Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades
Abstract
:1. Introduction
Sources and O Dynamics
2. Summary and Objectives
- RQ1:
- Is there research that correlates health deterioration with O? How has it been evolving throughout the years?
- RQ2:
- If so, does this research show evidence of O causing health deterioration?
- RQ3:
- Is the evidence proven globally, or is it localized?
- RQ4:
- Are there any Portuguese studies? How do they relate to studies elsewhere?
- RQ5:
- According to the available evidence, which age groups are the most affected?
- RQ6:
- How does seasonality impact O and consequent health deterioration?
- RQ7:
- Is the monitoring of the exposure to O adequate? Where do we stand on studies regarding short-term and long-term morbidity and mortality for asthma and COPD?
- RQ8:
- What are the research gaps and possible improvements?
3. Materials and Methods
3.1. Selection and Screening Process
3.2. Additional Considerations
3.3. Limitations
4. Results and Discussion
5. Conclusions
- RQ1:
- Is there research that correlates health deterioration with O? How has it been evolving throughout the years?
- RQ2:
- If so, does this research show evidence of O causing health deterioration?
- RQ3:
- Is the evidence proven globally, or is it localized?
- RQ4:
- Are there any Portuguese studies? How do they relate to existent studies elsewhere?
- RQ5:
- According to the available evidence, which age groups are the most affected?
- RQ6:
- How does seasonality impact O and consequent health deterioration?
- RQ7:
- Is the monitoring of the exposure to O adequate? Where do we stand on studies regarding short-term and long-term morbidity and mortality for asthma and COPD?
- RQ8:
- What are the research gaps and possible improvements?
Author Contributions
Funding
Conflicts of Interest
Abbreviations
# | Number of data points |
µ | Micron |
APA | Portuguese Environment Agency |
AQMS | Air-quality monitoring station |
ARDS | Acute respiratory distress syndrome |
Avg | Average |
C | Celsius |
CI | Confidence interval |
COPD | Chronic obstructive pulmonary disease |
CT | Computerized tomography |
ED | Emergency department |
EPA | European Environmental Agency |
ER | Emergency room |
EV | Emergency visits |
g | Gram |
HA | Hospital admissions |
HO | Hydroperoxyl |
HR | Hazard ratio |
hv | light |
ICD | International Classification of Diseases |
ICEV | Internal combustion engine vehicle |
ICU | Intensive care unit |
IoT | Internet of things |
IPCC | Intergovernmental Panel on Climate Change |
IQR | Interquartile range |
m | Meter |
max | Maximum |
NA | Not available |
NAAQS | National Ambient Air-Quality Standards |
NO | Nitrogen monoxide |
NO | Nitrogen dioxide |
NO | Nitrogen oxides |
NS | Not significant |
° | Degree |
O | Ground-level ozone |
OR | Odds ratio |
PM10 | Particulate matter |
ppb | Parts per billion |
ppbV | Parts per billion volume |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analysis |
QualAr | Portuguese air-quality database |
RQ | Research questions |
RR | Relative risk |
VOC | Volatile organic compounds |
WE | Weekend effect |
WHO | World Health Organization |
wk | Week |
yr | Year |
References
- Lavender, J.P. The Clean Air Act, 1956; initial steps for implementation. R. Soc. Health J. 1957, 77, 774–780. [Google Scholar] [CrossRef] [PubMed]
- EPA. Air Quality Criteria for Photochemical Oxidants. 1970. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/9100E2Z7.PDF?Dockey=9100E2Z7.PDF (accessed on 24 December 2021).
- Castner, J.; Guo, L.; Yin, Y. Ambient air pollution and emergency department visits for asthma in Erie County, New York 2007–2012. Int. Arch. Occup. Environ. Health 2017, 91, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.P.; Zhao, Z.M.; Shashaty, M.G.; Koyama, T.; Christie, J.D.; Lanken, P.N.; Wang, C.; Balmes, J.R.; Matthay, M.A.; Calfee, C.S.; et al. Low to Moderate Air Pollutant Exposure and Acute Respiratory Distress Syndrome after Severe Trauma. Am. J. Respir. Crit. Care Med. 2018, 199, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Liu, Y.; Mulholland, J.A.; Russell, A.G.; Darrow, L.A.; Tolbert, P.E.; Strickland, M.J. Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: A case-crossover study. Environ. Health 2016, 15, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution–REVIHAAP Project: Technical Report; Technical Report; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar] [CrossRef]
- Lippmann, M. Health Effects Of Ozone A Critical Review. J. Air Pollut. Control Assoc. 1989, 39, 672–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennsylvania Department of Environmental Protection. Ozone Standard. 2008. Available online: https://www.dep.pa.gov/Business/Air/BAQ/PollutantTopics/Pages/Ozone-Standard.aspx (accessed on 9 June 2012).
- Kosmider, B.; Loader, J.E.; Murphy, R.C.; Mason, R.J. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells. Free Radic. Biol. Med. 2010, 48, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US EPA. Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants (Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 2020.
- Salam, M.T.; Islam, T.; Gilliland, F.D. Recent evidence for adverse effects of residential proximity to traffic sources on asthma. In Current Opinion in Pulmonary Medicine; Wolters Kluwer Health, Inc.: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Tzivian, L. Outdoor air pollution and asthma in children. J. Asthma 2011, 48, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Pope, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Ding, H.; Jiang, L.N.; Chen, S.W.; Zheng, J.P.; Qiu, M.; Zhou, Y.X.; Chen, Q.; Guan, W.J. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138146. [Google Scholar] [CrossRef]
- Tan, W.C.; Ng, T.P. COPD in Asia. Chest 2008, 133, 517–527. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Top 10 Causes of Death; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Rush, B.; Mcdermid, R.C.; Celi, L.A.; Walley, K.R.; Russell, J.A.; Boyd, J.H. Association between chronic exposure to air pollution and mortality in the acute respiratory distress syndrome. Environ. Pollut. 2017, 224, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, S.L.; Arcado, T.D.; Lawson, D.R. Weekday vs. Weekend Ambient Ozone Concentrations: Discussion and Hypotheses with Focus on Northern California. J. Air Waste Manag. Assoc. 1995, 45, 967–972. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.R.; Deus, R.; Barroso, C.; Silva, C. Urban ground-level o3 trends: Lessons from portuguese cities, 2010–2018. Atmosphere 2021, 12, 183. [Google Scholar] [CrossRef]
- Li, J.; Lu, K.; Lv, W.; Li, J.; Zhong, L.; Ou, Y.; Chen, D.; Huang, X.; Zhang, Y. Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. J. Environ. Sci. 2014, 26, 23–36. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- World Health Organization. WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of Air Pollution at Local, National and International Level; WHO Regional Office for Europe: Copenhagen, Denmark, 2014. [Google Scholar]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NO(x). Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Akimoto, H. Atmospheric Reaction Chemistry; Springer: New York, NY, USA, 2016. [Google Scholar]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Anal. 2011, 32, 81–95. [Google Scholar] [CrossRef]
- Guerreiro, C.; Leeuw, F.; Ortiz, A.G. Air Quality in Europe—2018 Report; Technical Report; European Environment Agency: København, Denmark, 2018.
- West, J.J.; Szopa, S.; Hauglustaine, D.A. Human mortality effects of future concentrations of tropospheric ozone. C. R. Geosci. 2007, 339, 775–783. [Google Scholar] [CrossRef]
- Seguel, R.J.; Morales, S.R.G.; Leiva, G.M.A. Ozone weekend effect in Santiago, Chile. Environ. Pollut. 2012, 162, 72–79. [Google Scholar] [CrossRef]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F.; De Marco, A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef] [PubMed]
- da Saúde, M.; da Saúde, D. PROGRAMA NACIONAL PARA AS DOENÇAS RESPIRATÓRIAS. 2017. Available online: http://3r.web.ua.pt/wp-content/uploads/2019/01/Programa_nacional_doencas_respiratorias.pdf (accessed on 24 December 2021).
- Li, X.; Chen, Q.; Zheng, X.; Li, Y.; Han, M.; Liu, T.; Xiao, J.; Guo, L.; Zeng, W.; Zhang, J.; et al. Effects of ambient ozone concentrations with different averaging times on asthma exacerbations: A meta-analysis. Sci. Total Environ. 2019, 691, 549–561. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Stead, T.S.; Ganti, L. What’s the Risk: Differentiating Risk Ratios, Odds Ratios, and Hazard Ratios? Cureus 2020, 12, e10047. [Google Scholar] [CrossRef]
- Alhanti, B.A.; Chang, H.H.; Winquist, A.; Mulholland, J.A.; Darrow, L.A.; Sarnat, S.E. Ambient air pollution and emergency department visits for asthma: A multi-city assessment of effect modification by age. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Geifman, N.; Cohen, R.; Rubin, E. Redefining meaningful age groups in the context of disease. Age 2013, 35, 2357–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, K.Y.; Luginaah, I.; Gorey, K.M.; Webster, G. Air pollution and daily hospitalization rates for cardiovascular and respiratory diseases in London, Ontario. Int. J. Environ. Stud. 2005, 62, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.L.; Wong, W.H.S.; Lau, Y.L. Association between air pollution and asthma admission among children in Hong Kong. Clin. Exp. Allergy 2006, 36, 1138–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, F.W.S.; Tam, W.; Wong, T.W.; Lai, C.K.W.; Wong, G.W.K.; Leung, T.F.; Ng, S.S.S.; Hui, D.S.C.; Hui, D.S.C. Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong Clinical and Experimental Allergy. Clin. Exp. Allergy 2007, 37, 1312–1319. [Google Scholar] [CrossRef]
- Paulu, C.; Smith, A.E. Tracking Associations Between Ambient Ozone and Asthma-Related Emergency Department Visits Using Case-Crossover Analysis. J. Public Health Manag. Pract. 2008, 14, 581–591. [Google Scholar] [CrossRef]
- Halonen, J.I.; Lanki, T.; Tiittanen, P.; Niemi, J.V.; Loh, M.; Pekkanen, J. Ozone and cause-specific cardiorespiratory morbidity and mortality. J. Epidemiol. Community Health 2010, 64, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Mar, T.F.; Koenig, J.Q. Relationship between visits to emergency departments for asthma and ozone exposure in greater Seattle, Washington. Ann. Allergy Asthma Immunol. 2009, 103, 474–479. [Google Scholar] [CrossRef]
- Silverman, R.A.; Ito, K. Age-related association of fine particles and ozone with severe acute asthma in New York City. J. Allergy Clin. Immunol. 2010, 125, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Stieb, D.M.; Szyszkowicz, M.; Rowe, B.H.; Leech, J.A. Environmental Health Air pollution and emergency department visits for cardiac and respiratory conditions: A multi-city time-series analysis. Environ. Health 2009, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Scotto, M.G.; Freitas, M.D.C. Air pollution and emergency admissions for cardiorespiratory diseases in Lisbon (Portugal). Química Nova 2010, 33, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.T.; Cho, Y.S.; Son, J.Y. Relationship between ambient ozone concentrations and daily hospital admissions for childhood asthma/atopic dermatitis in two cities of Korea during 2004–2005. Int. J. Environ. Health Res. 2010, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.Y.; Rull, R.P.; Wilhelm, M.; Lombardi, C.; Balmes, J.; Ritz, B. Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J. Epidemiol. Community Health 2010, 64, 142–147. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, S.P.; Casimiro, E.; Calheiros, J. Short-term association between exposure to ozone and mortality in Oporto, Portugal. Environ. Res. 2011, 111, 406–410. [Google Scholar] [CrossRef]
- Zanobetti, A.; Schwartz, J. Ozone and Survival in Four Cohorts with Potentially Predisposing Diseases. Am. J. Respir. Crit. Care Med. 2011, 184, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Santus, P.; Russo, A.; Madonini, E.; Allegra, L.; Blasi, F.; Centanni, S.; Miadonna, A.; Schiraldi, G.; Amaducci, S. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respir. Res. 2012, 13, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, J.D.; Rappold, A.G.; Allen Davis, J.; Richardson, D.B.; Waller, A.E.; Luben, T.J. Influence of urbanicity and county characteristics on the association between ozone and asthma emergency department visits in North Carolina. Environ. Health Perspect. 2014, 122, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, S.M.; Silva, A.V.; Sarmento, S. Effects of Exposure to Particles and Ozone on Hospital Admissions for Cardiorespiratory Diseases in SetúBal, Portugal. J. Toxicol. Environ. Health 2014, 77, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Wendt, J.K.; Symanski, E.; Stock, T.H.; Chan, W.; Du, X.L. Association of short-term increases in ambient air pollution and timing of initial asthma diagnosis among medicaid-enrolled children in a metropolitan area. Environ. Res. 2014, 131, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, N.B.; Ritchey, M.P.; Vaidyanathan, A.; Brandt MPH, A.J.; Yip, F. Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011. J. Asthma 2007, 53, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Gleason, J.A.; Fagliano, J.A. Early Online: 1-8 ! J. Asthma 2015, 1532–4303. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Kweon, J. Hourly differences in air pollution on the risk of asthma exacerbation. Environ. Pollut. 2015, 203, 15–21. [Google Scholar] [CrossRef]
- Sheffield, P.E.; Zhou, J.; Loving, J.; Shmool, C.; Clougherty, J.E. Ambient ozone exposure and children’s acute asthma in New York City: A case-crossover analysis. Environ. Health 2011, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, S.; Shima, M.; Yoda, Y.; Oka, K.; Kurosaka, F.; Shimizu, S.; Takahashi, H.; Nakatani, Y.; Nishikawa, J.; Fujiwara, K.; et al. Exposure to air pollution and meteorological factors associated with children’s primary care visits at night due to asthma attack: Case-crossover design for 3-year pooled patients. BMJ Open 2015, 5, e005736. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Goudarzi, G.; Daryanoosh, S.M.; Borgini, A.; Tittarelli, A.; Marco, A.D. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. 2016, 24, 2781–2789. [Google Scholar] [CrossRef]
- Lam, H.C.Y.; Li, A.M.; Chan, E.Y.Y.; Goggins, W.B. The short-term association between asthma hospitalisations, ambient temperature, other meteorological factors and air pollutants in Hong Kong: A time-series study. Thorax 2016, 71, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Goodin, K.; Pope, R.; Hubbard, M.; Levine, M. Association Between Asthma Hospital Visits and Ozone Concentration in Maricopa County, Arizona (2007–2012). J. Environ. Health 2016, 78, 8–13. [Google Scholar] [PubMed]
- Noh, J.; Sohn, J.; Cho, J.; Cho, S.K.; Choi, Y.J.; Kim, C.; Shin, D.C. Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History. J. Prev. Med. Public Health 2016, 49, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, L.B.; Zhao, Z.; Koyama, T.; May, A.K.; Matthay, M.A.; Lurmann, F.W.; Balmes, J.R.; Calfee, C.S. Long-Term Ozone Exposure Increases the Risk of Developing the Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2016, 193, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhu, D.; Peng, D.; Zhao, Y. Air pollution and asthma attacks in children: A case-crossover analysis in the city of Chongqing, China. Environ. Pollut. 2017, 220, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.E.; Loftus, C.T.; Liu, X.; Zu, K. Impact of respiratory infections, outdoor pollen, and socioeconomic status on associations between air pollutants and pediatric asthma hospital admissions. PloS ONE 2017, 12, e0180522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi, N.; Nhung, T.; Schindler, C.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Acute effects of ambient air pollution on lower respiratory infections in Hanoi children: An eight-year time series study. Environ. Int. 2017, 110, 139–148. [Google Scholar] [CrossRef]
- Yin, P.; Chen, R.; Wang, L.; Meng, X.; Liu, C.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities. Environ. Health Perspect. 2017, 125, 117006. [Google Scholar] [CrossRef] [Green Version]
- Zu, K.; Liu, X.; Shi, L.; Tao, G.; Loftus, C.T.; Lange, S.; Goodman, J.E. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas. Environ. Int. 2017, 104, 139–145. [Google Scholar] [CrossRef]
- Gharibi, H.; Entwistle, M.R.; Ha, S.; Gonzalez, M.; Brown, P.; Schweizer, D.; Cisneros, R. Ozone pollution and asthma emergency department visits in the Central Valley, California, USA, during June to September of 2015: A time-stratified case-crossover analysis. J. Asthma 2019, 56, 1037–1048. [Google Scholar] [CrossRef]
- Qiu, H.; Tan, K.; Long, F.; Wang, L.; Yu, H.; Deng, R.; Long, H.; Zhang, Y.; Pan, J. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China. Int. J. Environ. Res. Public Health 2018, 15, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosnider, H.M.; Chang, H.H.; Darrow, L.A.; Liu, Y.; Vaidyanathan, A.; Strickland, M.J. Age-specific associations of ozone and PM 2.5 with respiratory emergency department visits in the US. Am. J. Respir. Crit. Care Med. 2019, 199, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.; Gasior, M.; Jastrzebski, D.; Desperak, A.; Ziora, D. Influence of Gaseous Pollutants on COPD Exacerbations in Patients with Cardiovascular Comorbidities. In Clinical Pulmonary Research; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kazemiparkouhi, F.; Eum, K.D.; Wang, B.; Manjourides, J.; Suh, H.H. Long-term ozone exposures and cause-specific mortality in a US Medicare cohort. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.Y.; Chan, C.K.; Wu, C.Y.; Phan, D.V.; Chan, C.L. The Short-Term Effects of Ambient Air Pollutants on Childhood Asthma Hospitalization in Taiwan: A National Study. Int. J. Environ. Res. Public Health 2019, 16, 203. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.W.; Yon, D.K.; James, C.C.; Lee, S.; Koh, H.Y.; Sheen, Y.H.; Oh, J.W.; Han, M.Y.; Sugihara, G. Short-term effects of multiple outdoor environmental factors on risk of asthma exacerbations: Age-stratified time-series analysis. J. Allergy Clin. Immunol. 2019, 144, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Cai, Y.; Barratt, B.; Lyu, B.; Chan, Q.; Hansell, A.L.; Xie, W.; Zhang, D.; Kelly, F.J.; Tong, Z. Associations between daily air quality and hospitalisations for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013–2017: An ecological analysis. Lancet Planet. Health 2019, 3, e270–e279. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.C.; Hayes, R.B.; Ahn, J.; Shao, Y.; Silverman, D.T.; Jones, R.R.; Garcia, C.; Bell, M.L.; Thurston, G.D. Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. Am. J. Respir. Crit. Care Med. 2019, 200, 1022–1031. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Zhang, H.; Shi, C.; Li, G.; Peng, Z.; Ma, J.; Zhou, Y.; Zhang, L. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am. J. Respir. Crit. Care Med. 2019, 200, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Dominici, F.; Zanobetti, A.; Schwartz, J.; Wang, Y.; Di, Q.; Balmes, J.; Christiani, D.C. Impact of Long-Term Exposures to Ambient PM 2.5 and Ozone on ARDS Risk for Older Adults in the United States. Chest 2019, 156, 71–79. [Google Scholar] [CrossRef]
- Danesh Yazdi, M.; Wang, Y.; Di, Q.; Zanobetti, A.; Schwartz, J. Long-term exposure to PM 2.5 and ozone and hospital admissions of Medicare participants in the Southeast USA. Environ. Int. 2019, 130, 104879. [Google Scholar] [CrossRef]
- Baek, J.; Kash, B.A.; Xu, X.; Benden, M.; Roberts, J.; Carrillo, G. Effect of Ambient Air Pollution on Hospital Readmissions among the Pediatric Asthma Patient Population in South Texas: A Case-Crossover Study. Int. J. Environ. Res. Public Health 2020, 17, 4846. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Liu, S.; Chen, Z.; Zu, B.; Zhang, H. Association between air pollutants and outpatient and emergency hospital visits for childhood asthma in Shenyang city of China. Int. J. Biometeorol. 2020, 64, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; Gordo, C.; da Costa, E.M.; Lopes, A. Air Pollution and Emergency Hospital Admissions—Evidences from Lisbon Metropolitan Area, Portugal. Appl. Sci. 2020, 10, 7997. [Google Scholar] [CrossRef]
- Niewiadomska, E.; Kowalska, M.; Niewiadomski, A.; Skrzypek, M.; Kowalski, M.A. Assessment of Risk Hospitalization due to Acute Respiratory Incidents Related to Ozone Exposure in Silesian Voivodeship (Poland). Int. J. Environ. Res. Public Health 2020, 17, 3591. [Google Scholar] [CrossRef] [PubMed]
- Paulin, L.M.; Gassett, A.J.; Alexis, N.E.; Kirwa, K.; Kanner, R.E.; Peters, S.; Krishnan, J.A.; Paine, R.; Dransfield, M.; Woodruff, P.G.; et al. Association of Long-term Ambient Ozone Exposure With Respiratory Morbidity in Smokers. JAMA Intern. Med. 2020, 180, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.W.; Bae, D.J.; Park, C.S.; Lee, J.U.; Kim, R.H.; Kim, S.R.; Chang, H.S.; Park, J.S. Effects of air pollution on moderate and severe asthma exacerbations. J. Asthma Off. J. Assoc. Care Asthma 2020, 57, 875–885. [Google Scholar] [CrossRef]
- Chen, J.; Shi, C.; Li, Y.; Ni, H.; Zeng, J.; Lu, R.; Zhang, L. Effects of short-term exposure to ambient airborne pollutants on COPD-related mortality among the elderly residents of Chengdu city in Southwest China. Environ. Health Prev. Med. 2021, 26, 7. [Google Scholar] [CrossRef]
- Huang, W.; Schinasi, L.H.; Kenyon, C.C.; Moore, K.; Melly, S.; Hubbard, R.A.; Zhao, Y.; Diez Roux, A.V.; Forrest, C.B.; Maltenfort, M.; et al. Effects of ambient air pollution on childhood asthma exacerbation in the Philadelphia metropolitan Region, 2011–2014. Environ. Res. 2021, 197, 110955. [Google Scholar] [CrossRef]
- Li, M.; Dong, H.; Wang, B.; Zhao, W.; Zare Sakhvidi, M.J.; Li, L.; Lin, G.; Yang, J. Association between ambient ozone pollution and mortality from a spectrum of causes in Guangzhou, China. Sci. Total Environ. 2021, 754, 142110. [Google Scholar] [CrossRef]
- Shin, S.; Bai, L.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Lavigne, E.; Weichenthal, S.; Copes, R.; Martin, R.V.; et al. Air pollution as a risk factor for incident chronic obstructive pulmonary disease and Asthma: A 15-year population-based cohort study. Am. J. Respir. Crit. Care Med. 2021, 203, 1138–1148. [Google Scholar] [CrossRef]
- Gao, H.; Wang, K.; Au, W.W.; Zhao, W.; Xia, Z.L. A Systematic Review and Meta-Analysis of Short-Term Ambient Ozone Exposure and COPD Hospitalizations. Int. J. Environ. Res. Public Health 2020, 17, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, P.; Parra, R.; Baldasano, J.M. Influence of initial and boundary conditions for ozone modeling in very complex terrains: A case study in the northeastern Iberian Peninsula. Environ. Model. Softw. 2007, 22, 1294–1306. [Google Scholar] [CrossRef]
- Thompson, B.T.; Chambers, R.C.; Liu, K.D. Acute Respiratory Distress Syndrome. JAMA 2017, 377, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.B.; Dominici, F.; Wang, Y.; McCormack, M.C.; Bell, M.L.; Peng, R.D. Heat-related emergency hospitalizations for respiratory diseases in the medicare population. Am. J. Respir. Crit. Care Med. 2013, 187, 1098–1103. [Google Scholar] [CrossRef] [Green Version]
- Leon, L.R.; Helwig, B.G. Heat stroke: Role of the systemic inflammatory response. J. Appl. Physiol. 2010, 109, 1980–1988. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Guideline on Data Handling Conventions for the 8-h Ozone Naaqs; National Service Center for Environmental Publications (NSCEP): Maryland, MD, USA, 1998.
- Mcmullen, T.B. Interpreting the eight-hour national ambient air quality standard for carbon monoxide. J. Air Pollut. Control Assoc. 2012, 25, 1009–1014. [Google Scholar] [CrossRef]
- Snowden, J.M.; Reid, C.E.; Tager, I.B. Framing air pollution epidemiology in terms of population interventions, with applications to multi-pollutant modeling. Epidemiology 2015, 26, 271. [Google Scholar] [CrossRef]
Air Pollutant (8-h Mean) | World Health Organization | Environmental Protection Agency | European Union | Portugal |
---|---|---|---|---|
O (ppb) | 50 | 70 | 60 | 60 |
Study | Period | Country | Locations (#) | Monitoring Type | AQMS (#) | Mean (Median) of O (ppb) | SD | IQR | O Averaging Time | Risk Related Increment of O (ppb) | Lag | Correlation Results | Checks Seasonality? (Strongest Association) | Focus on O | Covered Ages (Most Significant Association) | Cohort Type | Dataset Size | Disease | RR, OR or HR | Multi-Pollutant Model | Reference [#] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fung KY, 2006 | 1995–2000 | Canada | 1 | AQMS | NA | 50.6 | 19.9 | 22.0 | 24 h max | 22.0 | lag 0–2 | NS | NA (All) | No | All (65>) | HA | 5574 | ASTHMA | RR | No | [38] |
Lee SL, 2006 | 1997–2002 | China | 1 | AQMS | 11 | 14.6 | 8.2 | 11.7 | max 8 h avg | 11.7 | lag 2 | 1.059 (1.041–1.079) | Yes (All) | No | <18 (<18) | HA | 26,663 | ASTHMA | RR | Yes | [39] |
Ko FWS, 2007 | 2000–2005 | China | 1 | AQMS | 14 | 22.1 | 12.1 | NA | max 8 h avg | 5.0 | lag 0–5 | 1.034 (1.029–1.039) | Yes (All) | No | All (14–65) | HA | 69,716 | ASTHMA | RR | Yes | [40] |
Paulu C, 2008 | 2000–2003 | USA | 1 | AQMS | 2 | 36–42 | NA | 14–19 | max 8 h avg | 10.0 | lag 0–3 | 1.07 (1.04–1.11) | No (warm season) | Yes | All (15–34) | EV | 8020 | ASTHMA | RR | Yes | [41] |
Halonen JI, 2009 | 1998–2004 | Finland | 1 | AQMS | 1 | NA (36.4) | NA | NA | max 8 h avg | 12.8 | lag 3 | 1.106 (1.017–1.201) | No (warm season) | Yes | All (65>) | HA | 5069 | COPD | RR | Yes | [42] |
lag 1 | 1.268 (1.134–1.416) | No (warm season) | <15 (<15) | 1972 | ASTHMA | ||||||||||||||||
Mar TF, 2009 | 1998–2002 | USA | 1 | AQMS | 5 | 39.2 | NA | 8.2 | max 1 h & 8 h avg | 10.0 | lag 3 | 1.11 (1.02–1.21) | No (warm season) | Yes | All (<18) | EV | 3217 | ASTHMA | RR | No | [43] |
Silverman RA, 2009 | 1999–2006 | USA | 1 | AQMS | 13 | NA (41.0) | NA | NA | max 8 h avg | 22.0 | lag 0–1 | 1.2 (1.11–1.29) | No (warm season) | No | All (6–18) | HA | 75,383 | ASTHMA | RR | Yes | [44] |
Stieb DM, 2009 | 1992–2003 | Canada | 7 | AQMS | NA | 18.4 | NA | NA | max 8 h avg & 24 h avg | 18.4 | lag 2 | 1.032 (1.003–1.062) | Yes (warm season) | No | NA (NA) | EV | 83,563 | ASTHMA | RR | No | [45] |
lag 0 to 2 | NS | Yes (warm season) | 40,491 | COPD | |||||||||||||||||
Alves CA, 2010 | 1994–2004 | Portugal | 1 | AQMS | 3 | 30.8 | 13.5 | 17.6 | 1 h avg | 5.0 | lag 2 | 0.9704 (NA) | NA (All) | No | All (<15) | HA | NA | ASTHMA/COPD | RR | No | [46] |
Lee JT, 2010 | 2004–2005 | S. Korea | 2 | AQMS | 40 | 32.1 | NA | 15.3 | max 8 h avg | 15.3 | lag 0–1 | 1.21 (1.1–1.34) | Yes (All) | Yes | <15 (<15) | HA | NA | ASTHMA | RR | No | [47] |
Meng YY, 2010 | 2001 | USA | 1 | AQMS | 21 | NA (30.3) | NA | 6.9 | 1 h max & Annual avg | 10.0 | NA | 1.63 (0.95–2.81) | NA (All) | No | All (1–17) | HA/EV | 1512 | ASTHMA | OR | Yes | [48] |
Almeida SP, 2011 | 2000–2004 | Portugal | 1 | AQMS | 3 | 37.2 | 13.2 | 39.9 | max 8 h avg | 5.0 | lag 0–1 | 1.015 (0.986–1.025) | Yes (warm season) | No | All (65>) | mortality | NA | ASTHMA/COPD | RR | No | [49] |
Zanobetti A, 2011 | 1985–2006 | USA | 105 | AQMS | 105 | NA | NA | 5.0 | max 8 h avg | 5.0 | yearly | 1.07 (1.04–1.09) | Yes (warm season) | Yes | 65> (65>) | HA | 3,210,511 | COPD | HR | No | [50] |
Santus P, 2012 | 2007–2008 | Italy | 1 | AQMS | 8 | 37.90306122 | 23.4 | NA | 1 h max | 5.0 | lag 0–2 | 1.104 (1.068–1.142) | Yes (warm season) | No | All (All) | EV | 3569 | ASTHMA | OR | Yes | [51] |
NA | NS | Yes (All) | 1825 | COPD | |||||||||||||||||
Sacks JD, 2014 | 2006–2008 | USA | 1 | AQMS/Models | 42 | 43.6 | NA | NA | max 8 h avg | 20.0 | lag 0–2 | 1.02 (0.997–1.044) | Yes (warm season) | Yes | All (5–17) | EV | 121,621 | ASTHMA | OR | Yes | [52] |
SM Almeida, 2014 | 2005–2009 | Portugal | 1 | AQMS | 4 | NA | NA | NA | 24 h average | 5.0 | lag 0 to 6 | NA | NA (All) | No | All (All) | HA | 267 | ASTHMA | RR | NA | [53] |
Wendt JK, 2014 | 2005–2007 | USA | 1 | AQMS | 22 | 37.9 | 16.0 | 21.7 | max 8 h avg | 10.0 | lag 0–5 | 1.05 (1.02–1.08) | Yes (warm season) | No | <17 (<17) | Obs. | 18,289 | ASTHMA | OR | Yes | [54] |
Alhanti BA, 2015 | 1993–2007 | USA | 3 | AQMS | NA | 37.3–47.7 | 19.1–19.4 | 27–28.7 | max 8 h avg | 28.0 | lag 0–2 | 1.07 (1.04–1.1) | NA (NA) | No | All (5–18) | EV | 611,970 | ASTHMA | RR | No | [36] |
Byers N, 2015 | 2007–2011 | USA | 1 | AQMS | 11 | 53.9 | 12.5 | 16.7 | 1 h max & 8 h max | 16.7 | lag 0–2 | 1.048 (1.002–1.096) | Yes (warm season) | No | 5> (18–44) | EV | 165,056 | ASTHMA | RR | Yes | [55] |
Gleason JA, 2015 | 2004–2007 | USA | 1 | AQMS/Models | NA | NA | NA | 12.8 | max 8 h avg | 12.8 | lag 0–2 | 1.1 (1.06–1.14) | No (warm season) | No | 3–17 (3–17) | EV | 3675 | ASTHMA | OR | Yes | [56] |
Kim J, 2015 | 2008–2011 | S. Korea | 9 | AQMS | NA | 18.1 | NA | 20.0 | 1 h avg | 20.0 | lag 1 | 1.25 (1.03–1.51) | Yes (cold season) | No | All (All) | EV | 8188 | ASTHMA | OR | Yes | [57] |
Sheffield PE, 2015 | 2005–2011 | USA | 1 | AQMS | 7 | 50–60 | NA | 13.0 | 24 h avg | 13.0 | lag 1 | 1.134 (1.054–1.22) | No (warm season) | Yes | 5–17 (14–17) | HA/EV | 8009/35,907 | ASTHMA | OR | No | [58] |
Yamazaki S, 2015 | 2010–2013 | Japan | 1 | AQMS | 1 | 26.1 | 11.0 | NA | 24 h avg | 10.0 | lag 0–2 | 1.163 (1.046–1.293) | Yes (warm season) | No | <14 (<14) | EV | 1447 | ASTHMA | OR | Yes | [59] |
Castner J, 2016 | 2007–2012 | USA | 1 | AQMS | 1 | 39.0 | 13.0 | 17.0 | max 8 h avg | 17.0 | NA | 1.047 (1.021–1.073) | Yes (warm season) | No | NA (NA) | EV | 76,651 | ASTHMA | RR | No | [3] |
Khaniabadi YO, 2016 | 2014–2015 | Iran | 1 | AQMS | 1 | 15.3–19.9 | NA | NA | 1 h avg | 5.0 | NA | 1.041 (1.025–1.061) | NA (All) | Yes | NA (NA) | mortality/HA | NA | COPD | RR | No | [60] |
Lam HCY, 2016 | 2004–2011 | China | 1 | AQMS | 13 | 18.5 (16.8) | NA | 15.5 | 24 h avg | 5.0 | lag 0–3 | 1.33 (1.13–1.57) | Yes (warm season) | No | All (59>) | HA | 56,112 | ASTHMA | RR | Yes | [61] |
Mohamed A, 2016 | 2007–2012 | USA | 1 | AQMS | 16 | 28.7 (29.5) | 11.4 | NA | 24 h avg | 10.0 | lag 0 | 1.046 (1.029–1.06) | NA (All) | Yes | All (All) | HA | 90,381 | ASTHMA | RR | No | [62] |
Noh J, 2016 | 2005–2009 | S. Korea | 1 | AQMS | 27 | 31.7 | 17.0 | 22.6 | max 8 h avg | 22.6 | lag 3 | 1.269 (1.111–1.288) | Yes (warm season) | No | All (6–18) | EV | 33,751 | ASTHMA | RR | No | [63] |
Ware LB, 2016 | 2006–2012 | USA | 6 | AQMS | 163 | NA (51.5) | NA | NA | max 8 h avg | 5.0 | NA | 1.58 (1.27–1.96) | No (warm season) | No | All (All) | Obs. | 1558 | ARDS | OR | Yes | [64] |
Xiao Q, 2016 | 2002–2008 | USA | 1 | AQMS/Models | NA | 42.1 | 12.6 | 18.5 | max 8 h avg | 18.5 | lag 0–3 | 1.025 (1.007–1.042) | NA (All) | No | <18 (<18) | EV | 148,256 | COPD | OR | Yes | [5] |
Ding L, 2017 | 2013 | China | 1 | AQMS | 9 | 42.6 | 36.4 | NA | max 8 h avg | 5.0 | lag 0 to 7 | NS | Yes (cold season) | No | <18 (<18) | EV | 2507 | ASTHMA | OR | Yes | [65] |
Goodman JE, 2017 | 1999–2009 | USA | 1 | AQMS | NA | 30.7 | 16.9 | 21.3 | max 8 h avg | 10.0 | lag 0–1 | 1.027 (1.004–1.051) | Yes (warm season) | No | All (6–18) | HA | 295,497 | ASTHMA | RR | No | [66] |
Nhung NTT, 2017 | 2007–2014 | Vietnam | 1 | AQMS | 2 | 47.4 | 38.3 | 43.5 | max 8 h avg & 24h max | 43.5 | lag 0–6 | NS | Yes (cold season) | No | <17 (<17) | HA | 17,118 | ASTHMA | RR | Yes | [67] |
Rush B, 2017 | 2011 | USA | 47 | AQMS | NA | NA | NA | NA | max 8 h avg | 10.0 | NA | 1.07 (1.06–1.08) | NA (All) | No | 18> (18>) | HA | 8,023,590 | ARDS | OR | No | [18] |
Yin P, 2017 | 2013–2015 | China | 272 | AQMS | 1265 | 39.3 | 7.1 | NA | max 8 h avg | 5.0 | lag 0 to 10 | NS | Yes (warm season) | Yes | 5> (5>) | mortality | NA | COPD | RR | No | [68] |
Zu K, 2017 | 2001–2013 | USA | 6 | AQMS | 91 | 32.2 | 12.0 | 16.7 | max 8 h avg | 10.0 | lag 0–3 | 1.047 (1.025–1.069) | Yes (warm season) | Yes | All (5–14) | HA | 155,243 | ASTHMA | RR | No | [69] |
Gharibi H, 2018 | 2015 | USA | 8 | AQMS | 18 | 50.7 | 12.6 | NA | max 8 h avg | 18.1 | lag 3 | 1.052 (1.021–1.072) | No (warm season) | Yes | 2> (6–18) | EV | 1101 | ASTHMA | OR | Yes | [70] |
Qiu H, 2018 | 2015–2016 | China | 1 | AQMS | 6 | 49.4 | 28.5 | 42.7 | max 8 h avg | 5.0 | lag 0 to 6 | NS | NA (All) | No | All (All) | HA | 54,966 | COPD | RR | Yes | [71] |
Reilly JP, 2018 | 2005–2015 | USA | 18 | AQMS | 14 | NA (47.1) | NA | 2.7 | max 8 h avg | 2.7 | 3 year | 1.44 (1.12–1.86) | No (warm season) | No | 13> (13>) | HA | 996 | ARDS | OR | No | [4] |
Strosnider HM, 2018 | 2001–2012 | USA | 894 | AQMS/Models | NA | 8–34 | NA | 16.5 | max 8 h avg | 20.0 | lag 0 to 6 | 1.069 (1.059–1.079) | NA (All) | No | All (19–65) | EV | 5,761,712 | ASTHMA | RR | Yes | [72] |
1.043 (1.028–1.058) | 2,385,148 | COPD | |||||||||||||||||||
Zielinski M, 2018 | 2006–2014 | Poland | 6 | AQMS | 6 | 18–21.5 | NA | NA | NA | 16.2 | lag 0 | 0.77 (NA) | NA (All) | No | All (All) | HA | 12,889 | COPD | RR | No | [73] |
Kazemiparkouhi F, 2019 | 2000–2008 | USA | 260 | AQMS/Models | 1151 | NA (55.0) | NA | 5.0 | max 1 h & 8 h & 24 h avg | 10.0 | NA | 1.065 (1.06–1.069) | No (warm season) | Yes | 65> (65>) | mortality | 328,957 | COPD | RR | Yes | [74] |
Kuo CY, 2019 | 2001–2012 | Taiwan | 8 | AQMS | 78 | 28.8 | 12.5 | 16.2 | 24 h avg | 16.2 | NA | 0.962 (0.947–0.977) | NA (All) | No | <18 (0–5) | HA | 59,204 | ASTHMA | RR | Yes | [75] |
Lee SW, 2019 | 2008–2012 | S. Korea | 1 | AQMS | 34 | NA (17.0) | NA | 14.3 | 24 h avg | 14.3 | lag 0 | 1.141 (1.075–1.213) | NA (All) | No | All (6–18) | HA | 28,824 | ASTHMA | RR | No | [76] |
Liang L, 2019 | 2013–2017 | China | 1 | AQMS | 35 | 48.9 | 31.7 | 43.4 | max 8 h avg | 43.4 | lag 0 | 1.027 (1.01–1.044) | Yes (warm season) | No | 18> (65>) | HA | 161,613 | COPD | RR | Yes | [77] |
Lim CC, 2019 | 2002–2010 | USA | 6 | AQMS/Sat./Models | NA | 39.0 | 4.6 | NA | max 8 h avg | 10.0 | NA | 1.09 (1.03–1.15) | No (warm season) | Yes | 50–71 (50–71) | mortality | 548,780 | COPD | HR | Yes | [78] |
Liu Y, 2019 | 2013–2018 | China | 1 | AQMS | 55 | 46.9 | NA | NA | max 8 h avg | 27.0 | lag 3 | 1.09 (1.01–1.18) | Yes (warm season) | No | All (All) | mortality | 4454 | ASTHMA | OR | Yes | [79] |
Rhee J, 2019 | 2000–2012 | USA | AQMS/Sat./Models | NA | NA (39.1) | NA | 4.9 | 24 h avg | 1.0 | NA | 1.002 (1.002–1.003) | No (warm season) | No | 65> (65>) | HA | 1,164,784 | ARDS | OR | Yes | [80] | |
Yazdi MD, 2019 | 2000–2012 | USA | 7 | Sat./Models | NA | NA | NA | NA | max 8 h avg | 1.0 | NA | 1.024 (1.023–1.025) | NA (All) | No | All (60>) | HA | 1,728,689 | COPD | HR | No | [81] |
Baek J, 2020 | 2010–2014 | USA | 1 | AQMS/Models | NA | 37.4 | 6.8 | 10.6 | max 8 h avg | 10.6 | lag 0 | 1.043 (1.012–1.075) | Yes (warm season) | No | 5–18 (5–18) | HA | 111 | ASTHMA | OR | Yes | [82] |
Chang Q, 2020 | 2013–2017 | China | 1 | AQMS | 13 | 31.6 | NA | 26.0 | 24 h avg | 26.0 | lag 0 | 1.05 (1.02–1.082) | Yes (warm season) | No | <17 (0–5) | EV | 166,595 | ASTHMA | RR | Yes | [83] |
Franco P, 2020 | 2005–2015 | Portugal | 1 | AQMS | 6 | 52.5 | 20.4 | NA | 1 h avg | 5.0 | lag 0–6 | 1.048 (NA) | NA (All) | No | All (<15) | HA | 4017 | COPD | RR | No | [84] |
Niewiadomska E, 2020 | 2016–2017 | Poland | 14 | AQMS | 2 | 37.3 | 25.7 | NA | max 8 h avg | 5.0 | lag 0 to 20 | NS | No (warm season) | Yes | NA (NA) | HA | 3815 | ASTHMA | RR | No | [85] |
Paulin L, 2020 | 2010–2018 | USA | 7 | AQMS/Models | NA | 25.1 | NA | 6.3 | 2 wk mean | 5.0 | NA | NS | Yes (All) | Yes | 40–80 (40–80) | HA/EV | 1874 | ASTHMA | OR | Yes | [86] |
Shin SW, 2020 | 2005–2015 | S. Korea | 3 | AQMS | 62 | NA | NA | NA | 24 h avg | 10.0 | NA | 1.012 (1.003–1.02) | Yes (warm season) | No | 18–84 (18–84) | HA/EV | 143 | ASTHMA | OR | Yes | [87] |
Chen J, 2021 | 2015–2018 | China | 1 | AQMS | 23 | 50.4 | 26.4 | 39.8 | max 8 h avg | 39.8 | lag 0–2 | 1.074 (1.036–1.113) | NA (All) | No | 60> (60>) | mortality | 61,058 | COPD | RR | Yes | [88] |
Huang W, 2021 | 2011–2014 | USA | 1 | AQMS/Models | NA | 33.0 | 13.6 | NA | max 8 h avg | NA | lag 4 | 1.08 (1.02–1.14) | Yes (cold season) | No | <18 (<18) | EV | 54,632 | ASTHMA | OR | Yes | [89] |
Li M, 2021 | 2013–2018 | China | 1 | AQMS | 11 | 41.3 | 24.0 | 33.2 | max 8 h avg | 5 | lag 0–3 | 1.012 (1.005–1.0193) | NA (All) | Yes | All (All) | mortality | 296,080 | COPD | RR | Yes | [90] |
Shin S, 2021 | 2001–2015 | Canada | 1 | AQMS/Models | NA | 46.4 | 4.5 | 6.3 | max 8 h avg & 3 yr avg | 6.3 | 1 year | NS | No (warm season) | No | 35–85 (35–85) | HA/EV | 218,005 | ASTHMA | HR | Yes | [91] |
1.04 (1.03–1.04) | 340,733 | COPD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, A.R.; Silva, C. Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades. Atmosphere 2022, 13, 434. https://doi.org/10.3390/atmos13030434
Soares AR, Silva C. Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades. Atmosphere. 2022; 13(3):434. https://doi.org/10.3390/atmos13030434
Chicago/Turabian StyleSoares, Angelo Roldão, and Carla Silva. 2022. "Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades" Atmosphere 13, no. 3: 434. https://doi.org/10.3390/atmos13030434
APA StyleSoares, A. R., & Silva, C. (2022). Review of Ground-Level Ozone Impact in Respiratory Health Deterioration for the Past Two Decades. Atmosphere, 13(3), 434. https://doi.org/10.3390/atmos13030434