box Y 4560

Egg (2018) PM1, PM2.5,
PM10

OPC AQ-SPEC [19] black box Y 249

Egg v.1 CO, NO2, O3 MOs AQ-SPEC [19] black box N 200
Egg v.2 CO, NO2, O3 electrochemical AQ-SPEC [19] black box Y 240

Egg v.2 (PM) PM2.5, PM10 nephelometer AQ-SPEC [19] black box Y 280

ELM NO2, PM10,
O3

MOs, nephelometer AQ-SPEC [19], US-EPA [67] black box N 5200

EMMA PM2.5, CO,
NO2, NO

OPC,
electrochemical Gillooly [60] black box Y -

ES-642 PM2.5 OPC Crunaire [33] black box Y 2600
Foobot PM2.5 OPC AQ-SPEC [19] black box Y 200

Hanvon N1 PM2.5 nephelometer AQ-SPEC [19] black box Y 200
Intel Berkeley

Badge NO2, O3
electrochemical,

MOs Vaughn [32] open source N -

ISAG NO2, O3 MOs Borrego [53] black box N -
Laser Egg PM2.5, PM10 nephelometer AQ-SPEC [19] black box Y 200
M-POD CO, NO2 MOs Piedrahita [62] black box N

MAS CO, NO2,
O3, PM2.5

electrochemical, UV,
nephelometer Sun [40] black box,

open source N, Y 5500

Met One-831 PM10 OPC Williams [31] black box Y 2050
Met One (NM) PM2.5 OPC AQ-SPEC [19] black box Y 1900

MicroPEM PM2.5 nephelometer AQ-SPEC [19], Williams [31] black box Y 2000

NanoEnvi NO2, O3, CO electrochemical,
MOs Borrego [53] black box Y -

PA-I PM1, PM2.5,
PM10

OPC AQ-SPEC [19] black box N 150

PA-I-Indoor PM2.5, PM10 OPC AQ-SPEC [19] black box Y 180

PA-II PM1, PM2.5,
PM10

OPC AQ-SPEC [19] black box Y 200

Partector PM1, PM2.5 Electrical AQ-SPEC [19] black box Y 7000
PATS+ PM2.5 nephelometer Pillarisetti [72] black box Y 500

Platypus NO2 NO2 MOs Williams [30] black box Y 50

PMS-SYS-1 PM2.5 nephelometer Jiao [39], AQ-SPEC [19],
Williams [31], Feinberg [36] black box Y 1000

Portable
AS-LUNG

PM1, PM2.5,
PM10

OPC AQ-SPEC [19] black box Y 1000

Pure Morning
P3 PM2.5 OPC AQ-SPEC [19] black box Y 170

RAMP CO, NO2 electrochemical Zimmerman [61] open source Y -

S-500 NO2, O3 MOs Lin [66], AQ-SPEC [19],
Vaughn [32] black box Y 500
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Table A3. Cont.

Model Pollutant Type Reference Open/Close Living Price

SENS-IT O3, CO, NO2 MOs AQ-SPEC [19] black box N, Y 2200
SidePak AM510 PM2.5 nephelometer Karagulian [28] open source Y 3000

Smart Citizen
Kit CO MOs AQ-SPEC [19] black box Y 200

SNAQ NO2, CO,
NO electrochemical Mead [44], Popoola [45] black box Y -

Spec CO, NO2, O3 electrochemical AQ-SPEC [19] black box Y 500

Speck PM2.5 nephelometer
Feinberg [36], US-EPA [67],

Williams [31], AQ-SPEC [19],
Manikonda [54], Zikova [55]

black box Y 150

UBAS PM2.5 nephelometer Manikonda [54] black box N 100
uHoo PM2.5, O3 nephelometer, MOs AQ-SPEC [19] black box Y 300

Urban AirQ NO2 electrochemical Mijling [41] open source N -
Vaisala AQT410

v.1.11 CO, NO2 electrochemical AQ-SPEC [19] black box Y 3700

Vaisala AQT410
v.1.15 CO, NO2 electrochemical AQ-SPEC [19] black box Y 3700

Waspmote
NO, NO2,

PM1, PM10,
PM2.5

MOs, OPC Crunaire [33] black box Y 1270

Watchtower 1
NO2, PM1,

PM10, PM2.5,
O3

electrochemical,
OPC Crunaire [33] black box Y 5000
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Figure A1. Distribution of R2 for LCS hourly data against the reference for different pollutants. Dashed
lines indicate the R2 value of 0.7 and 1.0. Numbers in blue and black indicate the number of open
source and black box records, respectively. Names of “living” and “non-living” sensors are indicated
by black and red labels on the x-axis, respectively.
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Figure A2. Distribution of R2 for LCS minute data against the reference for different pollutants. Dashed
lines indicate the R2 value of 0.7 and 1.0. Numbers in blue and black indicate the number of open
source and black box records, respectively. Names of “living” and “non-living” sensors are indicated in
black and red labels of the x-axis color, respectively.
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Figure A3. Distribution of R2 from the comparison of SSys minute data against reference
measurements. Numbers in blue and black indicate the number of open source and black box
records, respectively. Names of “living” and “non-living” sensors are indicated by black and red labels
on the x-axis, respectively.
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Figure A4. Distribution of R2 from the comparison of SSys hourly data against reference
measurements. Numbers in blue and black indicate the number of open source and black box
records, respectively. Names of “living” and “non-living” sensors are indicated by black and red labels
on the x-axis, respectively.
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Figure A5. Distribution of R2 from the comparison of all OEMs against reference systems. Records
were averaged over a time-scale of 1 h. Numbers in blue and black indicate the number of open source
and black box records, respectively. Names of “living” and “non-living” sensors are indicated by black
and red labels on the x-axis, respectively.
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Figure A6. Distribution of R2 from the comparison of all OEMs against reference systems. Records
were averaged over a time-scale of daily data. Numbers in blue and black indicate the number of open
source and black box records, respectively. Names of “living” and “non-living” sensors are indicated
by black and red labels on the x-axis, respectively.
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Figure A7. Distribution of R2 from the comparison of all sensor systems against reference systems.
Records were averaged over a time-scale of daily data. Numbers in blue and black indicate the number
of open source and black box records, respectively. Names of “living” and “non-living” sensors are
indicated by black and red labels on the x-axis, respectively.
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Figure A8. Distribution of slopes from the comparison of SSys against the reference. Only records 

with R2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale of 1 h. Numbers 
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Figure A8. Distribution of slopes from the comparison of SSys against the reference. Only records with
R2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale of 1 h. Numbers
in blue and black indicate the number of open source and black box records, respectively. Names of
“living” and “non-living” sensors are indicated by black and red labels on the x-axis, respectively.
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records with R2 > 0.7 and 0.5 < slope < 1.5 are shown. Numbers in blue and black indicate the number 

of open source and black box records, respectively. Names of “living” and “non-living” sensors are 

indicated by black and red labels on the x-axis, respectively. 

Figure A9. Distribution of slopes from the comparison of OEMs against the reference. Only hourly
records with R2 > 0.7 and 0.5 < slope < 1.5 are shown. Numbers in blue and black indicate the number
of open source and black box records, respectively. Names of “living” and “non-living” sensors are
indicated by black and red labels on the x-axis, respectively.
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Figure A10. Distribution of slopes from the comparison of SSys against the reference. Only records with
R2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale of daily data. Numbers
in blue and black indicate the number of open source and black box records, respectively. Names of
“living” and “non-living” sensors are indicated by black and red labels on the x-axis, respectively.
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Figure A11. Distribution of slopes from the comparison of OEMs against the reference. Only records 
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Figure A11. Distribution of slopes from the comparison of OEMs against the reference. Only
records with R2 > 0.7 and 0.5 < slope < 1.5 are shown. Records were averaged over a time-scale of
daily data. Numbers in blue and black indicate the number of open source and black box records,
respectively. Names of “living” and “non-living” sensors are indicated by black and red labels on the
x-axis, respectively.
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Figure A13. Prices of OEMs grouped by model. Numbers at right indicates the number of pollutants
measured by each OEMs, with open source in blue and black box in black. The x-axis uses a logarithmic
scale. Names of “living” and “non-living” OEMs are indicated by black and red for the labels on the
y-axis, respectively.
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Table A4. Shortlist of SSys showing good agreement with reference systems (R2 > 0.85; 0.8 < slope < 1.2)
for daily data.

Model Pollutant Mean Mean
Slope

Mean
Absolute
Intercept

Open/Close Living Commercial Price
(EUR)

PA-I PM1 0.99 0.9 0.47 black box N commercial 132
PA-II PM1 0.99 0.8 1.8 black box Y commercial 176

Egg (2018) PM1 0.88 0.8 0.33 black box Y commercial 219
Egg v.2 (PM) PM2.5 0.94 1 3.3 black box Y commercial 246

AirThinx PM1 0.89 0.8 1.3 black box Y commercial 880
Portable AS-LUNG PM1 0.93 0.9 1.5 black box Y non-commercial 880

AIRQino PM2.5, PM10 0.91 1 1.1 open source Y non-commercial 1000
Air Quality Station PM1 0.94 0.9 1.1 black box Y non-commercial 1760

AQY v0.5 PM2.5 0.91 0.9 4.0 black box updated commercial 2640
Vaisala AQT410 v.1.15 CO 0.86 0.9 0.25 black box Y commercial 3256

References

1. Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.;
Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205.
[CrossRef] [PubMed]

2. 2008/50/EC: Directive of the European Parliament and of the Council of 21 May 2008 on ambient air quality
and cleaner air for Europe. Available online: http://eurlex.europa.eu/Result.do?RechType=RECH_celex&
lang=en&code=32008L0050 (accessed on 22 August 2019).

3. CEN. Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5
Mass Concentration of Suspended Particulate Matter (EN 12341:2014); European Committee for Standardization:
Brussels, Belgium, 2014.

4. CEN Ambient Air. Standard Method for the Measurement of the Concentration of Carbon Monoxide by Non-Dispersive
Infrared Spectroscopy, (EN 14626:2012); European Committee for Standardization: Brussels, Belgium, 2012.

5. CEN Ambient Air. Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen
Monoxide by Chemiluminescence (EN 14211:2012); European Committee for Standardization: Brussels,
Belgium, 2012.

6. CEN Ambient Air. Standard Method for the Measurement of the Concentration of Ozone by Ultraviolet Photometry
(EN 14625:2012); European Committee for Standardization: Brussels, Belgium, 2012.

7. CEN Ambient Air. Standard Method for the Measurement of the Concentration of Sulphur Dioxide by Ultraviolet
Fluorescence, (EN 14212:2012); European Committee for Standardization: Brussels, Belgium, 2012.

8. Lewis, A.C.; von Schneidemesser, E.; Peltier, R. Low-cost sensors for the measurement of atmospheric
composition: overview of topic and future applications (World Meteorological Organization).
Available online: https://www.ccacoalition.org/en/resources/low-cost-sensors-measurement-atmospheric-
composition-overview-topic-and-future (accessed on 21 August 2019).

9. Aleixandre, M.; Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas.
Chem. Eng. Trans. 2012, 30, 169–174.

10. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can
commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ.
Int. 2017, 99, 293–302. [CrossRef] [PubMed]

11. iScape. Summary of Air Quality sensors and recommendations for application. Available
online: https://www.iscapeproject.eu/wp-content/uploads/2017/09/iSCAPE_D1.5_Summary-of-air-quality-
sensors-and-recommendations-for-application.pdf (accessed on 21 August 2019).

12. Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.;
Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci.
Technol. 2013, 47, 11369–11377. [CrossRef] [PubMed]

13. White, R.M.; Paprotny, I.; Doering, F.; Cascio, W.E.; Solomon, P.A.; Gundel, L.A. Sensors and “apps” for
community-based: Atmospheric monitoring. EM Air Waste Manag. Assoc. Mag. Environ. Manag. 2012, 5,
36–40.

14. Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor
Guidebook; United States Environmental Protection Agency (US-EPA): Washington, DC, USA, 2014.

http://dx.doi.org/10.1016/j.envint.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25483836
http://eurlex.europa.eu/Result.do?RechType=RECH_celex&lang=en&code=32008L0050
http://eurlex.europa.eu/Result.do?RechType=RECH_celex&lang=en&code=32008L0050
https://www.ccacoalition.org/en/resources/low-cost-sensors-measurement-atmospheric-composition-overview-topic-and-future
https://www.ccacoalition.org/en/resources/low-cost-sensors-measurement-atmospheric-composition-overview-topic-and-future
http://dx.doi.org/10.1016/j.envint.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28038970
https://www.iscapeproject.eu/wp-content/uploads/2017/09/iSCAPE_D1.5_Summary-of-air-quality-sensors-and-recommendations-for-application.pdf
https://www.iscapeproject.eu/wp-content/uploads/2017/09/iSCAPE_D1.5_Summary-of-air-quality-sensors-and-recommendations-for-application.pdf
http://dx.doi.org/10.1021/es4022602
http://www.ncbi.nlm.nih.gov/pubmed/23980922


Atmosphere 2019, 10, 506 37 of 41

15. Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent Progress on the Development of Chemosensors for Gases. Chem.
Rev. 2015, 115, 7944–8000. [CrossRef] [PubMed]

16. Spinelle, L.; Aleixandre, M.; Gerboles, M. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the
Monitoring of Air Pollution; Publications Office of the European Union: Luxembourg, 2013.

17. Redon, N.; Delcourt, F.; Crunaire, S.; Locoge, N. Protocole de détermination des caractéristiques
de performance métrologique des micro-capteurs-étude comparative des performances en laboratoire
de micro-capteurs de NO2 | LCSQA. Available online: https://www.lcsqa.org/fr/rapport/2016/

mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap (accessed on
22 August 2019).

18. Williams, R.; Duvall, R.; Kilaru, V.; Hagler, G.; Hassinger, L.; Benedict, K.; Rice, J.; Kaufman, A.; Judge, R.;
Pierce, G.; et al. Deliberating performance targets workshop: Potential paths for emerging PM2.5 and O3 air
sensor progress. Atmos. Environ. X 2019, 2, 100031. [CrossRef]

19. AQ-SPEC; South Coast Air Quality Management District; South Coast Air Quality Management District
Air Quality Sensor Performance Evaluation Reports. Available online: http://www.aqmd.gov/aq-spec/

evaluations#&MainContent_C001_Col00=2 (accessed on 29 December 2015).
20. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of

low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide. Sens. Actuators B
Chem. 2015, 215, 249–257. [CrossRef]

21. Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nat. News 2016, 535, 29. [CrossRef]
22. Karagulian, F.; Borowiak, A.; Barbiere, M.; Kotsev, A.; van der Broecke, J.; Vonk, J.; Signorini, M.; Gerboles, M.

Calibration of AirSensEUR Units during a Field Study in the Netherlands; European Commission-Joint Research
Centre: Ispra, Italy, 2019; in press.

23. Gerboles, M.; Spinelle, L.; Signorini, M. AirSensEUR: An Open Data/Software/Hardware Multi-Sensor Platform for
Air Quality Monitoring. Part A: Sensor Shield; Publications Office of the European Union: Luxembourg, 2015.

24. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of
low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators
B Chem. 2017, 238, 706–715. [CrossRef]

25. Spinelle, L.; Gerboles, M.; Aleixandre, M. Performance Evaluation of Amperometric Sensors for the
Monitoring of O 3 and NO 2 in Ambient Air at ppb Level. Procedia Eng. 2015, 120, 480–483. [CrossRef]

26. Spinelle, L.; Gerboles, M.; Aleixandre, M.; Bonavitacola, F. Evaluation of metal oxides sensors for the
monitoring of O3 in ambient air at ppb level. Chem. Eng. Trans. 2016, 319–324.

27. Spinelle, L.; Gerboles, M.; Kotsev, A.; Signorini, M. Evaluation of Low-Cost Sensors for Air Pollution Monitoring:
Effect of Gaseous Interfering Compounds and Meteorological Conditions; Publications Office of the European
Union: Luxembourg, 2017.

28. Karagulian, F.; Belis, C.A.; Lagler, F.; Barbiere, M.; Gerboles, M. Evaluation of a portable nephelometer
against the Tapered Element Oscillating Microbalance method for monitoring PM2.5. J. Env. Monit. 2012, 14,
2145–2153. [CrossRef] [PubMed]

29. US-EPA. Air Sensor Toolbox; Evaluation of Emerging Air Pollution Sensor Performance. US-EPA. Available
online: https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-pollution-sensor-performance
(accessed on 21 August 2018).

30. Williams, R.; Long, R.; Beaver, M.; Kaufman, A.; Zeiger, F.; Heimbinder, M.; Acharya, B.R.; Grinwald, B.A.;
Kupcho, K.A.; Tobinson, S.E. Sensor Evaluation Report; U.S. Environmental Protection Agency: Washington,
DC, USA, 2014.

31. Williams, R.; Kaufman, A.; Hanley, T.; Rice, J.; Garvey, S. Evaluation of Field-deployed Low Cost PM Sensors; U.S.
Environmental Protection Agency: Washington, DC, USA, 2014.

32. Vaughn, D.L.; Dye, T.S.; Roberts, P.T.; Ray, A.E.; DeWinter, J.L. Characterization of low-Cost NO2 Sensors; U.S.
Environmental Protection Agency: Washington, DC, USA, 2010.

33. Crunaire, S.; Redon, N.; Spinelle, L. 1ER Essai national d’Aptitude des Microcapteurs EAµC) pour la Surveillance
de la Qualité de l’Air: Synthèse des Résultas; LCSQA: Paris, France, 2018; p. 38.

34. Fishbain, B.; Lerner, U.; Castell, N.; Cole-Hunter, T.; Popoola, O.; Broday, D.M.; Iñiguez, T.M.;
Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; et al. An evaluation tool kit of air quality
micro-sensing units. Sci. Total Environ. 2017, 575, 639–648. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/cr500567r
http://www.ncbi.nlm.nih.gov/pubmed/25651137
https://www.lcsqa.org/fr/rapport/2016/mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap
https://www.lcsqa.org/fr/rapport/2016/mines-douai/protocole-determination-caracteristiques-performance-metrologique-micro-cap
http://dx.doi.org/10.1016/j.aeaoa.2019.100031
http://www.aqmd.gov/aq-spec/evaluations#&MainContent_C001_Col00=2
http://www.aqmd.gov/aq-spec/evaluations#&MainContent_C001_Col00=2
http://dx.doi.org/10.1016/j.snb.2015.03.031
http://dx.doi.org/10.1038/535029a
http://dx.doi.org/10.1016/j.snb.2016.07.036
http://dx.doi.org/10.1016/j.proeng.2015.08.676
http://dx.doi.org/10.1039/c2em30099k
http://www.ncbi.nlm.nih.gov/pubmed/22766850
https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-pollution-sensor-performance
http://dx.doi.org/10.1016/j.scitotenv.2016.09.061
http://www.ncbi.nlm.nih.gov/pubmed/27678046


Atmosphere 2019, 10, 506 38 of 41

35. Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the Utility of Low-Cost Particulate
Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [CrossRef]
[PubMed]

36. Feinberg, S.; Williams, R.; Hagler, G.S.W.; Rickard, J.; Brown, R.; Garver, D.; Harshfield, G.; Stauffer, P.;
Mattson, E.; Judge, R.; et al. Long-term evaluation of air sensor technology under ambient conditions in
Denver, Colorado. Atmos. Meas. Tech. 2018, 11, 4605–4615. [CrossRef]

37. Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Precision and Accuracy of a
Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors 2018, 18, 3089. [CrossRef]

38. Zikova, N.; Masiol, M.; Chalupa, D.C.; Rich, D.Q.; Ferro, A.R.; Hopke, P.K. Estimating Hourly Concentrations
of PM2.5 across a Metropolitan Area Using Low-Cost Particle Monitors. Sensor (Basel) 2017, 17, 1992.
[CrossRef]

39. Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.;
Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor
performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9,
5281–5292. [CrossRef]

40. Sun, L.; Wong, K.C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie, P.K.K.; Luk, C.W.Y.; Ning, Z.
Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015
Air Quality Monitoring. Sensor (Basel) 2017, 17, 1922. [CrossRef]

41. Mijling, B.; Jiang, Q.; de Jonge, D.; Bocconi, S. Practical field calibration of electrochemical NO2 sensors for
urban air quality applications. Atmos. Meas. Tech. Discuss. 2017, 2017, 1–25. [CrossRef]

42. Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 low cost sensors
and three calibration approaches within a real world application. Atmos. Meas. Tech. 2018, 11, 3717–3735.
[CrossRef]

43. Mueller, M.; Meyer, J.; Hueglin, C. Design of an ozone and nitrogen dioxide sensor unit and its long-term
operation within a sensor network in the city of Zurich. Atmos. Meas. Tech. 2017, 10, 3783–3799. [CrossRef]

44. Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.;
Hodgson, T.F.; Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost,
high-density networks. Atmos. Environ. 2013, 70, 186–203. [CrossRef]

45. Popoola, O.A.M.; Stewart, G.B.; Mead, M.I.; Jones, R.L. Development of a baseline-temperature correction
methodology for electrochemical sensors and its implications for long-term stability. Atmos. Environ. 2016,
147, 330–343. [CrossRef]

46. Mooney, D.; Willis, P.; Stevenson, K. A Guide for Local Authorities Purchasing Air Quality Monitoring
Equipment. Available online: https://uk-air.defra.gov.uk/library/reports?report_id=386 (accessed on 21
August 2019).

47. Budde, M.; Müller, T.; Laquai, B.; Streibl, N.; Schwarz, A.; Schindler, G.; Riedel, T.; Beigl, M.; Dittler, A.
Suitability of the Low-Cost SDS011 Particle Sensor for Urban PM-Monitoring. In Proceedings of the 3rd
International Conference on Atmospheric Dust, Bari, Italy, 29–31 May 2018.

48. Laquai, B. Particle Distribution Dependent Inaccuracy of the Plantower PMS5003 low-cost PM-sensor.
Available online: https://www.researchgate.net/publication/320555036 (accessed on 21 August 2019).

49. Budde, M.; Müller, T.; Laquai, B.; Streibl, N.; Schwarz, A.; Schindler, G.; Riedel, T.; Beigl, M.; Dittler, A.
Optical particulate matter sensors in PM2.5 measurements in atmospheric air. E3S Web Conf. 2018, 44, 00006.

50. The World Air Quality Index. Sensing the Air Quality: Research on Air Quality Sensors. Available online:
http://aqicn.org/sensor/ (accessed on 21 August 2019).

51. Holstius, D.M.; Pillarisetti, A.; Smith, K.R.; Seto, E. Field calibrations of a low-cost aerosol sensor at a
regulatory monitoring site in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. [CrossRef]

52. Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a
near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [CrossRef]

53. Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, Th.; Katsifarakis, N.;
Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The
EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [CrossRef]

54. Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors. J.
Aerosol Sci. 2016, 102, 29–40. [CrossRef]

http://dx.doi.org/10.3390/s17081805
http://www.ncbi.nlm.nih.gov/pubmed/28783065
http://dx.doi.org/10.5194/amt-11-4605-2018
http://dx.doi.org/10.3390/s18093089
http://dx.doi.org/10.3390/s17081922
http://dx.doi.org/10.5194/amt-9-5281-2016
http://dx.doi.org/10.3390/s16020211
http://dx.doi.org/10.5194/amt-2017-43
http://dx.doi.org/10.5194/amt-11-3717-2018
http://dx.doi.org/10.5194/amt-10-3783-2017
http://dx.doi.org/10.1016/j.atmosenv.2012.11.060
http://dx.doi.org/10.1016/j.atmosenv.2016.10.024
https://uk-air.defra.gov.uk/library/reports?report_id=386
https://www.researchgate.net/publication/320555036
http://aqicn.org/sensor/
http://dx.doi.org/10.5194/amt-7-1121-2014
http://dx.doi.org/10.3390/atmos10020041
http://dx.doi.org/10.1016/j.atmosenv.2016.09.050
http://dx.doi.org/10.1016/j.jaerosci.2016.08.010


Atmosphere 2019, 10, 506 39 of 41

55. Zikova, N.; Hopke, P.K.; Ferro, A.R. Evaluation of new low-cost particle monitors for PM2.5 concentrations
measurements. J. Aerosol Sci. 2017, 105, 24–34. [CrossRef]

56. Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense optical particle counter
(OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 2016, 50, 1352–1365.
[CrossRef] [PubMed]

57. Marjovi, A.; Arfire, A.; Martinoli, A. Extending Urban Air Quality Maps Beyond the Coverage of a
Mobile Sensor Network: Data Sources, Methods, and Performance Evaluation. In Proceedings of the 2017
International Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20–22 February
2017; pp. 12–23.

58. Cross, E.S.; Williams, L.R.; Lewis, D.K.; Magoon, G.R.; Onasch, T.B.; Kaminsky, M.L.; Worsnop, D.R.;
Jayne, J.T. Use of electrochemical sensors for measurement of air pollution: correcting interference response
and validating measurements. Atmos. Meas. Tech. 2017, 10, 3575–3588. [CrossRef]

59. Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.; Westerdahl, D.; Louie, P. Impact Analysis of Temperature
and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors
2018, 18, 59. [CrossRef] [PubMed]

60. Gillooly, S.E.; Zhou, Y.; Vallarino, J.; Chu, M.T.; Michanowicz, D.R.; Levy, J.I.; Adamkiewicz, G. Development
of an in-home, real-time air pollutant sensor platform and implications for community use. Environ. Pollut.
2019, 244, 440–450. [CrossRef]

61. Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.;
Subramanian, R. A machine learning calibration model using random forests to improve sensor performance
for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [CrossRef]

62. Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.;
et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring.
Atmos. Meas. Tech 2014, 7, 3325–3336. [CrossRef]

63. Cordero, J.M.; Borge, R.; Narros, A. Using statistical methods to carry out in field calibrations of low cost air
quality sensors. Sens. Actuators B Chem. 2018, 267, 245–254. [CrossRef]

64. Duvall, R.M.; Long, R.W.; Beaver, M.R.; Kronmiller, K.G.; Wheeler, M.L.; Szykman, J.J. Performance Evaluation
and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide. Sensors 2016, 16, 1698.
[CrossRef]

65. Sun, L.; Westerdahl, D.; Ning, Z. Development and Evaluation of A Novel and Cost-Effective Approach for
Low-Cost NO2 Sensor Drift Correction. Sensors 2017, 17, 1916. [CrossRef]

66. Lin, C.; Gillespie, J.; Schuder, M.D.; Duberstein, W.; Beverland, I.J.; Heal, M.R. Evaluation and calibration of
Aeroqual series 500 portable gas sensors for accurate measurement of ambient ozone and nitrogen dioxide.
Atmos. Environ. 2015, 100, 111–116. [CrossRef]

67. US-EPA. Evaluation of Elm and Speck Sensors. Available online: https://cfpub.epa.gov/si/si_public_record_
report.cfm?Lab=NERL&dirEntryId=310285 (accessed on 21 August 2019).

68. Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three
Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077.
[CrossRef]

69. Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A.; Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards
the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit
Mine Sites. Sensors 2015, 15, 19667–19687. [CrossRef] [PubMed]

70. Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal
DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure
measurements. Atmos. Environ. 2004, 38, 3329–3340. [CrossRef]

71. Olivares, G.; Edwards, S. The Outdoor Dust Information Node (ODIN) – development and performance
assessment of a low cost ambient dust sensor. Atmos. Meas. Tech. Discuss. 2015, 8, 7511–7533. [CrossRef]

72. Pillarisetti, A.; Allen, T.; Ruiz-Mercado, I.; Edwards, R.; Chowdhury, Z.; Garland, C.; Hill, L.D.; Johnson, M.;
Litton, C.D.; Lam, N.L.; et al. Small, Smart, Fast, and Cheap: Microchip-Based Sensors to Estimate Air
Pollution Exposures in Rural Households. Sensor. (Basel) 2017, 17, 1879. [CrossRef] [PubMed]

73. Austin, E.; Novosselov, I.; Seto, E.; Yost, M.G. Laboratory Evaluation of the Shinyei PPD42NS Low-Cost
Particulate Matter Sensor. Plos ONE 2015, 10, e0137789.

http://dx.doi.org/10.1016/j.jaerosci.2016.11.010
http://dx.doi.org/10.1080/02786826.2016.1232859
http://www.ncbi.nlm.nih.gov/pubmed/28871213
http://dx.doi.org/10.5194/amt-10-3575-2017
http://dx.doi.org/10.3390/s18020059
http://www.ncbi.nlm.nih.gov/pubmed/29360749
http://dx.doi.org/10.1016/j.envpol.2018.10.064
http://dx.doi.org/10.5194/amt-11-291-2018
http://dx.doi.org/10.5194/amt-7-3325-2014
http://dx.doi.org/10.1016/j.snb.2018.04.021
http://dx.doi.org/10.3390/s16101698
http://dx.doi.org/10.3390/s17081916
http://dx.doi.org/10.1016/j.atmosenv.2014.11.002
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=310285
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=310285
http://dx.doi.org/10.1080/02786826.2015.1100710
http://dx.doi.org/10.3390/s150819667
http://www.ncbi.nlm.nih.gov/pubmed/26274959
http://dx.doi.org/10.1016/j.atmosenv.2004.03.007
http://dx.doi.org/10.5194/amtd-8-7511-2015
http://dx.doi.org/10.3390/s17081879
http://www.ncbi.nlm.nih.gov/pubmed/28812989


Atmosphere 2019, 10, 506 40 of 41

74. Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure
spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [CrossRef] [PubMed]

75. Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and
laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [CrossRef]

76. Cavaliere, A.; Carotenuto, F.; Di Gennaro, F.; Gioli, B.; Gualtieri, G.; Martelli, F.; Matese, A.; Toscano, P.;
Vagnoli, C.; Zaldei, A. Development of Low-Cost Air Quality Stations for Next Generation Monitoring
Networks: Calibration and Validation of PM2.5 and PM10 Sensors. Sensors 2018, 18, 2843. [CrossRef]

77. Viana, M.; Rivas, I.; Reche, C.; Fonseca, A.S.; Pérez, N.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Sunyer, J.
Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos.
Environ. 2015, 123 Pt A, 220–228. [CrossRef]

78. Northcross, A.L.; Edwards, R.J.; Johnson, M.A.; Wang, Z.-M.; Zhu, K.; Allen, T.; Smith, K.R. A low-cost
particle counter as a realtime fine-particle mass monitor. Env. Sci. Process. Impacts 2013, 15, 433–439.
[CrossRef] [PubMed]

79. Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.;
Lin, C.; et al. Personal exposure monitoring of PM 2.5 in indoor and outdoor microenvironments. Sci. Total
Environ. 2015, 508, 383–394. [CrossRef] [PubMed]

80. Han, I.; Symanski, E.; Stock, T.H. Feasibility of using low-cost portable particle monitors for measurement
of fine and coarse particulate matter in urban ambient air. J. Air Waste Manag. Assoc. 2017, 67, 330–340.
[CrossRef] [PubMed]
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