The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Data and Methodology
2.1. WRF-Chem Model and Configurations
2.2. Simulation Design
2.3. Observational Data and Model Evaluation
3. Results and Discussion
3.1. Performances of Model
3.2. Contributions of CTGC and CTEC Projects and Meteorology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the global burden of disease study 2017. Lancet Planet. Health 2020, 4, e386–e398. [Google Scholar] [CrossRef]
- Hanna, R.; Oliva, P. The effect of pollution on labor supply: Evidence from a natural experiment in mexico city. J. Public Econ. 2015, 122, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Luo, L.; Song, C.; Yin, H.; Yang, J. Spatiotemporal assessment of PM2.5-related economic losses from health impacts during 2014–2016 in China. Int. J. Environ. Res. Public Health 2018, 15, 1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maji, K.J.; Ye, W.F.; Arora, M.; Shiva Nagendra, S.M. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Feng, X.; Zhao, M.; Du, X.; Wang, Y.; Wang, P.; Wu, L. The effects of intensive supervision mechanism on air quality improvement in China. J. Air Waste Manag. Assoc. 2021, 71, 1102–1113. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending Blue Sky in China: Effectiveness of the “air pollution prevention and control action plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Z.; Yang, T.; Xia, Q. Does the expansion of the joint prevention and control area improve the air quality?—Evidence from China’s Jing-Jin-Ji region and surrounding areas. Sci. Total Environ. 2020, 706, 136034. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in china: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhu, Y.; Lin, C.J.; Wang, S.; Xing, J.; Jang, C.; Huang, J.; Huang, J.; Jin, J.; Yu, L. Effects of air pollution control measures on air quality improvement in Guangzhou, China. J. Environ. Manag. 2019, 244, 127–137. [Google Scholar] [CrossRef]
- Stremke, S.; van den Dobbelsteen, A. Sustainable Energy Landscapes: Designing, Planning, and Development; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–497. [Google Scholar] [CrossRef]
- Ding, D.; Xing, J.; Wang, S.; Liu, K.; Hao, J. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health Perspect. 2019, 127, 067009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q.; Cai, S.; Wang, S.; Zhao, B.; Martin, R.V.; Brauer, M.; Cohen, A.; Jiang, J.; Zhou, W.; Hao, J.; et al. Impacts of coal burning on ambient PM2.5 pollution in China. Atmos. Chem. Phys. 2017, 17, 4477–4491. [Google Scholar] [CrossRef] [Green Version]
- Yun, X.; Shen, G.; Shen, H.; Meng, W.; Chen, Y.; Xu, H.; Ren, Y.; Zhong, Q.; Du, W.; Ma, J.; et al. Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Sci. Adv. 2020, 6, eaba7621. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, J.; Wang, S.; Rumchev, K.; Mead-Hunter, R.; Morawska, L.; Hao, J. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci. Total Environ. 2017, 576, 347–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, Z.; Nie, T.; Wang, K.; Nie, L.; Pan, T.; Wu, X.; Tian, H.; Zhong, L.; Li, J.; et al. Trends of multiple air pollutants emissions from residential coal combustion in beijing and its implication on improving air quality for control measures. Atmos. Environ. 2016, 142, 303–312. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Elser, M.; Feng, T.; Cao, J.; El-Haddad, I.; Huang, R.; Tie, X.; Prévôt, A.S.H.; Li, G. Contributions of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: A case study. Atmos. Chem. Phys. 2018, 18, 10675–10691. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Ying, Q.; Li, X.; Zhang, H.; Hu, J.; Tang, Y.; Chen, X. Source apportionment of PM2.5 for 25 Chinese provincial capitals and municipalities using a source-oriented community multiscale air quality model. Sci. Total Environ. 2018, 612, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Mäki, E.; Kannari, L.; Hannula, I.; Shemeikka, J. Decarbonization of a district heating system with a combination of solar heat and bioenergy: A techno-economic case study in the northern european context. Renew. Energy 2021, 175, 1174–1199. [Google Scholar] [CrossRef]
- Nastasi, B.; Lo Basso, G.; Astiaso Garcia, D.; Cumo, F.; de Santoli, L. Power-to-gas leverage effect on power-to-heat application for urban renewable thermal energy systems. Int. J. Hydrog. Energy 2018, 43, 23076–23090. [Google Scholar] [CrossRef]
- Meng, W.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Smith, K.R.; Li, B.; Liu, J.; Wang, X.; Ma, J.; et al. Energy and air pollution benefits of household fuel policies in northern China. Proc. Natl. Acad. Sci. USA 2019, 116, 16773–16780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zheng, Y.; Zheng, S.; Ke, H. The new smart city programme: Evaluating the effect of the internet of energy on air quality in China. Sci. Total Environ. 2020, 714, 136380. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Cai, J.; Baležentis, T.; Li, Y. The impact of “coal to gas” policy on air quality: Evidence from Beijing, China. Energies 2020, 13, 3876. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, J.; Luo, M.; Wang, J.; Qiu, Y. Uncertainties in simulating central Asia: Sensitivity to physical parameterizations using weather research and forecasting model. Int. J. Climatol. 2020, 40, 5813–5828. [Google Scholar] [CrossRef]
- Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. Atmos. 2003, 108, 4642. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Karl, T.; Harley, P.; Weidinmyer, C.; Palmer, P.I.; Geron, C. Edinburgh research explorer estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature) and physics estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases an). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Manfren, M.; Nastasi, B.; Groppi, D.; Astiaso Garcia, D. Open data and energy analytics—An analysis of essential information for energy system planning, design and operation. Energy 2020, 213, 118803. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [Green Version]
2018 | 2016 | Mitigation Rate (%) | |||||
---|---|---|---|---|---|---|---|
Heating Area (Billion m2) | Clean Heating Area (Billion m2) | Clean Heating Rate (%) | Heating Area (Billion m2) | Clean Heating Area (Billion m2) | Clean Heating Rate (%) | ||
Beijing | 0.98 | 0.94 | 96.02 | 0.96 | 0.83 | 87.00 | 70.03 |
Tianjin | 0.64 | 0.48 | 75.00 | 0.57 | 0.31 | 54.00 | 38.46 |
Shijiazhuang | 0.45 | 0.35 | 77.93 | 0.42 | 0.22 | 51.04 | 52.21 |
Tangshan | 0.30 | 0.20 | 66.56 | 0.29 | 0.14 | 49.61 | 30.73 |
Langfang | 0.20 | 0.20 | 97.34 | 0.18 | 0.04 | 24.25 | 96.04 |
Baoding | 0.34 | 0.25 | 71.89 | 0.32 | 0.08 | 26.61 | 58.88 |
Cangzhou | 0.22 | 0.13 | 58.24 | 0.24 | 0.06 | 24.86 | 49.22 |
Hengshui | 0.11 | 0.10 | 88.66 | 0.14 | 0.06 | 44.48 | 82.67 |
Xingtai | 0.18 | 0.11 | 58.03 | 0.08 | 0.06 | 72.33 | 41.90 |
Handan | 0.16 | 0.13 | 80.81 | 0.10 | 0.09 | 83.24 | 41.90 |
Zhangjiakou | 0.14 | 0.06 | 38.54 | 0.14 | 0.04 | 30.73 | 6.54 |
Chengde | 0.12 | 0.07 | 56.97 | 0.10 | 0.05 | 49.32 | 2.53 |
Qinhuangdao | 0.11 | 0.06 | 51.74 | 0.08 | 0.03 | 38.52 | 41.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wang, M.; Zhou, M.; He, J.; Feng, X.; Du, X.; Wang, Y.; Wang, Y. The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region. Atmosphere 2022, 13, 555. https://doi.org/10.3390/atmos13040555
Wang P, Wang M, Zhou M, He J, Feng X, Du X, Wang Y, Wang Y. The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region. Atmosphere. 2022; 13(4):555. https://doi.org/10.3390/atmos13040555
Chicago/Turabian StyleWang, Peng, Min Wang, Mi Zhou, Jianjun He, Xiangzhao Feng, Xiaolin Du, Yu Wang, and Yongli Wang. 2022. "The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region" Atmosphere 13, no. 4: 555. https://doi.org/10.3390/atmos13040555
APA StyleWang, P., Wang, M., Zhou, M., He, J., Feng, X., Du, X., Wang, Y., & Wang, Y. (2022). The Benefits of the Clean Heating Plan on Air Quality in the Beijing–Tianjin–Hebei Region. Atmosphere, 13(4), 555. https://doi.org/10.3390/atmos13040555