Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Hybrid UVI Model
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krzyścin, J.W.; Puchalski, S. Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belsk, Poland, 1980–1996. J. Geophys. Res. Atmos. 1998, 103, 16175–16181. [Google Scholar] [CrossRef]
- Jarosławski, J.P.; Krzyścin, J.W. Importance of aerosol variations for surface UV-B level: Analysis of ground-based data taken at Belsk, Poland, 1992–2004. J. Geophys. Res. Atmos. 2005, 110, D16. [Google Scholar] [CrossRef] [Green Version]
- Krzyścin, J.W.; Jarosławski, J. Factors affecting solar UV radiation changes: A study of the new Robertson-Berger meter (UV-biometer model 501A) and Brewer data records taken at Belsk, Poland, 1993–1994. J. Atmos. Sol. Terr. Phys. 1997, 59, 1133–1142. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.K.; Mok, J.; Yoo, H.D.; Cho, N. Effects of ozone and aerosol on surface UV radiation variability. J. Photochem. Photobiol. B Biol. 2013, 119, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Mok, J.; Krotkov, N.A.; Torres, O.; Jethva, H.; Li, Z.; Kim, J.; Koo, J.; Go, S.; Irie, H.; Labow, G.; et al. Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea. Atmos. Meas. Tech. 2018, 11, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Fountoulakis, I.; Natsis, A.; Siomos, N.; Drosoglou, T.; Bais, A.F. Deriving aerosol absorption properties from solar ultraviolet radiation spectral measurements at Thessaloniki, Greece. Remote Sens. 2019, 11, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kazadzis, S.; Raptis, P.; Kouremeti, N.; Amiridis, V.; Arola, A.; Gerasopoulos, E.; Schuster, G.L. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment. Atmos. Meas. Tech. 2016, 9, 5997–6011. [Google Scholar] [CrossRef] [Green Version]
- Raptis, I.P.; Kazadzis, S.; Eleftheratos, K.; Amiridis, V.; Fountoulakis, I. Single scattering albedo’s spectral dependence effect on UV irradiance. Atmosphere 2018, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Cabrol, N.A.; Feister, U.; Häder, D.P.; Piazena, H.; Grin, E.A.; Klein, A. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Vanicek, K.; Frei, T.; Litynska, Z.; Schmalwieser, A. UV-Index for the Public. Brussels. 2000. Available online: http://www.temis.nl/uvradiation/info/Vanicek_et_al_COST-713_2000.pdf (accessed on 21 June 2021).
- WHO; WMO; UNEP; ICNIRP. Global Solar UV Index: A Practical Guide; A Joint Recommendation of the World Health Organiz; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Lehmann, M.; Pfahlberg, A.B.; Sandmann, H.; Uter, W.; Gefeller, O. Public health messages associated with low uv index values need reconsideration. Int. J. Environ Res. Public Health 2019, 16, 2067. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kim, J.; Park, S.S.; Cho, H.K. UV sensitivity to changes in ozone, aerosols, and clouds in Seoul, South Korea. J. Appl. Meteorol. Climatol. 2017, 53, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Krzyścin, J.W.; Jarosławski, J.; Sobolewski, P. On an improvement of UV index forcast: UV index diagnosis and forecast for Belsk, Poland, in Spring/Summer 1999. J. Atmos. Sol. Terr. Phys. 2001, 63, 1593–1600. [Google Scholar] [CrossRef]
- Lamy, K.; Portafaix, T.; Josse, B.; Brogniez, C.; Godin-Beekmann, S.; Bencherif, H.; Revell, L.; Akiyoshi, H.; Bekki, S.; Hegglin, M.I.; et al. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative. Atmos. Chem. Phys. 2019, 198, 10087–10110. [Google Scholar] [CrossRef] [Green Version]
- Kylling, A.; Bais, A.F.; Blumthaler, M.; Schreder, J.; Zerefos, C.S.; Kosmidis, E. Effect of aerosols on solar UV irradiances during the Photochemical Activity and Solar Ultraviolet Radiation campaign. J. Geophys. Res. Atmos. 1998, 103, 26051–26060. [Google Scholar] [CrossRef]
- Jarosławski, J.; Krzyścin, J.W.; Puchalski, S.; Sobolewski, P. On the optical thickness in the UV range: Analysis of the ground-based data taken at Belsk, Poland. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Bais, A.F.; Kazantzidis, A.; Kazadzis, S.; Balis, D.S.; Zerefos, C.S.; Meleti, C. Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements. Atmos. Environ. 2005, 39, 1093–1102. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Ohneiser, K.; Haarig, M.; Engelmann, R.; Althausen, D.; Hanssen, I.; Gausa, M.; Pietruczuk, A.; Szkop, A.; et al. The unprecedented 2017–2018 stratospheric smoke event: Decay phase and aerosol properties observed with the EARLINET. Atmos. Chem. Phys. 2019, 19, 15183–15198. [Google Scholar] [CrossRef] [Green Version]
- Markowicz, K.M.; Chilinski, M.T.; Lisok, J.; Zawadzka, O.; Stachlewska, I.S.; Janicka, L.; Rozwadowska, A.; Makuch, P.; Pakszys, P.; Zielinski, T.; et al. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013. J. Aerosol Sci. 2016, 101, 156–173. [Google Scholar] [CrossRef]
- Szkop, A.; Pietruczuk, A. Analysis of aerosol transport over southern Poland in August 2015 based on a synergy of remote sensing and backward trajectory techniques. J. Appl. Remote Sens. 2017, 11, 016039. [Google Scholar] [CrossRef] [Green Version]
- Amiridis, V.; Balis, D.S.; Kazadzis, S.; Bais, A.; Giannakaki, E.; Papayannis, A.; Zerefos, C. Four-year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Barragan, R.; Sicard, M.; Totems, J.; Léon, J.F.; Dulac, F.; Mallet, M.; Pelon, J.; Alados-Arboledas, L.; Amodeo, A.; Augustin, P.; et al. Spatio-temporal monitoring by ground-based and air- and space-borne lidars of a moderate Saharan dust event affecting southern Europe in June 2013 in the framework of the ADRIMED/ChArMEx campaign. Air Qual. Atmos. Health 2017, 10, 261–285. [Google Scholar] [CrossRef]
- Mishra, A.K.; Koren, I.; Rudich, Y. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect. Heliyon 2015, 1, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siomos, N.; Fountoulakis, I.; Natsis, A.; Drosoglou, T.; Bais, A. Automated aerosol classification from spectral UV measurements using machine learning clustering. Remote Sens. 2020, 12, 965. [Google Scholar] [CrossRef] [Green Version]
- Madronich, S.; Flocke, S. The Role of Solar Radiation in Atmospheric Chemistry; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–26. [Google Scholar]
- Madronich, S.; Flocke, S. Theoretical Estimation of Biologically Effective UV Radiation at the Earth’s Surface. In Solar Ultraviolet Radiation; Springer: Berlin/Heidelberg, Germany, 1997; pp. 23–48. [Google Scholar]
- Madronich, S.; McKenzie, R.L.; Björn, L.O.; Caldwell, M.M. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B Biol. 1998, 46, 5–19. [Google Scholar] [CrossRef]
- Elterman, L. UV, Visible and IR Attenuation for Alititudes to 50 km. Available online: https://apps.dtic.mil/sti/pdfs/AD0671933.pdf (accessed on 21 June 2021).
- Shettle, E.P.; Fenn, R.W. Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties; Springer: Cambridge, MA, USA, 1979. [Google Scholar]
- Barbaro, E.; de Arellano, J.V.G.; Ouwersloot, H.G.; Schröter, J.S.; Donovan, D.P.; Krol, M.C. Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system. J. Geophys. Res. 2014, 119, 5845–5863. [Google Scholar] [CrossRef]
- Michalsky, J.J.; Kiedron, P.W. Comparison of UV-RSS spectral measurements and TUV model runs for clear skies for the May 2003 ARM aerosol intensive observation period. Atmos. Chem. Phys. 2008, 8, 1813–1821. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A. A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geosci. Model Dev. 2014, 7, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Yi, F.; Yin, Z. Aerosol layers in the free troposphere and their seasonal variations as observed in Wuhan, China. Atmos. Environ. 2020, 224, 117323. [Google Scholar] [CrossRef]
- Chen, W.N.; Chen, Y.W.; Chou, C.C.K.; Chang, S.Y.; Lin, P.H.; Chen, J.P. Columnar optical properties of tropospheric aerosol by combined lidar and sunphotometer measurements at Taipei, Taiwan. Atmos. Environ. 2009, 43, 2700–2708. [Google Scholar] [CrossRef]
- Wang, D.; Szczepanik, D.; Stachlewska, I.S. Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland. Atmos. Chem. Phys. 2019, 19, 13097–13128. [Google Scholar] [CrossRef] [Green Version]
- Szkop, A.; Pietruczuk, A. Synergy of satellite-based aerosol optical thickness analysis and trajectory statistics for determination of aerosol source regions. Int. J. Remote Sens. 2019, 40, 8450–8464. [Google Scholar] [CrossRef]
- Kerr, J.B. The brewer spectrophotometer. In UV Radiation in Global Climate Change: Measurements, Modeling and Effects on Ecosystems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 160–191. [Google Scholar]
- Markowicz, K.M.; Flatau, P.J.; Kardas, A.E.; Remiszewska, J.; Telmaszczyk, K.; Woeste, L. Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. J. Atmos. Ocean. Technol. 2008, 25, 928–944. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Slutsker, I.; Setzer, A. Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res. Atmos. 1998, 103, 31865–31878. [Google Scholar] [CrossRef]
- NO’Neill, T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108, 4559. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.P.; Chetwynd, J.H.; Clough, S.A.; She1tle, E.P.; Kneizys, F.X. AFGL Atmospheric Constituent Profiles (0–120 km); Air Force Geophys. Lab., Hanscom Air Force Base: Bedford, MA, USA, 1986; Available online: https://apps.dtic.mil/sti/citations/ADA175173 (accessed on 16 June 2021).
- Nicolet, M. On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homosphere. Planet. Space Sci. 1984, 32, 1467–1468. [Google Scholar] [CrossRef]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; van der A, R.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 157–175. [Google Scholar]
- Belluardo, G.; Barchi, G.; Baumgartner, D.; Rennhofer, M.; Weihs, P.; Moser, D. Uncertainty analysis of a radiative transfer model using Monte Carlo method within 280–2500 nm region. Sol. Energy 2016, 132, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Koepke, P.; Bais, A.; Balis, D.; Buchwitz, M.; de Backer, H.; de Cabo, X.; Eckert, P.; Eriksen, P.; Gillotay, D.; Heikkilä, A.; et al. Comparison of Models Used for UV Index Calculations. Photochem. Photobiol. 1998, 67, 657–662. [Google Scholar] [CrossRef]
- Lopatin, A.; Dubovik, O.; Chaikovsky, A.; Goloub, P.; Lapyonok, T.; Tanré, D.; Litvinov, P. Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm. Atmos. Meas. Tech. 2013, 6, 2065–2088. [Google Scholar] [CrossRef] [Green Version]
Variable Number | Explaining Variable | % Rise | Rank |
---|---|---|---|
1 | Total number of ALs | 18 | 5 |
2 | Mean height of AL base | 27 | 3 |
3 | Mean height of AL top | 37 | 1 |
4 | Total number of the adjacent layers | 35 | 2 |
5 | Total number of the residual layers | 14 | 6 |
6 | Total geometrical depth | 20 | 4 |
Variable | (UVICL−UVIOB)/UVIOB × 100% | (UVIHY−UVIOB)/UVIOB × 100% | (UVICL−UVIHY)/UVICL × 100% |
---|---|---|---|
Mean ± SD | 0.86 ± 2.64 | 0.05 ± 1.86 | 0.77 ± 1.95 |
MAE | 2.15 | 1.25 | 1.69 |
Median | 0.60 | −0.09 | 0.47 |
[5th–95th] | [−3.00, 5.26] | [−2.45, 2.83] | [−2.26, 3.62] |
RMSE | 2.78 | 1.86 | 2.14 |
Variable | A | B | C |
---|---|---|---|
Number of UVI data | 46 | 71 | 94 |
Mean height of AL base (km) | 1.80 | 1.59 | 1.25 |
Mean height of AL top (km) | 3.80 | 3.72 | 2.84 |
Total AL thickness (km) | 2.07 | 2.39 | 2.83 |
Number of all AL/Number of UVI data | 1.09 | 1.28 | 2.10 |
Number of adjacent AL/Number of UVI data | 0.17 | 0.32 | 0.84 |
Number of residual AL/Number of UVI data | 0.04 | 0.48 | 0.38 |
AOD at 340 nm | 0.31 | 0.33 | 0.32 |
AE for the 340–440 nm range | 1.12 | 1.08 | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.; Pietruczuk, A.; Szkop, A.; Krzyścin, J. Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation. Atmosphere 2021, 12, 812. https://doi.org/10.3390/atmos12070812
Fernandes A, Pietruczuk A, Szkop A, Krzyścin J. Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation. Atmosphere. 2021; 12(7):812. https://doi.org/10.3390/atmos12070812
Chicago/Turabian StyleFernandes, Alnilam, Aleksander Pietruczuk, Artur Szkop, and Janusz Krzyścin. 2021. "Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation" Atmosphere 12, no. 7: 812. https://doi.org/10.3390/atmos12070812
APA StyleFernandes, A., Pietruczuk, A., Szkop, A., & Krzyścin, J. (2021). Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation. Atmosphere, 12(7), 812. https://doi.org/10.3390/atmos12070812