Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review
Abstract
:1. Introduction
2. Ventilation of Livestock and Poultry Housing
3. General Emissions of Air Pollutants
4. Mitigation Strategies
4.1. Inlet Air Filtration Systems
4.2. Outlet Air Filtration Systems
4.2.1. Classification
4.2.2. Structure
4.2.3. Performance
4.2.4. Monitoring Strategy
5. Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Chang, J.; Havlík, P.; van Dijk, M.; Valin, H.; Janssens, C.; Ma, L.; Bai, Z.; Herrero, M.; Smith, P.; et al. China’s Future Food Demand and Its Implications for Trade and Environment. Nat. Sustain. 2021, 4, 1042–1051. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse Gas Mitigation Potentials in the Livestock Sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Loyon, L.; Burton, C.H.; Misselbrook, T.; Webb, J.; Philippe, F.X.; Aguilar, M.; Doreau, M.; Hassouna, M.; Veldkamp, T.; Dourmad, J.Y.; et al. Best Available Technology for European Livestock Farms: Availability, Effectiveness and Uptake. J. Environ. Manag. 2016, 166, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zheng, K.; Meng, L.; Liu, X.; Hartung, E.; Roelcke, M.; Zhang, F. Concentrations and Emissions of Particulate Matter from Intensive Pig Production at a Large Farm in North China. Aerosol. Air Qual. Res. 2017, 16, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Aarnink, A.J.A.; Verstegen, M.W.A. Nutrition, Key Factor to Reduce Environmental Load from Pig Production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Domingo, N.G.G.; Hunt, N.D.; Gittlin, M.; Colgan, K.K.; Marshall, J.D.; Robinson, A.L.; Azevedo, I.M.L.; Thakrar, S.K.; Clark, M.A.; et al. The Food We Eat, the Air We Breathe: A Review of the Fine Particulate Matter-Induced Air Quality Health Impacts of the Global Food System. Environ. Res. Lett. 2021, 16, 103004. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Liu, J.; Jin, X.; Li, C. Distribution Characteristics of Bioaerosols inside Pig Houses and the Respiratory Tract of Pigs. Ecotoxicol. Environ. Saf. 2021, 212, 112006. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. The Reduction of Gas Concentrations in Broiler Houses through Ventilation: Assessment of the Thermal and Electrical Energy Consumption. Biosyst. Eng. 2020, 199, 135–148. [Google Scholar] [CrossRef]
- Dumont, É. Impact of the Treatment of NH3 Emissions from Pig Farms on Greenhouse Gas Emissions. Quantitative Assessment from the Literature Data. New Biotechnol. 2018, 46, 31–37. [Google Scholar] [CrossRef]
- Michiels, A.; Piepers, S.; Ulens, T.; Van Ransbeeck, N.; Del Pozo Sacristán, R.; Sierens, A.; Haesebrouck, F.; Demeyer, P.; Maes, D. Impact of Particulate Matter and Ammonia on Average Daily Weight Gain, Mortality and Lung Lesions in Pigs. Prev. Vet. Med. 2015, 121, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-W.; Fu, J.; Liu, X.-F.; Chen, W.-W.; Hao, J.-L.; Li, X.-L.; Pant, O.P. Air Pollution and Meteorological Conditions Significantly Contribute to the Worsening of Allergic Conjunctivitis: A Regional 20-City, 5-Year Study in Northeast China. Light Sci. Appl. 2021, 10, 190. [Google Scholar] [CrossRef]
- Smith, B.C.; Ramirez, B.C.; Hoff, S.J.; Harmon, J.D.; Stinn, J.P. Design and Validation of a Mobile Laboratory for Testing Air Inlet Filter Loading at Animal Houses. AgricEngInt CIGR J. 2019, 21, 39–50. [Google Scholar]
- Alonso, C.; Murtaugh, M.P.; Dee, S.A.; Davies, P.R. Epidemiological Study of Air Filtration Systems for Preventing PRRSV Infection in Large Sow Herds. Prev. Vet. Med. 2013, 112, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Sun, Z.; Müller, D. Driving Factors of Direct Greenhouse Gas Emissions from China’s Pig Industry from 1976 to 2016. J. Integr. Agric. 2021, 20, 319–329. [Google Scholar] [CrossRef]
- Ulens, T.; Millet, S.; Van Ransbeeck, N.; Van Weyenberg, S.; Van Langenhove, H.; Demeyer, P. The Effect of Different Pen Cleaning Techniques and Housing Systems on Indoor Concentrations of Particulate Matter, Ammonia and Greenhouse Gases (CO2, CH4, N2O). Livest. Sci. 2014, 159, 123–132. [Google Scholar] [CrossRef]
- Moussavi, G.; Khavanin, A.; Sharifi, A. Ammonia Removal from a Waste Air Stream Using a Biotrickling Filter Packed with Polyurethane Foam through the SND Process. Bioresour. Technol. 2011, 102, 2517–2522. [Google Scholar] [CrossRef]
- Maurer, D.L.; Koziel, J.A.; Harmon, J.D.; Hoff, S.J.; Rieck-Hinz, A.M.; Andersen, D.S. Summary of Performance Data for Technologies to Control Gaseous, Odor, and Particulate Emissions from Livestock Operations: Air Management Practices Assessment Tool (AMPAT). Data Brief 2016, 7, 1413–1429. [Google Scholar] [CrossRef] [Green Version]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Pilot Plant for the Capture of Ammonia from the Atmosphere of Pig and Poultry Farms Using Gas-Permeable Membrane Technology. Membranes 2021, 11, 859. [Google Scholar] [CrossRef]
- Ullman, J.L.; Mukhtar, S.; Lacey, R.E.; Carey, J.B. A Review of Literature Concerning Odors, Ammonia, and Dust from Broiler Production Facilities: 4. Remedial Management Practices. J. Appl. Poult. Res. 2004, 13, 521–531. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Han, M.-F.; Jia, T.-P.; Hu, X.-R.; Zhu, H.-Q.; Tong, Z.; Lin, Y.-T.; Wang, C.; Liu, D.-Z.; Peng, Y.-Z.; et al. Emissions, Measurement, and Control of Odor in Livestock Farms: A Review. Sci. Total Environ. 2021, 776, 145735. [Google Scholar] [CrossRef]
- Van der Heyden, C.; Demeyer, P.; Volcke, E.I.P. Mitigating Emissions from Pig and Poultry Housing Facilities through Air Scrubbers and Biofilters: State-of-the-Art and Perspectives. Biosyst. Eng. 2015, 134, 74–93. [Google Scholar] [CrossRef]
- Van Huffel, K.; Hansen, M.J.; Feilberg, A.; Liu, D.; Van Langenhove, H. Level and Distribution of Odorous Compounds in Pig Exhaust Air from Combined Room and Pit Ventilation. Agric. Ecosyst. Environ. 2016, 218, 209–219. [Google Scholar] [CrossRef]
- Yeo, U.-H.; Lee, I.-B.; Kim, R.-W.; Lee, S.-Y.; Kim, J.-G. Computational Fluid Dynamics Evaluation of Pig House Ventilation Systems for Improving the Internal Rearing Environment. Biosyst. Eng. 2019, 186, 259–278. [Google Scholar] [CrossRef]
- Mostafa, E.; Hoelscher, R.; Diekmann, B.; Ghaly, A.E.; Buescher, W. Evaluation of Two Indoor Air Pollution Abatement Techniques in Forced-Ventilation Fattening Pig Barns. Atmos. Pollut. Res. 2017, 8, 428–438. [Google Scholar] [CrossRef]
- Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a Partial Pit Ventilation System on Indoor Air Quality and Ammonia Emission from a Fattening Pig Room. Biosyst. Eng. 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Ni, J.-Q. Factors Affecting Toxic Hydrogen Sulfide Concentrations on Swine Farms―Sulfur Source, Release Mechanism, and Ventilation. J. Clean. Prod. 2021, 322, 129126. [Google Scholar] [CrossRef]
- Choi, H.L.; Han, S.H.; Albright, L.D.; Chang, W.K. The Correlation between Thermal and Noxious Gas Environments, Pig Productivity and Behavioral Responses of Growing Pigs. Int. J. Environ. Res. Public Health 2011, 8, 3514–3527. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, K. FM and Milk Production: Herd Ventilation Systems in Hot Climates. J. Facil. Manag. 2013, 11, 284–288. [Google Scholar] [CrossRef]
- Chantziaras, I.; De Meyer, D.; Vrielinck, L.; Van Limbergen, T.; Pineiro, C.; Dewulf, J.; Kyriazakis, I.; Maes, D. Environment-, Health-, Performance- and Welfare-Related Parameters in Pig Barns with Natural and Mechanical Ventilation. Prev. Vet. Med. 2020, 183, 105150. [Google Scholar] [CrossRef]
- Saleeva, I.; Sklyar, A.; Marinchenko, T.; Postnova, M.; Ivanov, A. Efficiency of Poultry House Heating and Ventilation Upgrading. IOP Conf. Ser. Earth Environ. Sci. 2020, 433, 012041. [Google Scholar] [CrossRef]
- Costa, A.; Guarino, M. Particulate Matter Concentration and Emission Factor in Three Different Laying Hen Housing Systems. J. Agric. Eng. 2009, 40, 15. [Google Scholar] [CrossRef]
- Belote, B.L.; Soares, I.; Tujimoto-Silva, A.; Tirado, A.G.C.; Martins, C.M.; Carvalho, B.; Gonzalez-Esquerra, R.; Rangel, L.F.S.; Santin, E. Field Evaluation of Feeding Spray-Dried Plasma in the Starter Period on Final Performance and Overall Health of Broilers. Poult. Sci. 2021, 100, 101080. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Choi, C.; Li, D.; Yan, G.; Li, H.; Shi, Z. Effects of Airspeed on the Respiratory Rate, Rectal Temperature, and Immunity Parameters of Dairy Calves Housed Individually in an Axial-Fan-Ventilated Barn. Animals 2021, 11, 354. [Google Scholar] [CrossRef]
- Du, L.; Yang, C.; Dominy, R.; Yang, L.; Hu, C.; Du, H.; Li, Q.; Yu, C.; Xie, L.; Jiang, X. Computational Fluid Dynamics Aided Investigation and Optimization of a Tunnel-Ventilated Poultry House in China. Comput. Electron. Agric. 2019, 159, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, W.; Tong, Q.; Li, B. Reducing Dust Deposition and Temperature Fluctuations in the Laying Hen Houses of Northwest China Using a Surge Chamber. Biosyst. Eng. 2018, 175, 206–218. [Google Scholar] [CrossRef]
- Calvet, S.; Cambra-López, M.; Blanes-Vidal, V.; Estellés, F.; Torres, A.G. Ventilation Rates in Mechanically-Ventilated Commercial Poultry Buildings in Southern Europe: Measurement System Development and Uncertainty Analysis. Biosyst. Eng. 2010, 106, 423–432. [Google Scholar] [CrossRef]
- Alberdi, O.; Arriaga, H.; Calvet, S.; Estellés, F.; Merino, P. Ammonia and Greenhouse Gas Emissions from an Enriched Cage Laying Hen Facility. Biosyst. Eng. 2016, 144, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Samadpour, E.; Zahmatkesh, D.; Nemati, M.; Shahir, M. Determining the Contribution of Ventilation and Insulation of Broiler Breeding Houses in Production Performance Using Analytic Hierarchy Process (AHP). Braz. J. Poult. Sci. 2018, 20, 211–218. [Google Scholar] [CrossRef]
- Jongbo, A.O.; Moorcroft, I.; White, D.; Norton, T.; Okunola, A.A. Evaluation of Airflow Movement within a Broiler Shed with Roof Ventilation System during Summer. IOP Conf. Ser. Earth Environ. Sci. 2020, 445, 012028. [Google Scholar] [CrossRef]
- Zhang, G.; Bjerg, B.; Zong, C. Partial Pit Exhaust Improves Indoor Air Quality and Effectiveness of Air Cleaning in Livestock Housing: A Review. Appl. Eng. Agric. 2017, 33, 243–256. [Google Scholar] [CrossRef]
- Shi, Z.; Li, X.; Wang, T.; Xi, L.; Cheng, P.; Fang, M.; Liu, W. Application Effects of Three Ventilation Methods on Swine in Winter. Agron.J. 2021. [Google Scholar] [CrossRef]
- Shang, B.; Liu, Y.; Dong, H.; Tao, X.; Yao, H. Particulate Matter Concentrations and Emissions of a Fattening Pig Facility in Northern China. Atmos. Pollut. Res. 2020, 11, 1902–1911. [Google Scholar] [CrossRef]
- Wenke, C.; Pospiech, J.; Reutter, T.; Altmann, B.; Truyen, U.; Speck, S. Impact of Different Supply Air and Recirculating Air Filtration Systems on Stable Climate, Animal Health, and Performance of Fattening Pigs in a Commercial Pig Farm. PLoS ONE 2018, 13, e0194641. [Google Scholar] [CrossRef] [Green Version]
- Blunden, J.; Aneja, V.P.; Westerman, P.W. Measurement and Analysis of Ammonia and Hydrogen Sulfide Emissions from a Mechanically Ventilated Swine Confinement Building in North Carolina. Atmos. Environ. 2008, 42, 3315–3331. [Google Scholar] [CrossRef]
- Choi, H.L.; Song, J.I.; Lee, J.H.; Albright, L.D. Albright Comparison of Natural and Forced Ventilation System in Nursery Pig House. Appl. Eng. Agric. 2010, 26, 1023–1033. [Google Scholar] [CrossRef]
- Kelleghan, D.B.; Hayes, E.T.; Everard, M.; Curran, T.P. Predicting Atmospheric Ammonia Dispersion and Potential Ecological Effects Using Monitored Emission Rates from an Intensive Laying Hen Facility in Ireland. Atmos. Environ. 2021, 247, 118214. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Ramirez, B.C.; Xin, H.; Wang, Y.; Hoff, S.J. Ventilation Performance and Bioenergetics of Dekalb White Hens in a Modern Aviary System. Biosyst. Eng. 2020, 199, 149–161. [Google Scholar] [CrossRef]
- Rosa, E.; Arriaga, H.; Calvet, S.; Merino, P. Assessing Ventilation Rate Measurements in a Mechanically Ventilated Laying Hen Facility. Poult. Sci. 2019, 98, 1211–1221. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, R.; Jiang, S.; El-Mashad, H.M.; Xin, H. Fan and Ventilation Rate Monitoring of Cage-Free Layer Houses in California. Trans. ASABE 2018, 61, 1939–1950. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Liu, S.; Diehl, C.A.; Lim, T.-T.; Bogan, B.W.; Chen, L.; Chai, L.; Wang, K.; Heber, A.J. Emission Factors and Characteristics of Ammonia, Hydrogen Sulfide, Carbon Dioxide, and Particulate Matter at Two High-Rise Layer Hen Houses. Atmos. Environ. 2017, 154, 260–273. [Google Scholar] [CrossRef]
- Zheng, W.; Kang, R.; Wang, H.; Li, B.; Xu, C.; Wang, S. Airborne Bacterial Reduction by Spraying Slightly Acidic Electrolyzed Water in a Laying-Hen House. J. Air Waste Manag. Assoc. 2013, 63, 1205–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, S.E.M.; Aarnink, A.J.A.; de Boer, I.J.M.; Koerkamp, P.W.G.G. Emissions of Ammonia, Nitrous Oxide, and Methane from Aviaries with Organic Laying Hen Husbandry. Biosyst. Eng. 2011, 110, 123–133. [Google Scholar] [CrossRef]
- Chai, L.; Ni, J.-Q.; Diehl, C.A.; Kilic, I.; Heber, A.J.; Chen, Y.; Cortus, E.L.; Bogan, B.W.; Lim, T.T.; Ramirez-Dorronsoro, J.-C.; et al. Ventilation Rates in Large Commercial Layer Hen Houses with Two-Year Continuous Monitoring. Br. Poult. Sci. 2012, 53, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lim, T.-T.; Jin, Y.; Heber, A.J.; Ni, J.-Q.; Cortus, E.L.; Kilic, I. Ventilation Rate Measurements at a Mechanically-Ventilated Pig Finishing Quad Barn. Biosyst. Eng. 2014, 121, 96–104. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Q.; Zhang, H.; Meng, L.; Pang, M. Ammonia Production, Hazards and Mitigation Measures in a Pig House. Chin. J. Anim. Nutr. 2015, 27, 2328–2334. [Google Scholar]
- Groot Koerkamp, P.W.G.; Metz, J.H.M.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.P.; Hartung, J.; Seedorf, J.; et al. Concentrations and Emissions of Ammonia in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 79–95. [Google Scholar] [CrossRef]
- Cormier, Y.; Tremblay, G.; Meriaux, A.; Brochu, G.; Lavoie, J. Airborne Microbial Contents in Two Types of Swine Confinement Buildings in Quebec. Am. Ind. Hyg. Assoc. J. 1990, 51, 304–309. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J. Indoor Distribution Characteristics of Airborne Bacteria in Pig Buildings as Influenced by Season and Housing Type. Asian-Australas. J. Anim. Sci. 2019, 32, 742–747. [Google Scholar] [CrossRef]
- Cambra-López, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne Particulate Matter from Livestock Production Systems: A Review of an Air Pollution Problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Z.; Misselbrook, T.; Wang, X.; Ma, L. Ammonia Emissions from Different Pig Production Scales and Their Temporal Variations in the North China Plain. J. Air Waste Manag. Assoc. 2021, 71, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Rong, X.; Zhu, J.; Zeng, Y.; Yue, J.; Lim, T.; Long, D. Short-Term Aerial Pollutant Concentrations in a Southwestern China Pig-Fattening House. Atmosphere 2021, 12, 103. [Google Scholar] [CrossRef]
- Zhang, Y.; Tanaka, A.; Dosman, J.A.; Senthilselvan, A.; Barber, E.M.; Kirychuk, S.P.; Holfeld, L.E.; Hurst, T.S. Acute Respiratory Responses of Human Subjects to Air Quality in a Swine Building. J. Agric. Eng. Res. 1998, 70, 367–373. [Google Scholar] [CrossRef]
- Van Ransbeeck, N.; Van Langenhove, H.; Demeyer, P. Indoor Concentrations and Emissions Factors of Particulate Matter, Ammonia and Greenhouse Gases for Pig Fattening Facilities. Biosyst. Eng. 2013, 116, 518–528. [Google Scholar] [CrossRef]
- Hayes, E.T.; Curran, T.P.; Dodd, V.A. Odour and Ammonia Emissions from Intensive Pig Units in Ireland. Bioresour. Technol. 2006, 97, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y. Exposure Level and Emission Characteristics of Ammonia and Hydrogen Sulphide in Poultry Buildings of South Korea. Indoor Built Environ. 2017, 26, 1168–1176. [Google Scholar] [CrossRef]
- Hong, E.-C.; Kang, H.-K.; Jeon, J.-J.; You, A.-S.; Kim, H.-S.; Son, J.-S.; Kim, H.-J.; Yun, Y.-S.; Kang, B.-S.; Kim, J.-H. Studies on the Concentrations of Particulate Matter and Ammonia Gas from Three Laying Hen Rearing Systems during the Summer Season. J. Environ. Sci. Health Part B 2021, 56, 753–760. [Google Scholar] [CrossRef]
- Almuhanna, E.A. Characteristics of Air Contaminants in Naturally and Mechanically Ventilated Poultry Houses in Al-Ahsa, Saudi Arabia. Trans. ASABE 2011, 54, 1433–1443. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Chai, L.; Chen, L.; Bogan, B.W.; Wang, K.; Cortus, E.L.; Heber, A.J.; Lim, T.-T.; Diehl, C.A. Characteristics of Ammonia, Hydrogen Sulfide, Carbon Dioxide, and Particulate Matter Concentrations in High-Rise and Manure-Belt Layer Hen Houses. Atmos. Environ. 2012, 57, 165–174. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, T.; Jiang, Z.; Min, Y.; Mo, J.; Gao, Y. Effect of Ventilation on Distributions, Concentrations, and Emissions of Air Pollutants in a Manure-Belt Layer House. J. Appl. Poult. Res. 2014, 23, 763–772. [Google Scholar] [CrossRef]
- Lee, M.; Koziel, J.A.; Murphy, W.; Jenks, W.S.; Chen, B.; Li, P.; Banik, C. Mitigation of Odor and Gaseous Emissions from Swine Barn with UV-A and UV-C Photocatalysis. Atmosphere 2021, 12, 585. [Google Scholar] [CrossRef]
- Aunsa-Ard, W.; Pobkrut, T.; Kerdcharoen, T.; Prombaingoen, N.; Kijpreedaborisuthi, O. Electronic Nose for Monitoring of Livestock Farm Odors (Poultry Farms). In Proceedings of the 2021 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Thailand, 21 January 2021; pp. 176–180. [Google Scholar] [CrossRef]
- Gallmann, E.; Hartung, E.; Brose, G.; Jungbluth, T. Determination of the Dynamics of the Odour Release from a Pig House, Using an Electronic Odour Sensor. Water Sci. Technol. 2004, 50, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Nikiema, J.; Brzezinski, R.; Buelna, G.; Heitz, M. A Review of the Environmental Pollution Originating from the Piggery Industry and of the Available Mitigation Technologies: Towards the Simultaneous Biofiltration of Swine Slurry and Methane. J. Environ. Eng. Sci. 2014, 9, 80–92. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, D.; Zhao, B.; Ma, S.; Liu, X.; Li, M.; Liu, X. Seasonal Variations and Spatial Distribution of Particulate Matter Emissions from a Ventilated Laying Hen House in Northeast China. Int. J. Agric. Biol. Eng. 2020, 13, 57–63. [Google Scholar] [CrossRef]
- Kim, K.Y.; Ko, H.J.; Kim, H.T.; Kim, C.N.; Kim, Y.S. Assessment of Airborne Bacteria and Fungi in Pig Buildings in Korea. Biosyst. Eng. 2008, 99, 565–572. [Google Scholar] [CrossRef]
- Yang, W.; Guo, M.; Liu, G.; Yu, G.; Wang, P.; Wang, H.; Chai, T. Detection and Analysis of Fine Particulate Matter and Microbial Aerosol in Chicken Houses in Shandong Province, China. Poult. Sci. 2018, 97, 995–1005. [Google Scholar] [CrossRef]
- Nie, E.; Zheng, G.; Ma, C. Characterization of Odorous Pollution and Health Risk Assessment of Volatile Organic Compound Emissions in Swine Facilities. Atmos. Environ. 2020, 223, 117233. [Google Scholar] [CrossRef]
- Hadlocon, L.S.; Manuzon, R.B.; Zhao, L.Y. Optimization of Ammonia Absorption Using Acid Spray Wet Scrubbers. Trans. ASABE 2014, 57, 647–659. [Google Scholar] [CrossRef]
- Hadlocon, L.S.; Zhao, L.Y.; Manuzon, R.B.; Elbatawi, I.E. An Acid Spray Scrubber for Recovery of Ammonia Emissions from a Deep-Pit Swine Facility. Trans. ASABE 2014, 57, 949–960. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Suh, H.-J.; Kim, J.-M.; Jung, Y.-H.; Moon, K.-W. Evaluation of Environmental Circumstance Within Swine and Chicken Houses in South Korea for the Production of Safe and Hygienic Animal Food Products. Korean J. Food Sci. Anim. Resour. 2008, 28, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Salaheldin, A.H.; Veits, J.; Abd El-Hamid, H.S.; Harder, T.C.; Devrishov, D.; Mettenleiter, T.C.; Hafez, H.M.; Abdelwhab, E.M. Isolation and Genetic Characterization of a Novel 2.2.1.2a H5N1 Virus from a Vaccinated Meat-Turkeys Flock in Egypt. Virol. J. 2017, 14, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, J.L. Update on the Highly-Pathogenic Avian Influenza Outbreak of 2014–2015; Congressional Research Service: Washington, DC, USA, 2015; pp. 1–15.
- Zhao, Y.; Chai, L.; Richardson, B.; Xin, H. Field Evaluation of an Electrostatic Air Filtration System for Reducing Incoming Particulate Matter of a Hen House. Trans. ASABE 2018, 61, 295–304. [Google Scholar] [CrossRef]
- Sagardía, J. Factores que afectan a la prevalencia de mg en el sector de avicultura de puesta. Sel. Avícolas 2008, 50, 15–17. [Google Scholar]
- Peebles, E.D.; Park, S.W.; Branton, S.L.; Gerard, P.D.; Womack, S.K. Influence of Supplemental Dietary Poultry Fat, Phytase, and 25-Hydroxycholecalciferol on the Egg Characteristics of Commercial Layers Inoculated before or at the Onset of Lay with F-Strain Mycoplasma Gallisepticum. Poult. Sci. 2010, 89, 2078–2082. [Google Scholar] [CrossRef]
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Xin, H. Airborne Transmission May Have Played a Role in the Spread of 2015 Highly Pathogenic Avian Influenza Outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zheng, W.; Wei, Y.; Li, B.; Wang, Y.; Zheng, H. Prevention of Particulate Matter and Airborne Culturable Bacteria Transmission between Double-Tunnel Ventilation Layer Hen Houses. Poult. Sci. 2019, 98, 2392–2398. [Google Scholar] [CrossRef]
- Spronk, G.; Otake, S.; Dee, S. Prevention of PRRSV Infection in Large Breeding Herds Using Air Filtration. Vet. Rec. 2010, 166, 758–759. [Google Scholar] [CrossRef] [Green Version]
- Pitkin, A.; Deen, J.; Dee, S. Use of a Production Region Model to Assess the Airborne Spread of Porcine Reproductive and Respiratory Syndrome Virus. Vet. Microbiol. 2009, 136, 1–7. [Google Scholar] [CrossRef]
- Alonso, C.; Davies, P.R.; Polson, D.D.; Dee, S.A.; Lazarus, W.F. Financial Implications of Installing Air Filtration Systems to Prevent PRRSV Infection in Large Sow Herds. Prev. Vet. Med. 2013, 111, 268–277. [Google Scholar] [CrossRef]
- Dee, S.; Otake, S.; Deen, J. Use of a Production Region Model to Assess the Efficacy of Various Air Filtration Systems for Preventing Airborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus and Mycoplasma Hyopneumoniae: Results from a 2-Year Study. Virus Res. 2010, 154, 177–184. [Google Scholar] [CrossRef]
- Kanaoka, C.; Amornkitbamrung, M. Effect of Filter Permeability on the Release of Captured Dust from a Rigid Ceramic Filter Surface. Powder Technol. 2001, 118, 113–120. [Google Scholar] [CrossRef]
- Melse, R.W.; Ogink, N.W.M. Ogink Air Scrubbing Techniques for Ammonia and Odor Reduction at Livestock Operations: Review of on-Farm Research in the Netherlands. Trans. ASABE 2005, 48, 2303–2313. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, W.; Zhu, Z.; Yang, J.; Li, X.; Tian, Z.; Dong, H.; Zou, G. Mitigating Ammonia Emissions from Typical Broiler and Layer Manure Management—A System Analysis. Waste Manag. 2019, 93, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Winkel, A.; Mosquera, J.; Aarnink, A.J.A.; Groot Koerkamp, P.W.G.; Ogink, N.W.M. Evaluation of a Dry Filter and an Electrostatic Precipitator for Exhaust Air Cleaning at Commercial Non-Cage Laying Hen Houses. Biosyst. Eng. 2015, 129, 212–225. [Google Scholar] [CrossRef]
- Strohmaier, C.; Krommweh, M.S.; Büscher, W. Suitability of Different Filling Materials for a Biofilter at a Broiler Fattening Facility in Terms of Ammonia and Odour Reduction. Atmosphere 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Zhao, Y.; Ploegaert, J.P.M.; Huynh, T.T.T. Huynh Scrubber Capabilities to Remove Airborne Microorganisms and Other Aerial Pollutants from the Exhaust Air of Animal Houses. Trans. ASABE 2011, 54, 1921–1930. [Google Scholar] [CrossRef]
- Ottosen, L.D.M.; Juhler, S.; Guldberg, L.B.; Feilberg, A.; Revsbech, N.P.; Nielsen, L.P. Regulation of Ammonia Oxidation in Biotrickling Airfilters with High Ammonium Load. Chem. Eng. J. 2011, 167, 198–205. [Google Scholar] [CrossRef]
- Hadlocon, L.J.S.; Manuzon, R.B.; Zhao, L. Development and Evaluation of a Full-Scale Spray Scrubber for Ammonia Recovery and Production of Nitrogen Fertilizer at Poultry Facilities. Environ. Technol. 2015, 36, 405–416. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L.; Neibling, H.; Brian He, B. Field Evaluation of Wood Bark-Based down-Flow Biofilters for Mitigation of Odor, Ammonia, and Hydrogen Sulfide Emissions from Confined Swine Nursery Barns. J. Environ. Manag. 2015, 147, 164–174. [Google Scholar] [CrossRef]
- Luo, J.; Lindsey, S. The Use of Pine Bark and Natural Zeolite as Biofilter Media to Remove Animal Rendering Process Odours. Bioresour. Technol. 2006, 97, 1461–1469. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, R.K.; Singh, D. Chapter 20-Microbe-Based Bioreactor System for Bioremediation of Organic Contaminants: Present and Future Perspective. In Microbe Mediated Remediation of Environmental Contaminants; Kumar, A., Singh, V.K., Singh, P., Mishra, V.K., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 241–253. ISBN 978-0-12-821199-1. [Google Scholar]
- Van der Heyden, C.; Brusselman, E.; Volcke, E.I.P.; Demeyer, P. Continuous Measurements of Ammonia, Nitrous Oxide and Methane from Air Scrubbers at Pig Housing Facilities. J. Environ. Manag. 2016, 181, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Fiencke, C.; Guo, J.; Rieth, R.; Dong, R.; Pfeiffer, E.-M. Performance Evaluation and Optimization of Field-Scale Bioscrubbers for Intensive Pig House Exhaust Air Treatment in Northern Germany. Sci. Total Environ. 2017, 579, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hansen, M.J.; Guldberg, L.B.; Feilberg, A. Kinetic Evaluation of Removal of Odorous Contaminants in a Three-Stage Biological Air Filter. Environ. Sci. Technol. 2012, 46, 8261–8269. [Google Scholar] [CrossRef]
- Codolo, M.C.; Bizzo, W.A. Experimental Study of the SO2 Removal Efficiency and Volumetric Mass Transfer Coefficients in a Pilot-Scale Multi-Nozzle Spray Tower. Int. J. Heat Mass Transf. 2013, 66, 80–89. [Google Scholar] [CrossRef]
- Opaliński, S.; Korczyński, M.; Szołtysik, M.; Dobrzański, Z.; Kołacz, R. Application of Aluminosilicates for Mitigation of Ammonia and Volatile Organic Compound Emissions from Poultry Manure. Open Chem. 2015, 13, 967–973. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.M.; Ogink, N.W.M. Biotrickling Filter for the Treatment of Exhaust Air from a Pig Rearing Building: Ammonia Removal Performance and Its Fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Estelles, F.; Melse, R.W.; Ogink, N.W.M.; Calvet, S. Calvet Evaluation of the NH3 Removal Efficiency of an Acid Packed Bed Scrubber Using Two Methods: A Case Study in a Pig Facility. Trans. ASABE 2011, 54, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Nabatilan, M.M.; Harhad, A.; Wolenski, P.R.; Moe, W.M. Activated Carbon Load Equalization of Transient Concentrations of Gas-Phase Toluene: Effect of Gas Flow Rate during Pollutant Non-Loading Intervals. Chem. Eng. J. 2010, 157, 339–347. [Google Scholar] [CrossRef]
- Cheng, Z.; Feng, K.; Xu, D.; Kennes, C.; Chen, J.; Chen, D.; Zhang, S.; Ye, J.; Dionysiou, D.D. An Innovative Nutritional Slow-Release Packing Material with Functional Microorganisms for Biofiltration: Characterization and Performance Evaluation. J. Hazard. Mater. 2019, 366, 16–26. [Google Scholar] [CrossRef]
- Yu, G.; Xu, X.; He, P. Isolates Identification and Characteristics of Microorganisms in Biotrickling Filter and Biofilter System Treating H2S and NH3. J. Environ. Sci. 2007, 19, 859–863. [Google Scholar] [CrossRef]
- Chen, J.; Su, Q.; Pan, H.; Wei, J.; Zhang, X.; Shi, Y. Influence of Balance Gas Mixture on Decomposition of Dimethyl Sulfide in a Wire-Cylinder Pulse Corona Reactor. Chemosphere 2009, 75, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, R.E.; Thaler, R. Vertical Biofilter Construction and Performance; American Society of Agricultural and Biological Engineers: Broomfield, CO, USA, 2007. [Google Scholar]
- Liu, T.; Dong, H.; Zhu, Z.; Shang, B.; Yin, F.; Zhang, W.; Zhou, T. Effects of Biofilter Media Depth and Moisture Content on Removal of Gases from a Swine Barn. J. Air Waste Manag. Assoc. 2017, 67, 1288–1297. [Google Scholar] [CrossRef]
- Park, S.-J.; Nam, S.-I.; Choi, E.-S. Removal of Odor Emitted from Composting Facilities Using a Porous Ceramic Biofilter. Water Sci. Technol. 2001, 44, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Koe, L.C.C.; Yan, R.; Chen, X. Biological Treatment of H2S Using Pellet Activated Carbon as a Carrier of Microorganisms in a Biofilter. Water Res. 2006, 40, 2629–2636. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.L.; Garrepalli, D.R.; Nawal, C.S. Carbonyl Sulfide Removal with Compost and Wood Chip Biofilters, and in the Presence of Hydrogen Sulfide. J. Air Waste Manag. Assoc. 2009, 59, 1458–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rene, E.R.; Murthy, D.V.S.; Swaminathan, T. Performance Evaluation of a Compost Biofilter Treating Toluene Vapours. Process Biochem. 2005, 40, 2771–2779. [Google Scholar] [CrossRef]
- Morgan-Sagastume, J.M.; Noyola, A.; Revah, S.; Ergas, S.J. Changes in Physical Properties of a Compost Biofilter Treating Hydrogen Sulfide. J. Air Waste Manag. Assoc. 2003, 53, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.J.; Sugano, Y.; Hirai, M.; Shoda, M. Removal Characteristics of High Load Ammonia Gas by a Biofilter Seeded with a Marine Bacterium, Vibrio Alginolyticus. Biotechnol. Lett. 2000, 22, 1295–1299. [Google Scholar] [CrossRef]
- Lee, S.; Li, C.; Heber, A.J.; Ni, J.; Huang, H. Biofiltration of a Mixture of Ethylene, Ammonia, n-Butanol, and Acetone Gases. Bioresour. Technol. 2013, 127, 366–377. [Google Scholar] [CrossRef]
- Chitwood, D.E.; Devinny, J.S. Treatment of Mixed Hydrogen Sulfide and Organic Vapors in a Rock Medium Biofilter. Water Environ. Res. 2001, 73, 426–435. [Google Scholar] [CrossRef]
- Dumont, E.; Cabral, F.D.S.; Le Cloirec, P.; Andrès, Y. Biofiltration Using Peat and a Nutritional Synthetic Packing Material: Influence of the Packing Configuration on H2S Removal. Environ. Technol. 2013, 34, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Allievi, M.J.; Silveira, D.D.; Cantão, M.E.; Filho, P.B. Bacterial Community Diversity in a Full Scale Biofilter Treating Wastewater Odor. Water Sci. Technol. 2018, 77, 2014–2022. [Google Scholar] [CrossRef]
- Melse, R.W.; Hol, J.M.G. Biofiltration of Exhaust Air from Animal Houses: Evaluation of Removal Efficiencies and Practical Experiences with Biobeds at Three Field Sites. Biosyst. Eng. 2017, 159, 59–69. [Google Scholar] [CrossRef]
- Hansen, M.J.; Liu, D.; Guldberg, L.B.; Feilberg, A. Application of Proton-Transfer-Reaction Mass Spectrometry to the Assessment of Odorant Removal in a Biological Air Cleaner for Pig Production. J. Agric. Food Chem. 2012, 60, 2599–2606. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Aarnink, A.J.A.; De Jong, M.C.M.; Ogink, N.W.M.; Koerkamp, P.G. Groot Koerkamp Effectiveness of Multi-Stage Scrubbers in Reducing Emissions of Air Pollutants from Pig Houses. Trans. ASABE 2011, 54, 285–293. [Google Scholar] [CrossRef]
- Clark, O.; Edeogu, I.; Feddes, J.; Coleman, R.; Abolghasemi, A.; Feddes, I. Effects of Operating Temperature and Supplemental Nutrients in a Pilot-Scale Agricultural Biofilter. Can. Biosyst. Eng. Genie Biosyst. Can. 2004, 46, 7–16. [Google Scholar]
- Melse, R.W.; Hofschreuder, P.; Ogink, N.W.M. Ogink Removal of Particulate Matter (PM10) by Air Scrubbers at Livestock Facilities: Results of an On-Farm Monitoring Program. Trans. ASABE 2012, 55, 689–698. [Google Scholar] [CrossRef]
- Demmers, T.G.M.; Saponja, A.; Thomas, R.; Phillips, G.J.; Mcdonald, A.G.; Stagg, S.; Bowry, A.; Nemitz, E. Dust and Ammonia Emissions from Uk Poultry Houses. In Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), Quebec City, QC, Canada, 13–17 June 2010; p. 10. [Google Scholar]
- Mostafa, E.; Buescher, W. Indoor Air Quality Improvement from Particle Matters for Laying Hen Poultry Houses. Biosyst. Eng. 2011, 109, 22–36. [Google Scholar] [CrossRef]
- Mendes, L.; Ogink, N.; Edouard, N.; van Dooren, H.; Tinôco, I.; Mosquera, J. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings. Sensors 2015, 15, 11239–11257. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.K.; Hayashi, K. A Novel Odor Filtering and Sensing System Combined with Regression Analysis for Chemical Vapor Quantification. Sens. Actuators B Chem. 2014, 200, 269–287. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Kim, D.; Son, D.; Doh, S.J.; Kim, M.; Lee, H.; Yoon, K.R. Rational Process Design for Facile Fabrication of Dual Functional Hybrid Membrane of MOF and Electrospun Nanofiber towards High Removal Efficiency of PM2.5 and Toxic Gases. Macromol. Rapid Commun. 2022, 43, 2100648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yao, L.; Yang, Z.; Kong, E.S.-W.; Zhu, X.; Zhang, Y. Graphene Oxide-Modified Polyacrylonitrile Nanofibrous Membranes for Efficient Air Filtration. ACS Appl. Nano Mater. 2019, 2, 3916–3924. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Liu, L.; Yu, J.; Ding, B. A Fluffy Dual-Network Structured Nanofiber/Net Filter Enables High-Efficiency Air Filtration. Adv. Funct. Mater. 2019, 29, 1904108. [Google Scholar] [CrossRef]
- Souzandeh, H.; Wang, Y.; Zhong, W.-H. “Green” Nano-Filters: Fine Nanofibers of Natural Protein for High Efficiency Filtration of Particulate Pollutants and Toxic Gases. RSC Adv. 2016, 6, 105948–105956. [Google Scholar] [CrossRef]
- Souzandeh, H.; Johnson, K.S.; Wang, Y.; Bhamidipaty, K.; Zhong, W.-H. Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration. ACS Appl. Mater. Interfaces 2016, 8, 20023–20031. [Google Scholar] [CrossRef]
- Tian, H.; Fu, X.; Zheng, M.; Wang, Y.; Li, Y.; Xiang, A.; Zhong, W.-H. Natural Polypeptides Treat Pollution Complex: Moisture-Resistant Multi-Functional Protein Nanofabrics for Sustainable Air Filtration. Nano Res. 2018, 11, 4265–4277. [Google Scholar] [CrossRef]
- Souzandeh, H.; Wang, Y.; Netravali, A.N.; Zhong, W.-H. Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polym. Rev. 2019, 59, 651–686. [Google Scholar] [CrossRef]
Type of Housing | Number of Animals | Type of Mechanical Ventilation | Number of Fans | Average Ventilation Rates (m3 h−1 pig/hen−1) | Refs. |
---|---|---|---|---|---|
Pig barns | ≈450 | IS | 8 | 6–60 | [30] |
100 | NPV + LV | 1 | 63.74 | [46] | |
30 | NPV + PV + CV | Ceiling exhaust fan:1, pit exhaust fan:1 | The ceiling exhaust fan: 110; the pit exhaust fan: 11 | [26] | |
Fattening pig house | ≈540 | NPV + TV | 11 | 31–96 | [43] |
800–1000 | NPV + LV | 3 intake and 5 exhaust fans | 18–72 | [45] | |
1000 | NPV + LV + PV | 8 | 150, 7.14 (pit ventilation) | [55] | |
30 | Room + PV | 1 room ventilation fan; 2 pit ventilation fans | The room exhaust fan: 100; the pit exhaust fan: 10 | [23] | |
Laying hen houses | 3000–250,000 | NPV | 15–88 | 0.59–9.2 | [38,48,49,53,54], |
140,000 | NPV + TV | 36 | 0.8–9.1 | [48] | |
18,000–33,300 | LV | 6–24 | 1.91–8.72 | [50,52] | |
11,000–38,000 | CV | 4 | 15–3.35 | [32,47] | |
High-rise layer hen houses | 218,000 | CV | 110 | H-A: 0.56–11.24; H-B: 0.52–13.2 | [51] |
Type of Housing | Longitude Range | Temperature | Humidity | Refs. |
---|---|---|---|---|
Pig barn | 56°9′–64°50′ | 19.9–26 | 49.9–65.9 | [26,30,46] |
Fattening pig house | 35°38′–56°9′ | 15.4–29.2 | 14–90 | [23,43,45,55] |
Laying hen houses | 33°41′–52°13′ | 14.9–31.2 | 36–70.7 | [32,38,47,48,49,53,54] |
High-rise layer hen houses | 41°13′ | 22.3–27.5 | 52.8 | [51] |
Air Pollutants | In Pig Houses | In Poultry Houses | Refs. |
---|---|---|---|
NH3 | 0.78–38.90 ppm | 0.2–182.0 ppm | [8,16,61,62,63,64,65,66,67,68,69,70] |
H2S | 0.38–2.00 ppm | 0–945 ppb | [63,66,68,69,71,72] |
odor | 115–4500 OUE/m3 | Not included | [65,71,73] |
CO2 | 737–2393 ppm | 507.2–1329.0 mg/m3 | [16,64,70,71] |
CH4 | 7–175 ppm | Not included | [16,64,74] |
N2O | 0.20–0.5 ppm | Not included | [16,64,71] |
TSP | 220–8500 µg/m3 | 0.168–9.61 mg/m3 | [8,25,43,62,68,70,75] |
PM10 | 110–4960 µg/m3 | 0–4290 µg/m3 | [8,16,25,43,64,67,68,69,71,75] |
PM2.5 | 70–240 µg/m3 | 40–2530 µg/m3 | [8,16,43,64,67,68,70,71,75] |
Total bacteria | 1.74 × 10–2.34 × 108 cfu/m3 | 1670–44,840 cfu/m3 | [59,76,77] |
Total fungi | 8.13–7.59 × 104 cfu/m3 | 236–4735 cfu/m3 | [59,76,77] |
Total VOC | 35–1000 µg/m3 | Not included | [78] |
Type of Animal | Air Pollutant | Spring | Summer | Fall | Winter | Refs. |
---|---|---|---|---|---|---|
Pig | NH3 (ppm) | 6.9–25.6 | 0.78–38.9 | Not included | 10.4–27.1 | [16,25,61,62,64] |
Pig | H2S (ppm) | Not included | 0.6–2.0 | Not included | Not included | [71] |
Pig | Odor (OUE/m3) | Not included | 359–448 | Not included | 4393 | [71,73] |
Pig | CO2 (ppm) | Not included | 737–2393 | Not included | 1766–2920 | [16,64,71] |
Pig | CH4 (ppm) | Not included | 25.1–193 | Not included | 38.4–233 | [16,64] |
Pig | N2O (ppm) | Not included | 0.2–1.409 | Not included | 0.301–1.304 | [16,64,71] |
Pig | TSP (µg/m3) | 180–1510 | 340–550 | Not included | 400–8500 | [25,43,62] |
Pig | PM10 (µg/m3) | 80–3200 | 340–1536 | 1290–1810 | 160–4960 | [16,25,43,64] |
Pig | PM2.5 (µg/m3) | 70–20 | 26.7–146 | 90–110 | 15.2–200 | [16,43,64] |
Pig | Total bacteria (cfu/m3) | 3428–13,254 | 9824–24,088 | 1707–8254 | 2322–12,470 | [59] |
Pig | Total VOC (µg/m3) | 35–45 | 488–532 | 587–1000 | Not included | [59] |
Poultry | NH3 (ppm) | Not included | 1.08–2.37 | 2.01–3.48 | 3.21–25.23 | [67,68,81] |
Poultry | CO2 (mg/m3) | Not included | Not included | 738.8–1268.6 | 993.3–1329 | [81] |
Poultry | TSP (mg/m3) | 168–4000 | 168–3190 | 3360–4660 | 2110–9610 | [68,75,81] |
Poultry | PM10 (µg/m3) | 118–114 | 118–2234 | \ | 1190–4290 | [67,68,75] |
Poultry | PM2.5 (µg/m3) | 67–1480 | 67–1370 | 1230–1920 | 40–2530 | [68,75,81] |
Animal Type | Type of Filtration | Filter Grade | VF | Season | PM1 (%) | PM2.5 (%) | PM10 (%) | MRSA (%) | Coliform Bacteria (%) | E. coli (%) | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|
Pig | SAFS | Windscreen + MERV 6–8 + MERV 16 | 19,482 ± 1680 | Not included | 21.29 | 19.7 | Not included | 11.18 | 88.07 | 27.09 | [44] |
Pig | CAFS | MERV 14–16 | 22,660 ± 1892 | Not included | 2.86 | −2.63 | Not included | 22.05 | 86.61 | 6.34 | [44] |
Hen | EAFS | MERV 8 + EPI | Not included | Spring to summer | 66 | 66 | 68 | Not included | Not included | Not included | [84] |
Not included | Late fall to spring | 29 | 30 | 36 | Not included | Not included | Not included |
Total Bacteria (cfu/m3) | MRSA (cfu/m3) | CO2 (ppm) | NH3 (ppm) | |
---|---|---|---|---|
Supply air filter modules | 925,833 | 25,096 | 2180 | 17 |
Supply air filter attic | 952,583 | 22,026 | 2524 | 22 |
Without air filtration | 693,705 | 28,256 | 2364 | 16 |
Filler Type | Size (mm) | Bulk Density (kg/m3) | Porosity (%) | Moisture Content (%) | Refs. |
---|---|---|---|---|---|
Wood bark | 10–300 | 200–300 | 45–70 | 10–15 | [101,102] |
Wood chips | 3–20 | 200–400 | 45–63 | 55–70 | [113,114,115,116] |
Ceramic | 3–10 | 400–1000 | 70–80 | 50–60 | [117] |
Activated carbon | 3–5 | 500–1000 | 30–40 | 40–50 | [118] |
Compost | 1–6 | 200–500 | 40–50 | 55–65 | [119,120,121] |
Perlite | 3–8 | 70–200 | 44–62 | 80–90 | [122,123] |
Lava rock | 3–10 | 500–600 | 60–70 | 30–40 | [124] |
Peat | 3–20 | 100–400 | 60–70 | 60–80 | [125,126] |
Animals | Type of Filter (Media) | Ventilation Flow (m3/h) | Pollutants Removed | Outlet Concentration | The Concentration after Filtering | Removal Efficiency (%) | Refs. |
---|---|---|---|---|---|---|---|
Pig | Chemical (H2SO4, pH: 1.3–4) | 1600–2200 | NH3 (mg/m3) | 5.7–10.9 | 0.109–0.513 | 91 | [94] |
Bioscrubber (polyethylene) | 1668–2184 | NH3 (mg/m3) | 9–13 | 1.8–2.76 | 77–86 | [105] | |
Biofilter (wood chips) | Not included | PM10 (mg/m3) | 0.148 | <0.01628 | >89 | [127] | |
NH3 (ppm) | 10 | 5.8 | 42 | ||||
Odor (OUE/m3) | 3000 | 1440 | 52 | ||||
Multi-stage filter | 8775–35,000 | PM2.5 (µg/m3) | 32–85 | 8–24 | 62–90 | [128,129] | |
PM10 (µg/m3) | 12–711 | 63–267 | 60–93 | ||||
NH3 (ppm) | 28.3–44.7 | 0.1–44.7 | 70–100 | ||||
H2S (NL/L) | 353 ± 104 | 86 ± 37 | 75 | ||||
Total Bacteria (cfu/m3) | 3.7–88.2 | 1.5–11.5 | 46–85 | ||||
swine | Biofilter (hardwood chips) | 11,400 | Odor (OUE/m3) | 352–800 | 53–363 | 70 | [115] |
H2S (ppb) | 110–120 | 0–22 | 90 | ||||
Biofilter (sphagnum peat moss, crumbled polystyrene particles) | 360 | NH3 (ppm) | 2–17.5 | 0–10 | 67 | [130] | |
Odor (OUE/m3) | 150–650 | 82–357 | 45 | ||||
H2S (ppm) | 0–20 | 0 | 100 | ||||
Pig and Poultry | Chemical | Not included | PM2.5 | Not included | Not included | 33 ± 23 | [131] |
PM10 | 41 ± 20 | ||||||
NH3 | 76 ± 20 | ||||||
Odor | 19 ± 28 | ||||||
N2O | −1 ± 12 | ||||||
poultry | Chemical (pH: 1.6) | 30,582 | NH3 (ppm) | 92.14 ± 49.37 | 22.10 ± 11.84 | 76.01 ± 10.62 | [100] |
Chemical | Not included | PM2.5 | Not included | Not included | 28 ± 22 | [131] | |
PM10 | 33 ± 17 | ||||||
NH3 | 77 ± 31 | ||||||
Odor | 48 ± 22 | ||||||
N2O | 1 ± 12 | ||||||
Layer | Chemical (H2SO4, pH: 4, setpoint) | 18,900 | NH3 (mg/m3) | 20.1 | 0.201 | 90 | [94] |
Dry filter (Polyethylene/ polypropylene foils; V-shape) | 29,000 | PM10 (µg/m3) | 2860 ± 536 | 1718 ± 583 | 40.7 ± 11.1 | [96] | |
38,300 | PM10 (µg/m3) | 2915 ± 1156 | 1767 ± 854 | 39.4 ± 10.7 | |||
Dry filter (Polyethylene/ polypropylene foils; V-shape) | Not included | NH3 | Not included | Not included | 0 | [132] | |
PM2.5 | 41 ± 4 | ||||||
PM10 | 64 ± 6 | ||||||
Bacteria | 1% | ||||||
Fungi | 20 | ||||||
broilers | Chemical (H2SO4, pH: 3–5) | 48,000 | NH3 (mg/m3) | 13.1 | 0.655 | 95 | [94] |
Broiler Fattening | Chemical + biofilter (H2SO4, pH < 2.7; root wood) | 6 fans | NH3 (ppm) | 3.99 | 1.16 | 71 | [97] |
Odor (OUE/m3) | 256 | 158.72 | 38 | ||||
Chemical + biofilter (H2SO4, pH < 2.7; honeycombed paper) | 6 fans | NH3 (ppm) | 3.99 | 1.28 | 68 | [97] | |
Odor (OUE/m3) | 256 | 125.44 | 51 | ||||
Hen | Dry filter-type (sets of half section channels; StuffNix) | Day: 5000 Night: 3000 | PM10 | Not included | Not included | 78 | [133] |
TSP | 72 |
Pollutants Removed | Monitoring Instruments | Work Form | Sampling Location | Sampling Frequency | Refs. |
---|---|---|---|---|---|
NH3 | Photoacoustic multigas monitor | Continuous | IC: in front of the filter/central of the barn at 0.8 m height, EC: behind the filter | Record every 30 min | [8,16,25] |
Real-time analyzer | Continuous | IC: front of filter, EC: behind the filter | Not included | [71] | |
Multi sampler (CBISS, a1-envirosciencesltd) | Continuous | IC: center of the barn at 1.6 m height, EC: exhaust ventilator | Measurement period (6 days) per month IC: first two days, EC: followed 2 days | [64] | |
H2S | Real-time analyzer (OMS-300, Smart Control & Sensing) | Continuous | IC: front of filter, EC: behind the filter | Not included | [71] |
TG-501 DirectSense TOX multi-gas monitor sensor | Continuous | IC: center of the barn | Not included | [68] | |
Odor | Dynamic triangular forced-choice olfactometry | Samples were analyzed within 6 h | IC: front of filter, EC: behind the filter | Not included | [71] |
TO7 olfactometer | Samples were analyzed at short intervals | IC: narrow cross-section of the central suction system | Not included | [73] | |
Electronic nose | Continuous | Not included | Not included | [21,135] | |
CH4 | Multi sampler (CBISS, a1-envirosciencesltd) | Continuous | IC: center of the barn at 1.6 m height, EC: exhaust ventilator | Measurement period (6 days) per month IC: first two days, EC: following 2 days | [64] |
PM2.5, PM10, TSP | DustTrak II aerosol monitor | Continuous | IC: center of the barn at 0.5 m height, EC: 5 m from the house | Mean value was stored per minute | [8] |
Grimm 1.109 spectrometers | Continuous | IC: central pen of the barn at 0.8 m height | Every 15 min | [16,64] |
Materials | Pollutants Removed | Removal Efficiency (%) | Refs. |
---|---|---|---|
Poly(vinyl alcohol), Fe-BTC | NH3 | 60 | [136] |
H2S | 35 | ||
Polyacrylonitrile and graphene oxide | PM2.5 | 99.6 | [137] |
Polyacrylonitrile | PM0.3 | 99.99 | [138] |
Natural protein | PM0.3 | 99.3 | [139] |
PM2.5 | 99.6 | ||
CO | 76 | ||
Soy protein | PM0.3 | 98.7 | [140] |
PM2.5 | 99.8 | ||
CO | 78.9–85.7 | ||
Zein nanofabrics Poly(ethylene oxide) | PM0.1–PM10 | 99.5 | [141] |
CO | 31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zhao, B.; Jia, Y.; He, F.; Chen, W. Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere 2022, 13, 452. https://doi.org/10.3390/atmos13030452
Guo L, Zhao B, Jia Y, He F, Chen W. Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere. 2022; 13(3):452. https://doi.org/10.3390/atmos13030452
Chicago/Turabian StyleGuo, Li, Bo Zhao, Yingying Jia, Fuyang He, and Weiwei Chen. 2022. "Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review" Atmosphere 13, no. 3: 452. https://doi.org/10.3390/atmos13030452
APA StyleGuo, L., Zhao, B., Jia, Y., He, F., & Chen, W. (2022). Mitigation Strategies of Air Pollutants for Mechanical Ventilated Livestock and Poultry Housing—A Review. Atmosphere, 13(3), 452. https://doi.org/10.3390/atmos13030452