Numerical Modeling of Droplet Aerosol Coagulation, Condensation/Evaporation and Deposition Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Droplet Aerosol Dynamics
2.2. Implementation of the DWOSMC Algorithm
- (1)
- Start with a predetermined total MC loop number, M.
- (2)
- Predetermine the simulation stopping time, Tstop.
- (3)
- Initialize the particle system. The weight, component, and size distribution of the droplet aerosols are initialized first. The weight of numerical particle i, wi is defined as
- (4)
- Determine a time step τ for the simulation.
- (5)
- Algorithm integration. In this DWOSMC method, the coagulation event is simulated by the stochastic Monte Carlo method; and the deposition and condensation/evaporation events are calculated by the deterministic method. Then, the simulation results are integrated by the operator splitting method expressed by Equation (9) [35], which means that in one time step, the deposition and condensation/evaporation events will be firstly calculated within the first half time step. Then, the coagulation event will be calculated, at last, the deposition and the condensation/evaporation events will be calculated within the second half time step.
- (a)
- Coagulation
- (b)
- Deposition
- (c)
- Condensation and evaporation
- (6)
- The properties of the numerical particles (component composition, size distribution, weight, etc.) are updated.
- (7)
- If the present simulation time, T, reaches Tstop, stop the present MC loop. Otherwise, repeat step (4) to step (6).
- (8)
- If the current MC loop number N equals M, the mean value of the particle parameters should be calculated and output. Otherwise, start a new MC loop.
3. Results
3.1. Coagulation and Condensation/Evaporation Processes in Single Component Aerosol Systems
3.2. Coagulation, Deposition, and Condensation/Evaporation Processes in Single Component Aerosol Systems
3.3. Coagulation, Deposition and Condensation/Evaporation Processes in Two-Component Aerosol Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Prather, K.A.; Wang, C.C.; Schooley, R.T. Reducing transmission of SARS-CoV-2: Masks and testing are necessary to combat asymptomatic spread in aerosols and droplets. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Stiti, M.; Castanet, G.; Corber, A.; Alden, M.; Berrocal, E. Transition from saliva droplets to solid aerosols in the context of COVID-19 spreading. Environ. Res. 2022, 204, 112072. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Zhu, L.; Huang, Q. Transmission of SARS-CoV-2 indoor and outdoor environments. Atmosphere 2021, 12, 1640. [Google Scholar] [CrossRef]
- Dao, H.T.; Kim, K.-S. Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations. Build. Environ. 2022, 209, 108649. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Moon, J.Y.; Chae, M.; Park, D.; Lee, Y.C. Prediction of aerosol deposition in the human respiratory tract via computational models: A review with recent updates. Atmosphere 2020, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Peglow, M.; Warnecke, G.; Heinrich, S. An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 2008, 182, 81–104. [Google Scholar] [CrossRef]
- Xie, M.; Yu, M. Thermodynamic analysis of Brownian coagulation based on moment method. Int. J. Heat Mass Transf. 2018, 122, 922–928. [Google Scholar] [CrossRef]
- Asgari, M.; Lucci, F.; Kuczaj, A.K. Multispecies aerosol evolution and deposition in a bent pipe. J. Aerosol Sci. 2019, 129, 53–70. [Google Scholar] [CrossRef]
- Shadloo-Jahromi, A.; Bavi, O.; Hossein Heydari, M.; Kharati-Koopaee, M.; Avazzadeh, Z. Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Results Phys. 2020, 19, 103482. [Google Scholar] [CrossRef]
- Wells, W.F. On air-borne infection: Study II. Droplets and droplet nuclei. Am. J. Epidemiol. 1934, 20, 611–618. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Wang, H. Interaction between water and acetic acid-sodium halide aerosol: A molecular dynamics study. Powder Technol. 2017, 314, 9–19. [Google Scholar] [CrossRef]
- Lieber, C.; Melekidis, S.; Koch, R.; Bauer, H.J. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling. J. Aerosol Sci. 2021, 154, 105760. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.T.; Chan, W.Y.; Mui, K.W.; Lai, A.C.K. An experimental and numerical study on deposition of bioaerosols in a scaled chamber. Aerosol Sci. Technol. 2010, 44, 117–128. [Google Scholar] [CrossRef] [Green Version]
- McGraw, R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 1997, 27, 255–265. [Google Scholar] [CrossRef]
- Liu, S.Y.; Chan, T.L.; Liu, H.J. Numerical simulation of particle formation and evolution in a vehicle exhaust plume using the bimodal Taylor expansion method of moments. Particuology 2019, 43, 46–55. [Google Scholar] [CrossRef]
- Kochenburger, T.M.; Fernández, F.J.; Prieto, M.M. Study and modification of a size-discrete semi-implicit simulation model for polydisperse aerosol coagulation. J. Aerosol Sci. 2017, 114, 180–194. [Google Scholar] [CrossRef]
- Maisels, A.; Kruis, F.E.; Fissan, H. Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems. Chem. Eng. Sci. 2004, 59, 2231–2239. [Google Scholar] [CrossRef]
- Kotalczyk, G.; Kruis, F.E. A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging. J. Comput. Phys. 2017, 340, 276–296. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, J.; Yu, M. Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. J. Aerosol Sci. 2014, 67, 28–37. [Google Scholar] [CrossRef]
- Kotalczyk, G.; Kruis, F.E. Fractional Monte Carlo time steps for the simulation of coagulation for parallelized flowsheet simulations. Chem. Eng. Res. Des. 2018, 136, 71–82. [Google Scholar] [CrossRef]
- Wei, J. A fast monte carlo method based on an acceptance-rejection scheme for particle coagulation. Aerosol Air Qual. Res. 2013, 13, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.M.; Chan, T.L. Two-component aerosol dynamic simulation using differentially weighted operator splitting Monte Carlo method. Appl. Math. Model. 2018, 62, 237–253. [Google Scholar] [CrossRef]
- Liu, H.; Chan, T.L. A coupled LES-Monte Carlo method for simulating aerosol dynamics in a turbulent planar jet. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 855–881. [Google Scholar] [CrossRef]
- Zhao, H.; Kruis, F.E.; Zheng, C. Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in monte carlo simulation of coagulation. Aerosol Sci. Technol. 2009, 43, 781–793. [Google Scholar] [CrossRef]
- Zhou, K.; Jiang, X.; Chan, T.L. Error analysis in stochastic solutions of population balance equations. Appl. Math. Model. 2020, 80, 531–552. [Google Scholar] [CrossRef]
- Zhao, H.; Kruis, F.E.; Zheng, C. A differentially weighted Monte Carlo method for two-component coagulation. J. Comput. Phys. 2010, 229, 6931–6945. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, C. Monte Carlo solution of wet removal of aerosols by precipitation. Atmos. Environ. 2006, 40, 1510–1525. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, C. A new event-driven constant-volume method for solution of the time evolution of particle size distribution. J. Comput. Phys. 2009, 228, 1412–1428. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, W.; Liu, W.; Liu, X.; Liu, S. Monte Carlo simulation of polydisperse particle deposition and coagulation dynamics in enclosed chambers. Vacuum 2021, 184, 109952. [Google Scholar] [CrossRef]
- Liu, H.; Chan, T.L. Differentially weighted operator splitting Monte Carlo method for simulating complex aerosol dynamic processes. Particuology 2018, 36, 114–126. [Google Scholar] [CrossRef]
- Kourti, N.; Schatz, A. Solution of the general dynamic equation (GDE) for multicomponent aerosols. J. Aerosol Sci. 1998, 29, 41–55. [Google Scholar] [CrossRef]
- Liu, H. Monte Carlo Simulation of Aerosol Dynamics in Turbulent Flows. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2019. [Google Scholar]
- Xu, Z.; Zhao, H.; Zheng, C. Fast Monte Carlo simulation for particle coagulation in population balance. J. Aerosol Sci. 2014, 74, 11–25. [Google Scholar] [CrossRef]
- McLachlan, R.I.; Quispel, G.R.W. Splitting methods. Acta Numer. 2002, 11, 341–434. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, C. Two-component brownian coagulation: Monte carlo simulation and process characterization. Particuology 2011, 9, 414–423. [Google Scholar] [CrossRef]
- Liffman, K. A direct simulation Monte-Carlo method for cluster coagulation. J. Comput. Phys. 1992, 100, 116–127. [Google Scholar] [CrossRef]
- Prakash, A.; Bapat, A.P.; Zachariah, M.R. A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems. Aerosol Sci. Technol. 2003, 37, 892–898. [Google Scholar] [CrossRef]
- Ramabhadran, T.E.; Peterson, T.W.; Seinfeld, J.H. Dynamics of aerosol coagulation and condensation. AIChE J. 1976, 22, 840–851. [Google Scholar] [CrossRef]
- Palaniswaamy, G.; Loyalka, S.K. Direct simulation, Monte Carlo, aerosol dynamics: Coagulation and condensation. Ann. Nucl. Energy 2008, 35, 485–494. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Shao, J.; Jiang, W.; Liu, X. Numerical Modeling of Droplet Aerosol Coagulation, Condensation/Evaporation and Deposition Processes. Atmosphere 2022, 13, 326. https://doi.org/10.3390/atmos13020326
Liu H, Shao J, Jiang W, Liu X. Numerical Modeling of Droplet Aerosol Coagulation, Condensation/Evaporation and Deposition Processes. Atmosphere. 2022; 13(2):326. https://doi.org/10.3390/atmos13020326
Chicago/Turabian StyleLiu, Hongmei, Jingping Shao, Wei Jiang, and Xuedong Liu. 2022. "Numerical Modeling of Droplet Aerosol Coagulation, Condensation/Evaporation and Deposition Processes" Atmosphere 13, no. 2: 326. https://doi.org/10.3390/atmos13020326
APA StyleLiu, H., Shao, J., Jiang, W., & Liu, X. (2022). Numerical Modeling of Droplet Aerosol Coagulation, Condensation/Evaporation and Deposition Processes. Atmosphere, 13(2), 326. https://doi.org/10.3390/atmos13020326