Evaluation of Ground-Based Models for Estimating Surface Albedo with In-Situ Radiometric Measurements across China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational Sites and Data Processing
- Missing values of daily global radiation component;
- Missing values of daily reflected radiation component;
- Zero values of daily global solar radiation and/or daily reflected solar radiation
- Measured values of daily reflected radiation near the minimum detection limits of the instrumentation;
- Values observed during snow-covered seasons;
- Values when corresponding meteorological variables as model inputs were unavailable.
2.2. Surface Albedo Prediction Models
2.2.1. Ineichen Model (IeM)
2.2.2. Gueymard Model (GM)
2.2.3. Dong Model (DeM)
2.2.4. Iziomon-Mayer Model (IMM)
2.2.5. Morton Model (MM)
2.2.6. Zhou Model (ZeM)
- ZeM uses different values of two coefficients from those used in the MM (i.e., aZeM = 0.832, bZeM = 0.032) to take the effect of cloud cover into consideration.
- ZeM treats a vegetated surface as a mixture of vegetation and its underlying bare soil to incorporate the effect of vegetation phenology, weighted by the proportions of bare soil and vegetation coverage. The daily mean ground albedo under clear sky conditions is thus determined as follows:
- ZeM notes the discrepancy in form between Nkemdirim’s exponential function and the regression equations of numerous subsequent observations for describing the variation of instantaneous ground albedo with SZA, and it modifies the exponential function by adding a constant term. The computational formulae of and thus become
2.3. Statistical Evaluation
3. Results and Discussion
3.1. Model Evaluation
3.2. Re-Calibration with In-Situ Measurements
3.3. Temporal Stability Analysis
4. Conclusions
- The evaluation results of model performance through statistical analysis showed that among the available ground albedo models, ZeM had the best overall performance at 12 selected stations for model evaluation. IeM was shown to provide acceptable estimations for locations where albedo records are readily available, which limits its scope of application. However, the simple models with fixed parameters (i.e., GM, DeM, and IMM) are site-specific. Therefore, when applied to other locations, these models should be re-calibrated with measured data.
- In the re-calibration procedure of DeM, multi-year mean daily values of time series data were used in this paper. Special care was taken to examine the temporal stability of these series. It was found that, in general, a time series of in situ measurements extending over a period greater than 10 years could be considered temporally stable.
- The performance of re-calibrated DeM was as acceptable as that of the complex ZeM in China. This simple model offers an alternative for surface albedo estimation with easily accessible inputs and less computational effort.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Xu, Q.; Bian, H. Generation of typical radiation data for difficult climates of China. Solar 2012, 38, 236–248. [Google Scholar]
- Despotovic, M.; Nedic, N.; Despotovic, D.; Cvetanovic, S. Review and statistical analysis of different global solar radiation sunshine models. Renew. Sustain. Energy Rev. 2015, 52, 1869–1880. [Google Scholar]
- Behar, O.; Khellaf, A.; Mohammedi, K. Comparison of solar radiation models and their validation under Algerian climate–The case of direct irradiance. Energy Convers. Manag. 2020, 117, 236–251. [Google Scholar] [CrossRef]
- Psiloglou, B.E.; Kambezidis, H.D. Estimation of the ground albedo for the Athens area, Greece. J. Atmos. Sol. Terr. Phys. 2009, 71, 943–954. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation, 3rd ed.; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Ziar, H.; Sӧnmez, F.F.; Isabella, O.; Zeman, M. A comprehensive albedo model for solar energy applications: Geometric spectral albedo. Appl. Energy 2019, 255, 113867. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, G.; Dong, Z.; Xie, B.; Gu, S.; Shi, P. Estimation of surface albedo from meteorological observations across China. Agric. For. Meteorol. 2020, 281, 107848. [Google Scholar] [CrossRef]
- Nkemdirim, L.C. A note on the albedo of surfaces. J. Appl. Meteor. 1972, 85, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Arnfield, A.J. A note on the diurnal, latitudinal and seasonal variation of the surface reflection coefficient. J. Appl. Meteor. 1975, 14, 1603–1608. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Y.H.; Jordan, R.C. The long-term average performance of flat plate solar energy collectors. Sol. Energy 1963, 7, 53–74. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Lara-Fanegob, V.; Senguptac, M.; Xie, Y. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol. Energy 2019, 182, 194–212. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Cao, Y.; Gao, F.; Yu, Y.; Feng, M. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM +, and OLI data based on the unified direct estimation approach. Remote Sens. Environ. 2018, 204, 181–196. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Zhou, L.; Fan, L.; Wei, J.; Qin, W. Prediction of diffuse solar radiation based on multiple variables in China. Renew. Sustain. Energy Rev. 2019, 103, 151–216. [Google Scholar] [CrossRef]
- Gilgen, H.; Wild, M.; Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from Global Energy Balance Archive Data. J. Clim. 1998, 11, 2042–2061. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Steffen, K.; Box, J. Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. 2001, 106, 33951–33964. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Despotovic, M.; Nedic, N.; Despotovic, D.; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sustain. Energy Rev. 2016, 56, 246–260. [Google Scholar] [CrossRef]
- Webb, A.R.; Kylling, A.; Wendisch, M.; Jäkel, E. Airborne measurements of ground and cloud spectral albedos under low aerosol loads. J. Geophys. Res. 2004, 109, D20205. [Google Scholar] [CrossRef] [Green Version]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Rechid, D.; Raddatz, T.J.; Jacob, D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol. 2009, 95, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Hay, J.E. A revised method for determining the direct and diffuse components of the total short-wave radiation. Atmosphere 1976, 14, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xiao, Q.; Wen, J.; Liu, Q.; You, D.; Dou, B.; Tang, Y. Upscaling in situ albedo for validation of coarse scale albedo product over heterogeneous surfaces. Int. J. Digit. Earth 2017, 10, 604–622. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Box, J.E.; Fowler, C.; Haran, T.; Key, J. Intercomparison between in situ and AVHRR polar pathfinder-derived surface albedo over Greenland. Atmosphere 2001, 75, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Folini, F.; Schär, C.; Loeb, N.; Dutton, E.G.; Kӧnig-Langlo, G. The global energy balance from a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [Google Scholar] [CrossRef] [Green Version]
- Salazar, G.; Gueymard, C.; Galdino, J.B.; Vilela, O.C.; Fraidenraich, N. Solar irradiance time series derived from high-quality measurements, satellite-based models, and reanalyses at a near-equatorial site in Brazil. Renew. Sustain. Energy Rev. 2020, 117, 109478. [Google Scholar] [CrossRef]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.; Grattan, S.R.; Garroll, J.J.; Prashar, C.R.K. Estimation of daytime net radiation over well-watered grass. J. Irrig. Drain. Eng. 1992, 118, 466–479. [Google Scholar] [CrossRef]
- Gueymard, C. Mathematically integrable parameterization of clear-sky beam and global irradiances and its use in daily irradiation applications. Sol. Energy 1993, 50, 385–397. [Google Scholar] [CrossRef]
- Paltridge, G.W.; Platt, C.M.R. Radiation Processes in Meteorology and Climatology; Elsevier Science: London, UK, 1976. [Google Scholar]
- Iziomon, M.G.; Mayer, H. On the variability and modelling of surface albedo and long-wave radiation components. Agric. For. Meteorol. 2002, 111, 141–152. [Google Scholar] [CrossRef]
- Liu, H.; Tu, G.; Dong, W. Three-year changes of surface albedo of degraded grassland and cropland surfaces in a semiarid area. Chin. Sci. Bull. 2008, 53, 1246–1254. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Wei, Z.; Wen, Z.; Dong, W.; Li, Z.; Wen, X.; Zhu, X.; Dong, J.; Chen, C.; Yan, D. Inclusion of solar elevation angle in land surface albedo parameterization over bare soil surface. J. Adv. Model. Earth Syst. 2017, 9, 3069–3081. [Google Scholar] [CrossRef] [Green Version]
- Alnaser, W.E. Calculation of the surface albedo of Bahrain from solar energy data. Energy 1989, 14, 551–556. [Google Scholar] [CrossRef]
- Morton, F.I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol. 1983, 66, 1–76. [Google Scholar] [CrossRef]
- Ineichen, P.; Guisan, O.; Perez, R. Ground-reflected radiation and albedo. Sol. Energy 1990, 44, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.J.; Warren, S.G. A model for the spectral albedo of snow: Pure snow. J. Atmos. Sci. 1980, 37, 2713–2733. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Zeng, X.; Dai, Y.; Yang, Z.L.; Schaaf, C.B.; Gao, F.; Jin, Y.; Strahler, A.; et al. Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res. 2003, 108, 4488. [Google Scholar] [CrossRef] [Green Version]
- Ineichen, P.; Perez, R.; Seals, R. The importance of correct albedo determination for adequately modelling energy received by tilted surfaces. Sol. Energy 1987, 39, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew. Sustain. Energy Rev. 2014, 39, 1024–1034. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Ma, X.; Bai, H. Evaluation and development of empirical models for estimating daily and monthly mean diffuse horizontal solar radiation for different climatic regions of China. Renew. Sustain. Energy Rev. 2019, 105, 168–186. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crop Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Li, M.F.; Tang, X.P.; Wu, W.; Liu, H.B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [Google Scholar] [CrossRef]
- Stone, R.J. Improved statistical procedure for the evaluation for solar radiation estimation models. Sol. Energy 1993, 51, 289–291. [Google Scholar] [CrossRef]
- Dalla, V.; Giraitis, L.; Phillips, P.C.B. Testing Mean Stability of Heteroskedastic Time Series; Working Paper No. 765; Queen Mary University of London: London, UK, 2015. [Google Scholar]
No. | Location | Latitude (deg., N) | Longitude (deg., E) | Altitude (m) | Tmean (°C) | P (mm) | n (h) | Rg (MJ m−2 day−1) | KD1 | Measured Albedo | |
---|---|---|---|---|---|---|---|---|---|---|---|
Period | Mean 2 | ||||||||||
1 | Ejin Banner | 41.95 | 101.07 | 940.5 | 9.73 | 35 | 9.12 | 17.83 | 0.32 | 1993–2015 | 0.25 |
2 | Beijing | 39.80 | 116.47 | 31.3 | 13.28 | 588 | 6.76 | 13.51 | 0.48 | 1993–2015 | 0.17 |
3 | Zhengzhou | 34.72 | 113.65 | 110.4 | 15.35 | 639 | 5.15 | 12.92 | 0.60 | 1993–2015 | 0.17 |
4 | Kashgar | 39.48 | 75.75 | 754.5 | 12.74 | 66 | 7.98 | 15.56 | 0.44 | 1993–2015 | 0.22 |
5 | Wuhan | 30.60 | 114.05 | 23.6 | 17.47 | 1259 | 4.96 | 11.71 | 0.60 | 1993–2015 | 0.17 |
6 | Shanghai | 31.40 | 121.45 | 5.5 | 17.18 | 1164 | 4.77 | 12.51 | 0.56 | 1993–2015 | 0.17 |
7 | Guangzhou | 23.22 | 113.48 | 70.7 | 22.46 | 1737 | 4.24 | 11.68 | 0.63 | 1993–2015 | 0.18 |
8 | Chengdu | 30.75 | 103.87 | 547.7 | 21.17 | 905 | 4.33 | 9.88 | 0.73 | 2004–2015 | 0.16 |
9 | Kunming | 25.02 | 102.65 | 1888.1 | 16.02 | 989 | 6.02 | 15.44 | 0.46 | 1993–2015 | 0.17 |
10 | Sanya | 18.22 | 109.58 | 419.4 | 25.29 | 1340 | 6.10 | 16.52 | 0.46 | 1993–2015 | 0.19 |
11 | Golmud | 36.42 | 94.92 | 2807.6 | 6.37 | 40 | 8.32 | 18.77 | 0.35 | 1993–2015 | 0.22 |
12 | Lhasa | 29.67 | 91.13 | 3648.9 | 9.05 | 434 | 8.22 | 20.47 | 0.30 | 1993–2015 | 0.21 |
Indicator | Concept | Equation 1 | Function | Ideal Value | Author(s) |
---|---|---|---|---|---|
Mean bias error (MBE) | Arithmetic mean of the errors | A statistical indicator for testing the long-term tendency of the models | 0 | Behar et al. [3] | |
Mean absolute percentage error (MAPE) | Arithmetic mean of magnitude of relative errors | A statistical indicator for comparing predictive errors of different models | 0 | Gueymard [42] Fan et al. [43] | |
Root mean square error (RMSE) | Square root of the mean square errors | A measure of error-magnitude variance for examination of the short-term performance of the models | 0 | Willmott and Matsuura [44] | |
Relative root mean square error (RRMSE) | RMSE divided by the average value of measured data | A measure of the overall relative accuracy of the models | 0 | Jamieson et al. [45] Li et al. [46] | |
t-statistics (TS) | Statistical significance of model estimates at a particular confidence level | A conjunction of the RMSE with MBE for more reliable assessment of model performance | 0 | Stone [47] | |
Uncertainty at the 95% level (U95) | Expanded uncertainty with 95% confidence | An indicator representing information of model deviation | 0 | Gueymard [42] | |
Coefficient of determination(R2) | Square of the correlation coefficient | A measure of model linearity relative to measured data | 1 | Behar et al. [3] Gueymard [42] |
Station | Model Parameters | Statistical Indicators | ||||||
---|---|---|---|---|---|---|---|---|
an | bn | MAPE (%) | RMSE | RRMSE (%) | U95 | TS | R2 | |
Ejin Banner | 0.1140 | 0.354 | 3.55 | 0.0116 | 4.63 | 0.0310 | 7.36 | 0.6944 |
Beijing | 0.0779 | 0.250 | 4.75 | 0.0094 | 5.42 | 0.0251 | 8.14 | 0.1666 |
Kashgar | 0.1112 | 0.300 | 6.28 | 0.0168 | 7.57 | 0.0463 | 2.63 | 0.0128 |
Zhengzhou | 0.0722 | 0.250 | 5.06 | 0.0104 | 6.19 | 0.0116 | 1.19 | 0.1362 |
Wuhan | 0.0854 | 0.250 | 3.92 | 0.0086 | 4.94 | 0.0238 | 1.28 | 0.2201 |
Shanghai | 0.0831 | 0.250 | 4.44 | 0.0093 | 5.46 | 0.0248 | 7.71 | 0.0753 |
Chengdu | 0.0791 | 0.232 | 5.55 | 0.0109 | 6.86 | 0.0299 | 4.57 | 0.0078 |
Kunming | 0.0814 | 0.250 | 3.37 | 0.0075 | 4.42 | 0.0208 | 1.92 | 0.0002 |
Guangzhou | 0.0831 | 0.258 | 4.79 | 0.0103 | 5.81 | 0.0277 | 7.22 | 0.3848 |
Sanya | 0.0882 | 0.285 | 2.99 | 0.0077 | 4.03 | 0.0203 | 8.84 | 0.0073 |
Golmud | 0.0963 | 0.325 | 3.54 | 0.0091 | 4.23 | 0.0251 | 2.86 | 0.5104 |
Lhasa | 0.0756 | 0.386 | 5.83 | 0.0152 | 7.04 | 0.0402 | 9.11 | 0.7879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Zhou, M.; Gu, S.; Chen, J.; Wu, L. Evaluation of Ground-Based Models for Estimating Surface Albedo with In-Situ Radiometric Measurements across China. Atmosphere 2022, 13, 412. https://doi.org/10.3390/atmos13030412
Chen G, Zhou M, Gu S, Chen J, Wu L. Evaluation of Ground-Based Models for Estimating Surface Albedo with In-Situ Radiometric Measurements across China. Atmosphere. 2022; 13(3):412. https://doi.org/10.3390/atmos13030412
Chicago/Turabian StyleChen, Gang, Mi Zhou, Shixiang Gu, Jinming Chen, and Lei Wu. 2022. "Evaluation of Ground-Based Models for Estimating Surface Albedo with In-Situ Radiometric Measurements across China" Atmosphere 13, no. 3: 412. https://doi.org/10.3390/atmos13030412
APA StyleChen, G., Zhou, M., Gu, S., Chen, J., & Wu, L. (2022). Evaluation of Ground-Based Models for Estimating Surface Albedo with In-Situ Radiometric Measurements across China. Atmosphere, 13(3), 412. https://doi.org/10.3390/atmos13030412