Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Season Wise Variation of Meteorological Features
3.2. Comparison of PM1.0, PM2.5 and PM10 from LCS with PM2.5 from Reference Instrument
3.3. Effect of Meteorological Features and Seasons on LCS Calibration
3.3.1. Summer
3.3.2. Autumn
3.3.3. Winter
3.3.4. Spring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Ambient (Outdoor) Air Quality and Health. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health/ (accessed on 7 September 2021).
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ruan, Z.; Wang, X.; Yang, Y.; Mason, T.G.; Lin, H.; Tian, L. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ. Pollut. 2019, 247, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A. Introduction to spatiotemporal variations of ambient air pollutants and related public health impacts. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health; Li, L., Zhou, X., Tong, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–34. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; DI Sabatino, S.; Ratti, C.; Yasar, A.-U.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607–608, 691–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.-C.; Shukla, K.K.; Chen, Y.-T.; Chang, S.-C.; Lin, T.-Y.; Li, Z.; Pui, D.Y.; Tsai, C.-J. On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos. Environ. 2020, 222, 117138. [Google Scholar] [CrossRef]
- Ayers, G.; Keywood, M.; Gras, J. TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Atmos. Environ. 1999, 33, 3717–3721. [Google Scholar] [CrossRef]
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter. Aerosol Sci. Technol. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Kumar, V.; Sahu, M. Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor. J. Aerosol Sci. 2021, 157, 105809. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.K.-A.; DI Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 2019, 54, 160–174. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Barkjohn, K.J.; Bergin, M.H.; Norris, C.; Schauer, J.J.; Zhang, Y.; Black, M.; Hu, M.; Zhang, J. Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. Aerosol Air Qual. Res. 2020, 20, 297–313. [Google Scholar] [CrossRef]
- Hagan, D.H.; Kroll, J.H. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 2020, 13, 6343–6355. [Google Scholar] [CrossRef] [PubMed]
- Crilley, L.R.; Shaw, M.; Pound, R.; Kramer, L.J.; Price, R.; Young, S.; Lewis, A.C.; Pope, F.D. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 2018, 11, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Bai, L.; Huang, L.; Wang, Z.; Ying, Q.; Zheng, J.; Shi, X.; Hu, J. Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing. Aerosol Air Qual. Res. 2020, 20, 242–253. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sensors 2018, 2018, 5096540. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.K.Y.; Ling, T.Y.; Chan, C.K. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Faraday Discuss. 2008, 137, 245–263. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods. 2016. Available online: https://www3.epa.gov/ttnamti1/files/ambient/pm25/qa/m212.pdf (accessed on 28 December 2021).
- Chen, C.-C.; Kuo, C.-T.; Chen, S.-Y.; Lin, C.-H.; Chue, J.-J.; Hsieh, Y.-J.; Cheng, C.-W.; Wu, C.-M.; Huang, C.-M. Calibration of Low-Cost Particle Sensors by Using Machine-Learning Method. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 111–114. [Google Scholar] [CrossRef]
- Lee, H.; Kang, J.; Kim, S.; Im, Y.; Yoo, S.; Lee, D. Long-Term Evaluation and Calibration of Low-Cost Particulate Matter (PM) Sensor. Sensors 2020, 20, 3617. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Dong, W.; Chen, Y. Calibrating Low-Cost Sensors by a Two-Phase Learning Approach for Urban Air Quality Measurement. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–18. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Liang, L. Calibrating low-cost sensors for ambient air monitoring: Techniques, trends, and challenges. Environ. Res. 2021, 197, 111163. [Google Scholar] [CrossRef]
- Fang, X.; Bate, I. Using multi-parameters for calibration of low-cost sensors in urban environment. In Proceedings of the International Conference on Embedded Wireless Systems and Networks (EWSN), Uppsala, Sweden, 20–22 February 2017. [Google Scholar]
- PurpleAir. Real-Time Air Quality Map | PurpleAir. 2021. Available online: https://www.purpleair.com/map (accessed on 19 June 2021).
- Alberta Government. Ambient Data Download. 2021. Available online: https://airdata.alberta.ca/reporting (accessed on 20 June 2021).
- U.S. Environmental Protection Agency (EPA). How to Evaluate Low-Cost Sensors by Collocation with Federal Reference Method Monitors. 2018. Available online: https://www.epa.gov/sites/default/files/2018-01/documents/collocation_instruction_guide.pdf (accessed on 21 February 2022).
- PurpleAir. Using PurpleAir Data. 2021. Available online: https://docs.google.com/document/d/15ijz94dXJ-YAZLi9iZ_RaBwrZ4KtYeCy08goGBwnbCU/edit (accessed on 3 September 2021).
- Alberta Government. Alberta Air Data Warehouse. 2021. Available online: https://www.alberta.ca/alberta-air-data-warehouse.aspx (accessed on 25 September 2021).
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis: A Research Tool; Springer: New York, NY, USA, 1998. [Google Scholar]
- Mendenhall, W.; Sincich, T. A Second Course in Statistics: Regression Analysis; Pearson: London, UK, 2014. [Google Scholar]
- Kroese, D.P.; Botev, Z.I.; Taimre, T.; Vaisman, R. Data Science and Machine Learning: Mathematical and Statistical Methods; CRC Press, Taylor & Francis Group: New York, NY, USA, 2019. [Google Scholar]
- Zaki, M.J.; Meira, W. Data Mining and Machine Learning: Fundamental Concepts and Algorithms; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Wang, Y.; Du, Y.; Wang, J.; Li, T. Calibration of a low-cost PM2.5 monitor using a random forest model. Environ. Int. 2019, 133, 105161. [Google Scholar] [CrossRef]
- Wang, W.-C.V.; Lung, S.-C.C.; Liu, C.-H. Application of Machine Learning for the in-Field Correction of a PM2.5 Low-Cost Sensor Network. Sensors 2020, 20, 5002. [Google Scholar] [CrossRef]
- Wijeratne, L.O.; Kiv, D.R.; Aker, A.R.; Talebi, S.; Lary, D.J. Using Machine Learning for the Calibration of Airborne Particulate Sensors. Sensors 2019, 20, 99. [Google Scholar] [CrossRef] [Green Version]
- Sutton, C.D. Classification and Regression Trees, Bagging, and Boosting. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2005; Volume 24, pp. 303–329. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, Second Edition: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Yang, X.-S. Introduction to Algorithms for Data Mining and Machine Learning; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Jagatha, J.V.; Klausnitzer, A.; Chacón-Mateos, M.; Laquai, B.; Nieuwkoop, E.; van der Mark, P.; Vogt, U.; Schneider, C. Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research. Sensors 2021, 21, 3960. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Temperature Change in Canada. 2016. Available online: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/temperature-change.html (accessed on 23 July 2021).
- Tryner, J.; L’Orange, C.; Mehaffy, J.; Miller-Lionberg, D.; Hofstetter, J.C.; Wilson, A.; Volckens, J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 2019, 220, 117067. [Google Scholar] [CrossRef]
- Plantower. PMS5003 Datasheet. 2019. Available online: https://docs.smartcitizen.me/assets/datasheets/pms5003/PTQ3004-2015%20PMS5003%20series%20data%20manual%20English_SLT_V1.0K.pdf (accessed on 16 March 2022).
- He, M.; Kuerbanjiang, N.; Dhaniyala, S. Performance characteristics of the low-cost Plantower PMS optical sensor. Aerosol Sci. Technol. 2019, 54, 232–241. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gramsch, E.; Oyola, P.; Reyes, F.; Vásquez, Y.; Rubio, M.A.; Soto, C.; Pérez, P.; Moreno, F.; Gutiérrez, N. Influence of Particle Composition and Size on the Accuracy of Low Cost PM Sensors: Findings From Field Campaigns. Front. Environ. Sci. 2021, 9, 527. [Google Scholar] [CrossRef]
- Feng, L.; Shen, H.; Zhu, Y.; Gao, H.; Yao, X. Insight into Generation and Evolution of Sea-Salt Aerosols from Field Measurements in Diversified Marine and Coastal Atmospheres. Sci. Rep. 2017, 7, srep41260. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Lupi, A. Primary and Secondary Sources of Atmospheric Aerosol. In Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate Tomasi; Fuzzi, S., Kokhanovsky, A., Eds.; Wiley: Weinheim, Germany, 2016; pp. 1–86. [Google Scholar] [CrossRef]
- Wihersaari, H.; Pirjola, L.; Karjalainen, P.; Saukko, E.; Kuuluvainen, H.; Kulmala, K.; Keskinen, J.; Rönkkö, T. Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions. Environ. Pollut. 2020, 265, 114948. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.; Kindzierski, W.B. Fine particulate matter (PM2.5) in Edmonton, Canada: Source apportionment and potential risk for human health. Environ. Pollut. 2016, 218, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Ardon-Dryer, K.; Dryer, Y.; Williams, J.N.; Moghimi, N. Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmos. Meas. Tech. 2020, 13, 5441–5458. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, X.; Chen, C.; Ge, Y.; Wang, W.; Zhao, Z.; Cai, J.; Kan, H. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111958. [Google Scholar] [CrossRef]
- Zimmerman, N. Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring. J. Aerosol Sci. 2021, 159, 105872. [Google Scholar] [CrossRef]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Der Boghossian, B.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Stavroulas, I.; Grivas, G.; Michalopoulos, P.; Liakakou, E.; Bougiatioti, A.; Kalkavouras, P.; Fameli, K.; Hatzianastassiou, N.; Mihalopoulos, N.; Gerasopoulos, E. Field Evaluation of Low-Cost PM Sensors (Purple Air PA-II) under Variable Urban Air Quality Conditions, in Greece. Atmosphere 2020, 11, 926. [Google Scholar] [CrossRef]
Variable | Mean ± SD | ||||
---|---|---|---|---|---|
Overall | Summer | Autumn | Winter | Spring | |
PM1.0_LCS (μg/m3) | 4.37 ± 4.75 | 4.31 ± 4.00 | 4.39 ± 4.69 | 5.35 ± 5.83 | 3.26 ± 3.84 |
PM2.5_LCS (μg/m3) | 6.29 ± 6.90 | 5.98 ± 5.81 | 6.37 ± 6.88 | 7.76 ± 8.42 | 4.82 ± 5.61 |
PM10_LCS (μg/m3) | 6.81 ± 7.47 | 6.34 ± 6.21 | 6.92 ± 7.47 | 8.47 ± 9.12 | 5.29 ± 6.09 |
PM2.5_REF (μg/m3) | 6.49 ± 3.99 | 5.50 ± 2.76 | 6.23 ± 3.98 | 7.97 ± 4.98 | 6.15 ± 3.34 |
Relative Humidity (%) | 55.17 ± 20.39 | 48.42 ± 18.02 | 68.68 ± 18.36 | 57.82 ± 17.08 | 43.12 ± 18.15 |
Temperature (°C) | 6.11 ± 12.68 | 20.65 ± 5.87 | 4.42 ± 9.04 | −5.91 ± 9.08 | 6.46 ± 9.24 |
Wind Speed (m/s) | 7.35 ± 4.16 | 7.46 ± 4.25 | 7.30 ± 4.12 | 6.66 ± 3.68 | 8.10 ± 4.48 |
Season | Scenario | Independent Variables | Model | Train Score | Test Score | R2 | RMSE | MAE | Equation |
---|---|---|---|---|---|---|---|---|---|
Summer | Before Calibration | - | - | - | - | 0.66 | 3.37 | 2.21 | - |
After Calibration | PM2.5_LCS | MLR | - | - | 0.89 | 0.92 | 0.63 | PM2.5_REF = 0.45 × PM2.5_LCS + 2.82 | |
RF | 0.97 | 0.86 | 0.94 | 0.69 | 0.44 | - | |||
GB | 0.92 | 0.89 | 0.91 | 0.82 | 0.56 | - | |||
kNN | 0.92 | 0.89 | 0.91 | 0.83 | 0.57 | - | |||
Autumn | Before Calibration | - | - | - | - | 0.73 | 3.57 | 2.48 | - |
After Calibration | PM2.5_LCS, RH, T | MLR | - | - | 0.86 | 1.48 | 0.96 | PM2.5_REF = 0.55 × PM2.5_LCS−0.03 × RH−0.03 × T + 4.88 | |
RF | 0.99 | 0.91 | 0.96 | 0.75 | 0.44 | - | |||
GB | 0.93 | 0.91 | 0.92 | 1.11 | 0.74 | - | |||
kNN | 0.93 | 0.89 | 0.92 | 1.11 | 0.76 | - | |||
Winter | Before Calibration | - | - | - | - | 0.70 | 4.61 | 3.48 | - |
After Calibration | PM2.5_LCS, T, WS | MLR | - | - | 0.83 | 2.05 | 1.45 | PM2.5_REF = 0.53 × PM2.5_LCS−0.11 × T−0.13 × WS + 4.15 | |
RF | 0.98 | 0.86 | 0.95 | 1.16 | 0.70 | - | |||
GB | 0.90 | 0.87 | 0.89 | 1.64 | 1.10 | - | |||
kNN | 0.91 | 0.86 | 0.89 | 1.61 | 1.10 | - | |||
Spring | Before Calibration | - | - | - | - | 0.64 | 3.37 | 2.64 | - |
After Calibration | PM2.5_LCS, RH, T, WS | MLR | - | - | 0.80 | 1.48 | 1.04 | PM2.5_REF = 0.53 × PM2.5_LCS−0.03 × RH−0.05 × T−0.08 × WS + 5.61 | |
RF | 0.98 | 0.85 | 0.94 | 0.82 | 0.50 | - | |||
GB | 0.89 | 0.84 | 0.87 | 1.19 | 0.83 | - | |||
kNN | 0.88 | 0.81 | 0.86 | 1.25 | 0.86 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Malyan, V.; Sahu, M. Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor. Atmosphere 2022, 13, 587. https://doi.org/10.3390/atmos13040587
Kumar V, Malyan V, Sahu M. Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor. Atmosphere. 2022; 13(4):587. https://doi.org/10.3390/atmos13040587
Chicago/Turabian StyleKumar, Vikas, Vasudev Malyan, and Manoranjan Sahu. 2022. "Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor" Atmosphere 13, no. 4: 587. https://doi.org/10.3390/atmos13040587
APA StyleKumar, V., Malyan, V., & Sahu, M. (2022). Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor. Atmosphere, 13(4), 587. https://doi.org/10.3390/atmos13040587