Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Regions
2.2. GFED4 Data Set
2.3. Land Use and Land Cover
2.4. Digital Elevation Model
2.5. Meteorological Data
3. Results
3.1. Temporal and Spatial Patterns of BB Fire Counts in BTH
3.2. Temporal and Spatial Patterns of BB Carbon Emissions in BTH
3.3. BB Fire Counts and Carbon Emissions in 2020 in BTH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppmann, R.; Von Czapiewski, K.; Reid, J.S. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. Discuss 2005, 5, 10455–10516. [Google Scholar]
- Reid, J.S.; Eck, T.F.; Christopher, S.A.; Koppmann, R.; Dubovik, O.; Eleuterio, D.P.; Holben, B.N.; Reid, E.A.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, T.T.; van der Werf, G.R. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning. Atmos. Chem. Phys. 2011, 11, 3611–3629. Available online: https://acp.copernicus.org/articles/11/3611/2011/ (accessed on 26 December 2021). [CrossRef] [Green Version]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.W.; Fu, J.; Liu, X.F.; Chen, W.W.; Hao, J.L.; Li, X.L.; Pant, O.P. Air pollution and meteorological conditions significantly contribute to the worsening of allergic conjunctivitis: A regional 20-city, 5-year study in Northeast China. Light Sci. Appl. 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ge, P.; Chen, M.; Tang, J.; Cao, M.; Cui, Y.; Hu, K.; Nie, D. Tracers from Biomass Burning Emissions and Identification of Biomass Burning. Atmosphere 2021, 12, 1401. [Google Scholar] [CrossRef]
- Xu, R.; Tang, G.; Wang, Y.; Tie, X. Analysis of a long-term measurement of air pollutants (2007–2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games. Chemosphere 2016, 159, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Tie, X.; Li, G.; Zhao, S.; Cao, J.; Feng, T.; Long, X. Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Sci. Total Environ. 2018, 645, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, X.; Zhang, S.; Chen, W.; Tong, D.Q.; Xiu, A. Effects of Agricultural Biomass Burning on Regional Haze in China: A Review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Ke, H.; Gong, S.; He, J.; Zhou, C.; Zhang, L.; Zhou, Y. Spatial and temporal distribution of open bio-mass burning in China from 2013 to 2017. Atmos. Environ. 2019, 210, 156–165. [Google Scholar] [CrossRef]
- Wang, L.; Jin, X.; Wang, Q.; Mao, H.; Liu, Q.; Weng, G.; Wang, Y. Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017. Atmos. Ocean. Sci. Lett. 2020, 13, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Ma, Y.; Bao, F.; Mumtaz, F. A Satellite Data Based Detailed Study of the Aerosol Emitted from Open Biomass Burning in Northeast China. Atmosphere 2021, 12, 1700. [Google Scholar] [CrossRef]
- Lü, A.; Tian, H.; Liu, M.; Liu, J.; Melillo, J.M. Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000. J. Geophys. Res. Atmos. 2006, 111, D05313. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Gong, S.; Zang, S.; Zhao, Y.; Wang, W.; Lv, Z.; Matsunaga, T.; Yamaguchi, Y.; Bai, Y. High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. J. Clean. Prod. 2021, 310, 127496. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Chen, Y.; Van Der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
Items | Fire Count (Units: Terra and Aqua Summed Fire Count) | Emission (Units: Teragrams (Tg) Carbon) | Burned Area (Units: km2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | BJ | TJ | HB | BTH | BJ | TJ | HB | BTH | BJ | TJ | HB | BTH | |
2003 | 135 | 170 | 1049 | 1354 | 0.0066 | 0.0135 | 0.0697 | 0.0898 | 40.65 | 93.63 | 400.19 | 534.47 | |
2004 | 205 | 75 | 1362 | 1642 | 0.0140 | 0.0092 | 0.0999 | 0.1231 | 72.01 | 69.46 | 518.99 | 660.46 | |
2005 | 363 | 237 | 2436 | 3036 | 0.0406 | 0.0219 | 0.2852 | 0.3477 | 149.95 | 135.02 | 1274.53 | 1559.50 | |
2006 | 283 | 185 | 2428 | 2896 | 0.0318 | 0.0212 | 0.2673 | 0.3203 | 150.87 | 133.29 | 1316.96 | 1601.12 | |
2007 | 337 | 254 | 3265 | 3856 | 0.0315 | 0.0269 | 0.2859 | 0.3443 | 193.50 | 176.06 | 1740.82 | 2110.38 | |
2008 | 472 | 338 | 2166 | 2976 | 0.0450 | 0.0268 | 0.1202 | 0.1920 | 320.40 | 192.99 | 794.96 | 1308.35 | |
2009 | 348 | 391 | 2795 | 3534 | 0.0439 | 0.0521 | 0.2074 | 0.3034 | 244.75 | 317.68 | 1226.98 | 1789.41 | |
2010 | 509 | 509 | 3038 | 4056 | 0.0662 | 0.0684 | 0.2049 | 0.3395 | 403.39 | 419.36 | 1247.44 | 2070.19 | |
2011 | 637 | 479 | 3928 | 5044 | 0.0886 | 0.0752 | 0.3772 | 0.5410 | 524.40 | 451.33 | 2074.43 | 3050.16 | |
2012 | 639 | 552 | 4397 | 5588 | 0.0683 | 0.0639 | 0.3126 | 0.4448 | 356.02 | 410.27 | 1796.47 | 2562.76 | |
2013 | 585 | 747 | 5368 | 6700 | 0.0615 | 0.0694 | 0.3876 | 0.5185 | 373.22 | 423.21 | 2799.72 | 3596.15 | |
2014 | 423 | 627 | 4959 | 6009 | 0.0633 | 0.0723 | 0.4036 | 0.5392 | 381.28 | 424.30 | 2571.51 | 3377.09 | |
2015 | 364 | 555 | 4653 | 5572 | 0.0563 | 0.0845 | 0.3894 | 0.5302 | 333.35 | 511.76 | 2636.12 | 3481.23 | |
2016 | 441 | 597 | 5479 | 6517 | 0.0642 | 0.0967 | 0.5139 | 0.6748 | 409.98 | 622.68 | 3550.80 | 4583.46 | |
2017 | 341 | 562 | 5616 | 6519 | 0.0403 | 0.0702 | 0.5736 | 0.6841 | |||||
2018 | 250 | 542 | 4606 | 5398 | 0.0285 | 0.0670 | 0.3797 | 0.4752 | |||||
2019 | 304 | 604 | 4945 | 5853 | |||||||||
2020 | 216 | 523 | 4349 | 5088 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xu, R.; Xu, Z.; Wang, L.; Wang, P. Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4. Atmosphere 2022, 13, 459. https://doi.org/10.3390/atmos13030459
Zhao Y, Xu R, Xu Z, Wang L, Wang P. Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4. Atmosphere. 2022; 13(3):459. https://doi.org/10.3390/atmos13030459
Chicago/Turabian StyleZhao, Yifei, Ruiguang Xu, Zhiguang Xu, Litao Wang, and Pu Wang. 2022. "Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4" Atmosphere 13, no. 3: 459. https://doi.org/10.3390/atmos13030459
APA StyleZhao, Y., Xu, R., Xu, Z., Wang, L., & Wang, P. (2022). Temporal and Spatial Patterns of Biomass Burning Fire Counts and Carbon Emissions in the Beijing–Tianjin–Hebei (BTH) Region during 2003–2020 Based on GFED4. Atmosphere, 13(3), 459. https://doi.org/10.3390/atmos13030459