Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter Monsoon (EAWM) from a Ground-Based Microwave Radiometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of Experimental Conditions
2.2. Introduction of Data Processing Methods
2.2.1. Forwards and Inversion Algorithm
2.2.2. Atmospheric Parameters
2.2.3. Error Analysis Methods
3. Results
3.1. Characteristics of the Atmospheric Vertical Structure
3.2. Characteristics of the Atmospheric Stability Indices
3.3. Characteristics of the Water Vapour and Liquid Water
4. Discussion
4.1. Short-Term Snow Forecast
4.2. Quantitative Snowfall Estimation
5. Conclusions
- (1)
- The average values of T deviation between MWR and RAOB were less than 0.5 K at most altitudes and sampling periods, meeting the deviation requirements of meteorological applications;
- (2)
- The CAPE values during the EAWM under snowy conditions were larger than those on clear days, especially during the period of 13:00–19:00 (UTC+8). For clear-sky, the CAPE during the EAWM was much larger than that during the summer monsoon. This indicates that the QTP weather system is changeable, and there is still high convective instability on sunny days;
- (3)
- The water vapour and liquid water in winter are much smaller than that of the summer monsoon. The winter LWC was an order of magnitude lower than the summer average;
- (4)
- PWV, LWC, CAPE, DCAPE and BT at the sampling channel of 30.0 GHz and 51.24 GHz had the potential to be used for quantitative precipitation forecasting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, S.Q.; Xiangde, X.U.; Shi, X.H.; Wang, D.X.; Zhu, Y.X. The early-warning effects of assimilation of the observations over the large-scale slope of the “World Roof” on its downstream weather forecasting. Chin. Sci. Bull. 2009, 54, 706–710. [Google Scholar] [CrossRef]
- Cadeddu, M.P.; Marchand, R.; Orlandi, E.; Turner, D.D.; Mech, M. Microwave passive ground-based retrievals of cloud and rain liquid water path in drizzling clouds: Challenges and possibilities. Trans. Geosci. Remote Sens. 2017, 55, 6468–6481. [Google Scholar] [CrossRef]
- Karavaev, D.M.; Shchukin, G.G. Status and prospects of application of microwave radiometry of the atmosphere. Atmos. Ocean. Opt. 2016, 29, 308–313. [Google Scholar] [CrossRef]
- Xu, G.; Yue, X.; Zhang, W.; Wan, X. Assessment of atmospheric wet profiles obtained from cosmic radio occultation observations over China. Atmosphere 2017, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Ohring, G.; Lord, S.; Derber, J.; Mitchell, K.; Ji, M. Applications of satellite remote sensing in numerical weather and climate prediction. Adv. Space Res. 2002, 30, 2433–2439. [Google Scholar] [CrossRef]
- Jeoung, H.; Liu, G.S.; Kim, K.; Lee, G.; Seo, E.K. Microphysical properties of three types of snow clouds: Implication for satellite snowfall retrievals. Atmos. Chem. Phys. 2020, 20, 14491–14507. [Google Scholar] [CrossRef]
- Kidd, C. Satellite rainfall climatology: A review. Int. J. Climatol. 2001, 21, 1041–1066. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Moisseev, D.; von Lerber, A.; Tiira, J. Quantifying the effect of riming on snowfall using ground-based observations. J. Geophys. Res. Atmos. 2017, 122, 4019–4037. [Google Scholar] [CrossRef] [Green Version]
- Araki, K.; Murakami, M.; Ishimoto, H.; Tajiri, T. Ground-based microwave radiometer variational analysis during no-rain and rain conditions. SOLA 2015, 11, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.X.; Yan, H.L.; Wu, P.; Zhou, D. Linear correction method for improved atmospheric vertical profile retrieval based on ground-based microwave radiometer. Atmos. Res. 2020, 232, 104678. [Google Scholar] [CrossRef]
- Ha, J.; Park, K.D.; Kim, K.; Kim, Y.H. Comparison of atmospheric water vapor profiles obtained by GPS, MWR, and radiosonde. Asia-Pac. J. Atmos. Sci. 2010, 46, 233–241. [Google Scholar] [CrossRef]
- Warner, J.; Drake, J. Field tests of an airborne remote sensing technique for measuring the distribution of liquid water in convective cloud. J. Atmos. Ocean. Technol. 1988, 5, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Snider, J.B. Long-term observations of cloud liquid, water vapor, and cloud-base temperature in the North Atlantic Ocean. J. Atmos. Ocean. Technol. 2000, 17, 928–939. [Google Scholar] [CrossRef]
- Heggli, M.; Rauber, R.M.; Snider, J.B. Field evaluation of a dual-channel microwave radiometer designed for measurements of integrated water vapor and cloud liquid water in the atmosphere. J. Atmos. Ocean. Technol. 1987, 4, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Madhulatha, A.; Rajeevan, M.; Venkat Ratnam, M.; Bhate, J.; Naidu, C.V. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gascón, E.; Sanchez, J.; Fernández-González, S.; Hermida, L.; López, L.; García-Ortega, E.; Merino, A. Monitoring a convective winter episode of the Iberian Peninsula using a multichannel microwave radiometer. J. Geophys. Res. Atmos. 2015, 120, 1565–1581. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.; Cimini, D.; Herzegh, P.; Marzano, F.; Vivekanandan, J.; Westwater, E. Ground-based microwave radiometer measurements during precipitation. Environ. Sci. 2004, 1, 24–27. [Google Scholar]
- Xie, X.X.; Lohnert, U.; Kneifel, S.; Crewell, S. Snow particle orientation observed by ground-based microwave radiometry. J. Geophys. Res. Atmos. 2012, 117, 1–12. [Google Scholar] [CrossRef]
- Knupp, K.; Ware, R.; Cimini, D.; Vandenberghe, F.; Vivekanandan, J.; Westwater, E.; Coleman, T.; Phillips, D. Ground-based passive microwave profiling during dynamic weather conditions. J. Atmos. Ocean. Technol. 2009, 26, 1057–1073. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.; Liu, Y.; Yan, G.; Wang, S. Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions. Atmos. Meas. Tech. 2017, 10, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Cadeddu, M.P.; Liljegren, J.C.; Turner, D.D. The Atmospheric radiation measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. 2013, 6, 2359–2372. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, G.; Yu, H. Climatology of Snow in China. Sci. Geogr. Sin. 2012, 32, 1176–1185. [Google Scholar] [CrossRef]
- Hu, H.; Liang, L. Temporal and spatial variations of snowfall in the east of Qinghai-Tibet Plateau in the last 50 years. Acta Geogr. Sin. 2014, 69, 1002–1012. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, L.Y.; Wei, Y.Q. Integrated risk assessment of snow disaster over the Qinghai-Tibet Plateau. Geom. Nat. Hazards Risk 2019, 10, 740–757. [Google Scholar] [CrossRef] [Green Version]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Wanbiao, L. Atmospheric Physics: Basics of Thermodynamics and Radiation, 1st ed.; Peking University Press: Beijing, China, 2010. [Google Scholar]
- Iribarne, J.V.; Godson, W.L. Atmospheric Thermodynamics, 2nd ed.; Springer Science & Business Media: Toronto, ON, Canada, 2012. [Google Scholar]
- Liu, Y.; Mao, J.; Liu, J.; Li, F. Research of BP neural network for microwave radiometer remote sensing retrieval of temperature, relative humidity, cloud liquid water profiles. Plat. Meteorol. 2010, 29, 1514–1523. [Google Scholar]
- Wang, Z.H.; Li, Q.; Hu, F.C.; Cao, X.F.; Chu, Y.L. Remote sensing of lightning by a ground-based microwave radiometer. Atmos. Res. 2014, 150, 143–150. [Google Scholar] [CrossRef]
- Wei, J.; Shi, Y.; Ren, Y.; Li, Q.; Qiao, Z.; Cao, J.; Ayantobo, O.O.; Yin, J.; Wang, G. Application of ground-based microwave radiometer in retrieving meteorological characteristics of Tibet Plateau. Remote Sens. 2021, 13, 2527. [Google Scholar] [CrossRef]
- Cimini, D.; Nelson, M.; Güldner, J.; Ware, R. Forecast indices from a ground-based microwave radiometer for operational meteorology. Atmos. Meas. Tech. 2015, 8, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Dang, Z.L. Research on Retrieval Methods and Application from Microwave Radiometer in Semi-Arid Area. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Busen, R. Dropsondes and Radiosondes for Atmospheric Measurements. In Atmospheric Physics: Background–Methods–Trends, 1st ed.; Schumann, U., Ed.; Springer: Berlin, Germany, 2012; pp. 317–329. [Google Scholar] [CrossRef]
- Woods, C.; Stoelinga, M.; Locatelli, J.; Hobbs, P. Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE2 event over the Oregon Cascades. J. Atmos. Sci. 2005, 62, 3493–3519. [Google Scholar] [CrossRef]
- Fernández-González, S.; Valero, F.; Sanchez, J.L.; Gascón, E.; López, L.; García-Ortega, E.; Merino, A. Observation of a freezing drizzle episode: A case study. Atmos. Res. 2014, 149, 244–254. [Google Scholar] [CrossRef]
- Chan, W.S.; Lee, J.C.W. Vertical profile retrievals with warm-rain microphysics using the ground-based microwave radiometer operated by the Hong Kong observatory. Atmos. Res. 2015, 161–162, 125–133. [Google Scholar] [CrossRef]
- Xu, G.; Ware, R.; Zhang, W.; Feng, G.; Liao, K.; Liu, Y. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res. 2014, 140–141, 85–94. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, S.; Li, Q.; Ma, L.; Jiang, S.; Lei, L.; Lyu, W.; Wang, Z. Analysis of convective instability data derived from a ground-based microwave radiometer before triggering operations for artificial lightning. Atmos. Res. 2020, 243, 105005. [Google Scholar] [CrossRef]
- Kober, K.; Tafferner, A. Tracking and nowcasting of convective cells using remote sensing data from radar and satellite. Meteorol. Zeitsch. 2009, 1, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, R.; Das, S.; Jana, S.; Maitra, A. Nowcasting of rain events using multi-frequency radiometric observations. J. Hydrol. 2014, 513, 467–474. [Google Scholar] [CrossRef]
- Zhu, Y. Retrieval of Cloud Parameters in Summer in Nagqu, Qinghai Tibet Plateau Based on Millimeter Wave Radar Data. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2019. [Google Scholar]
No. | Date | Type | Precipitation | |
---|---|---|---|---|
Start Time | Duration | |||
1 | 19 October 2019 | Clear day | / | / |
2 | 21 October 2019 | Clear day | / | / |
3 | 22 October 2019 | Snowy day | 14:48:38 | 01:08:30 |
4 | 23 October 2019 | Snowy day | 17:32:13 | 00:52:10 |
5 | 24 October 2019 | Snowy day | 14:15:15 | 01:34:55 |
6 | 25 October 2019 | Clear day | / | / |
7 | 31 October 2019 | Snowy day | 16:56:08 | 00:47:55 |
8 | 4 November 2019 | Snowy day | 14:30:49 | 00:16:25 |
9 | 5 November 2019 | Snowy day | 14:03:02 | 02:17:20 |
10 | 15 November 2019 | Clear day | / | / |
11 | 16 November 2019 | Clear day | / | / |
12 | 17 November 2019 | Clear day | / | / |
13 | 18 November 2019 | Snowy day | 17:44:04 | 00:26:25 |
14 | 19 November 2019 | Snowy day | 15:35:34 | 01:23:25 |
15 | 24 November 2019 | Snowy day | 10:12:23 | 02:15:50 |
16 | 28 November 2019 | Clear day | / | / |
17 | 29 November 2019 | Snowy day | 17:42:00 | 00:49:55 |
18 | 30 November 2019 | Snowy day | 12:34:18 | 01:23:30 |
19 | 14 December 2019 | Clear day | / | / |
20 | 16 December 2019 | Clear day | / | / |
21 | 25 December 2019 | Clear day | / | / |
22 | 8 January 2020 | Clear day | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wei, J.; Qiao, Z.; Zhao, J.; Wang, G. Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter Monsoon (EAWM) from a Ground-Based Microwave Radiometer. Atmosphere 2022, 13, 549. https://doi.org/10.3390/atmos13040549
Shi Y, Wei J, Qiao Z, Zhao J, Wang G. Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter Monsoon (EAWM) from a Ground-Based Microwave Radiometer. Atmosphere. 2022; 13(4):549. https://doi.org/10.3390/atmos13040549
Chicago/Turabian StyleShi, Yang, Jiahua Wei, Zhen Qiao, Jie Zhao, and Guangqian Wang. 2022. "Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter Monsoon (EAWM) from a Ground-Based Microwave Radiometer" Atmosphere 13, no. 4: 549. https://doi.org/10.3390/atmos13040549
APA StyleShi, Y., Wei, J., Qiao, Z., Zhao, J., & Wang, G. (2022). Atmospheric Exploration of the Qinghai–Tibet Plateau during the East Asian Winter Monsoon (EAWM) from a Ground-Based Microwave Radiometer. Atmosphere, 13(4), 549. https://doi.org/10.3390/atmos13040549