Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = droplet aerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5767 KiB  
Article
Influence of Humidity on the Electric Field, Filtration Efficiency, and Flow Velocity in Electret Filter Media: Direct Numerical Simulation
by Daniel Stoll and Sergiy Antonyuk
Atmosphere 2025, 16(7), 815; https://doi.org/10.3390/atmos16070815 - 3 Jul 2025
Viewed by 351
Abstract
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition [...] Read more.
Electret filter media are electrostatically charged during the manufacturing process to activate effective electrical separation mechanisms. In order to investigate the influence of humidity on these mechanisms, the electric field, and filtration efficiency, a Direct Numerical Simulation (DNS) study of the aerosol deposition within wetted fibrous nonwoven filter media used in masks was carried out. Initial experimental investigations determined key properties of the filter material, including porosity, fiber diameter, and surface charge density. Using Micro-Computed Tomography (µCT), preferred locations for droplet deposition within the filter were identified. Additional experiments quantified the amount of water absorbed by the filter medium and assessed its impact on the existing electric field. Numerical simulations examined various models with differing porosity and fiber diameter, incorporating different levels of water content to analyze the changes in the electric field, flow velocity, and resulting filtration efficiency. The results provide valuable insights into the significant effects of fiber change on filtration performance, demonstrating the electret filter’s ability to partially compensate for the negative impacts of water. Full article
(This article belongs to the Special Issue Electrostatics of Atmospheric Aerosols (2nd Edition))
Show Figures

Figure 1

12 pages, 1565 KiB  
Article
Study on Filtration Efficiency of Filter Elements for Lubricating Oil Separation
by Hongjun Li, Shengping Wang, Mingxin Liu, Rongjun Song, Kailong Cui and Cheng Chang
Processes 2025, 13(7), 2067; https://doi.org/10.3390/pr13072067 - 30 Jun 2025
Viewed by 347
Abstract
For the gas injection process in the underground natural gas storage, it is of great significance to separate lubricating oil droplets from natural gas to ensure the capacity of gas injection. However, the interaction mechanism, among various factors, is still unclear in real [...] Read more.
For the gas injection process in the underground natural gas storage, it is of great significance to separate lubricating oil droplets from natural gas to ensure the capacity of gas injection. However, the interaction mechanism, among various factors, is still unclear in real field conditions. In this study, the filtration performances of filter elements were investigated in a range of gas temperatures from 20 °C to 70 °C, aerosol concentrations from 400 mg/m3 to 1200 mg/m3 and flowrates from 37.2 m3/h to 74.4 m3/h. The results show that at the same flowrate, the steady-state filtration efficiency decreases with increasing temperature, resulting from a shift in the upstream aerosol towards the smaller size and an increase in the concentration for droplets within the range of 0.3 to 2 μm. The filtration efficiency only increases by 0.02% at 20 °C, while the steady-state efficiency increases by more than 0.10% at 70 °C and all the flowrates. At the same gas temperature and aerosol concentration, the steady-state filtration efficiency increases with the increase in flowrate. In practical applications, the filtration performance can be improved by lowing the gas temperature, setting up fewer filter elements in the separator, and appropriately reducing the injection amount of lubricating oil. Full article
Show Figures

Figure 1

32 pages, 1959 KiB  
Review
hMPV Outbreaks: Worldwide Implications of a Re-Emerging Respiratory Pathogen
by Alexandra Lianou, Andreas G. Tsantes, Petros Ioannou, Efstathia-Danai Bikouli, Anastasia Batsiou, Aggeliki Kokkinou, Kostantina A. Tsante, Dionysios Tsilidis, Maria Lampridou, Nicoletta Iacovidou and Rozeta Sokou
Microorganisms 2025, 13(7), 1508; https://doi.org/10.3390/microorganisms13071508 - 27 Jun 2025
Viewed by 846
Abstract
Human metapneumovirus (hMPV), a member of the Pneumoviridae subfamily, has emerged as a significant etiological agent of acute respiratory tract infections across diverse age groups, particularly affecting infants, the elderly, and immunocompromised individuals. Since its initial identification in 2001, hMPV has been recognized [...] Read more.
Human metapneumovirus (hMPV), a member of the Pneumoviridae subfamily, has emerged as a significant etiological agent of acute respiratory tract infections across diverse age groups, particularly affecting infants, the elderly, and immunocompromised individuals. Since its initial identification in 2001, hMPV has been recognized globally for its seasonal circulation pattern, predominantly in late winter and spring. hMPV is a leading etiological agent, accounting for approximately 5% to 10% of hospitalizations among pediatric patients with acute respiratory tract infections. hMPV infection can result in severe bronchiolitis and pneumonia, particularly in young children, with clinical manifestations often indistinguishable from those caused by human RSV. Primary hMPV infection typically occurs during early childhood; however, re-infections are frequent and may occur throughout an individual’s lifetime. hMPV is an enveloped, negative-sense RNA virus transmitted through respiratory droplets and aerosols, with a 3–5-day incubation period. The host immune response is marked by elevated pro-inflammatory cytokines, which contribute to disease severity. Advances in molecular diagnostics, particularly reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and metagenomic next-generation sequencing (mNGS), have improved detection accuracy and efficiency. Despite these advancements, treatment remains largely supportive, as no specific antiviral therapy has yet been approved. Promising developments in vaccine research, including mRNA-based candidates, are currently undergoing clinical evaluation. This review synthesizes current knowledge on hMPV, highlighting its virological, epidemiological, and clinical characteristics, along with diagnostic advancements and emerging therapeutic strategies, while underscoring the critical role of continued research and sustained preventive measures—including vaccines, monoclonal antibodies, and non-pharmaceutical interventions—in mitigating the global burden of hMPV-related disease. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Infections in the Immunocompromised Host)
Show Figures

Figure 1

21 pages, 2246 KiB  
Review
Potential Resistance Mechanisms Exhibited by Cystic Fibrosis Patients Against SARS-CoV-2
by Yasmin K. Elsharabassi, Nuha T. Swaidan and Mohamed M. Emara
Viruses 2025, 17(7), 919; https://doi.org/10.3390/v17070919 - 27 Jun 2025
Viewed by 384
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the 2019 coronavirus disease pandemic. The virus primarily spreads through person-to-person contact via aerosols and droplets, contributing to high case numbers and related morbidities. SARS-CoV-2 targets the respiratory tract, causing acute respiratory distress syndrome, particularly in immunocompromised individuals such as those with cystic fibrosis (CF). CF is a life-threatening genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to impaired respiratory function and recurrent severe respiratory symptoms. Despite their potential vulnerability, CF patients have shown a lower incidence of severe COVID-19, suggesting protective factors against SARS-CoV-2. Differential expression of the ACE2 receptor, crucial for viral entry, and other host factors, such as TMPRSS2, may play a role in this resistance to SARS-CoV-2. Analyzing the genomics and transcriptomics profiles of CF patients could provide insights into potential resistance mechanisms. The potential resistance mechanisms include blood and extracellular ATP levels, a deleted/dysfunctional CFTR gene, ACE and ACE2 regulation and expression, ACE and ACE2 polymorphism effects, host proteins and SARS-CoV-2 interactions, and SMN1 and ACE/ACE2 interactions. This review discusses the underlying factors and potential resistance mechanisms contributing to CF patients’ responses to SARS-CoV-2 infection. The review provides an opportunity to further investigate future therapy and research through understanding the underlying potential resistance mechanisms exhibited by CF patients against SARS-CoV-2, including ACE and ACE2 polymorphisms. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 3508 KiB  
Article
Increasing Nebulizer Spray Efficiency Using a Baffle with a Conical Surface: A Computational Fluid Dynamics Analysis
by Hung-Chieh Wu, Fu-Lun Chen, Yuan-Ching Chiang, Yi-June Lo, Chun-Li Lin, Wei-Jen Chang and Haw-Ming Huang
Bioengineering 2025, 12(7), 680; https://doi.org/10.3390/bioengineering12070680 - 20 Jun 2025
Viewed by 457
Abstract
Breath-actuated nebulizers used in aerosol therapy are vital to children and patients with disabilities and stand out for their ability to accurat ely deliver medication while minimizing waste. Their performance can be measured according to the mass output and droplet size. This study [...] Read more.
Breath-actuated nebulizers used in aerosol therapy are vital to children and patients with disabilities and stand out for their ability to accurat ely deliver medication while minimizing waste. Their performance can be measured according to the mass output and droplet size. This study aimed to analyze how the baffle impact surface geometries affect the pressure and flow streamlines inside the nebulizer using computational fluid dynamics (CFD). Computer-aided design models of conical symmetric, conical asymmetric, and arc-shaped baffle designs were analyzed using CFD simulations, with the optimal spray output validated through the differences in mass. Conical baffles exhibited superior pressure distribution and output streamlines at 0.25 cm protrusion, suggesting that the nebulizer spray performance can be enhanced by using such a conical baffle impact surface. This result serves as a valuable reference for future research. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Enhanced Aerosol Containment Performance of a Negative Pressure Hood with an Aerodynamic Cap Design: Multi-Method Validation Using CFD, PAO Particles, and Microbial Testing
by Seungcheol Ko, Kisub Sung, Min Jae Oh, Yoonjic Kim, Min Ji Kim, Jung Woo Lee, Yoo Seok Park, Yong Hyun Kim, Ju Young Hong and Joon Sang Lee
Bioengineering 2025, 12(6), 624; https://doi.org/10.3390/bioengineering12060624 - 9 Jun 2025
Viewed by 503
Abstract
Healthcare providers performing aerosol-generating procedures (AGPs) face significant infection risks, emphasizing the critical need for effective aerosol containment systems. In this study, we developed and validated a negative pressure chamber enhanced with an innovative aerodynamic cap structure designed to optimize aerosol containment. Initially, [...] Read more.
Healthcare providers performing aerosol-generating procedures (AGPs) face significant infection risks, emphasizing the critical need for effective aerosol containment systems. In this study, we developed and validated a negative pressure chamber enhanced with an innovative aerodynamic cap structure designed to optimize aerosol containment. Initially, computational fluid dynamics (CFD) simulations were performed to evaluate multiple structural improvement ideas, including air curtains, bidirectional suction, and aerodynamic cap structures. Among these, the aerodynamic cap was selected due to its superior predicted containment performance, practical feasibility, and cost-effectiveness. The CFD analyses employed realistic transient boundary conditions, precise turbulence modeling using the shear stress transport (SST) k–ω model, and detailed droplet evaporation dynamics under realistic humidity conditions. A full-scale prototype incorporating the selected aerodynamic cap was fabricated and evaluated using physical polyalphaolefin (PAO) particle leakage tests and biological aerosol validation with aerosolized Bacillus subtilis. For the physical leakage tests, the chamber opening was divided into nine sections, and the aerosol dispersion was tested in three distinct directions: ceiling-directed, toward the suction hole, and opposite the suction hole. These tests demonstrated significantly stabilized airflow and substantial reductions in aerosol leakage, consistently maintaining containment levels below the critical threshold of 0.3%, especially under transient coughing conditions. The biological aerosol experiments, conducted in a simulated emergency department environment, involved aerosolizing bacteria continuously for one hour. The results confirmed the effectiveness of the aerodynamic cap structure in achieving at least a one millionth (10−6) reduction in the aerosolized bacterial leakage compared to the control conditions. These findings highlight the importance and effectiveness of advanced CFD modeling methodologies in accurately predicting aerosol dispersion and improving containment strategies. Although further studies assessing the structural durability, long-term operational ease, and effectiveness against pathogenic microorganisms are required, the aerodynamic cap structure presents a promising, clinically practical infection control solution for widespread implementation during aerosol-generating medical procedures. Full article
Show Figures

Figure 1

16 pages, 856 KiB  
Article
Inactivation of Aerosolized Hepatitis A Viral Droplets on Food Contact Surfaces by Ultraviolet-Light-Emitting Diodes at 255 nm and 279 nm
by Breanna Polen, Ankit Patras, Brahmaiah Pendyala and Doris H. D’Souza
Foods 2025, 14(11), 1899; https://doi.org/10.3390/foods14111899 - 27 May 2025
Viewed by 516
Abstract
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses [...] Read more.
Hepatitis A viral outbreaks continue to occur. It can be transmitted through aerosolized droplets and thus can contaminate surfaces and the environment. Ultraviolet light emitting diode (UV-C LED) systems are used for inactivation of microbes, though research is needed to determine optimal doses for aerosolized HAV inactivation. This study evaluates the UV-C LED doses for the inactivation of aerosolized hepatitis A virus (HAV) deposited on stainless-steel and glass discs. HAV was aseptically deposited onto stainless-steel or glass discs (1.27 cm diameter) using a nebulizer within a chamber followed by treatments for up to 1.5 min with 255 nm (surface dose = 0–76.5 mJ/cm2) or 279 nm (surface dose = 0–8.1 mJ/cm2) UV-C LED. Plaque assays were used to enumerate infectious titers of recovered viruses and data from three replicates were statistically analyzed. The calculated linear D10-value (UV-C dose for a 1-log reduction in aerosolized deposits) for HAV by 255 nm UV-C LED was 47.39 ± 7.40 and 40.0 ± 2.94 mJ/cm2 (R2 = 0.94 and 0.91) and using 279 nm UV-C LED were 6.60 ± 0.27 and 5.57 ± 0.74 mJ/cm2 (R2 = 0.98 and 0.94) on stainless-steel and glass discs, respectively. The non-linear Weibull model showed δ (dose needed for a 1-log reduction in aerosolized HAV deposits) values for HAV of 29.69 ± 5.49 and 35.25 ± 15.01 mJ/cm2 by 255 nm UV-C LED (R2 = 0.99 and 0.92) and 6.67 ± 0.63 and 5.21 ± 1.25 mJ/cm2 by 279 nm UV-C LED (R2 = 0.98 and 0.95) on stainless-steel and glass discs, respectively. These data indicate that 279 nm UV-C LED showed higher efficiency for HAV inactivation than 255 nm UV-C LED, and that Weibull models were a better fit when tailing was observed. This study provides the inactivation data needed to aid in designing UV-C LED systems for delivering doses required to inactivate bio-aerosolized HAV deposits on stainless-steel and glass. Full article
(This article belongs to the Special Issue Antimicrobial Strategies in Food Processing, Production and Storage)
Show Figures

Figure 1

16 pages, 13475 KiB  
Article
Low Thermal Stress and Instant Efficient Atomization of Narrow Viscous Microfluid Film Using a Paper Strip Located at the Edge of a Surface Acoustic Wave Atomizer
by Yulin Lei, Yusong Li, Jia Ning, Yu Gu, Chenhui Gai, Qinghe Ma, Yizhan Ding, Benzheng Wang and Hong Hu
Micromachines 2025, 16(6), 628; https://doi.org/10.3390/mi16060628 - 27 May 2025
Viewed by 407
Abstract
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an [...] Read more.
A traditional SAW (surface acoustic wave) atomizer directly supplies liquid to the surface of the atomized chip through a paper strip located in the path of the acoustic beam, resulting in irregular distribution of the liquid film, which generates an aerosol with an uneven particle size distribution and poor directional controllability, and a high heating phenomenon that can easily break the chip in the atomization process. This paper presents a novel atomization method: a paper strip located at the edge of the atomizer (PSLEA), which forms a micron-sized narrow liquid film at the junction of the atomization chip edge and the paper strip under the effect of acoustic wetting. By using this method, physical separation of the atomized aerosol and jetting droplets can be achieved at the initial stage of atomizer startup, and an ideal aerosol plume with no jetting of large droplets, a uniform particle size distribution, a vertical and stable atomization direction, and good convergence of the aerosol beam can be quickly formed. Furthermore, the effects of the input power, and different paper strips and liquid supply methods on the atomization performance, as well as the heating generation capacity of the liquid in the atomization zone during the atomization process were explored through a large number of experiments, which highlighted the advantages of PSLEA atomization. The experiments demonstrated that the maximum atomization rate under the PSLEA atomization mode reached 2.6 mL/min initially, and the maximum thermal stress was 45% lower compared with that in the traditional mode. Additionally, a portable handheld atomizer with stable atomization performance and a median aerosol particle size of 3.95 μm was designed based on the proposed PSLEA atomization method, showing the great potential of SAW atomizers in treating respiratory diseases. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

15 pages, 3766 KiB  
Article
Improving Pulmonary Delivery of Budesonide Suspensions Nebulized with Constant-Output Vibrating Mesh Nebulizers by Using Valved Holding Chamber
by Tomasz R. Sosnowski, Izabela Kazimierczak, Aleksandra Sawczuk, Kamil Janeczek and Andrzej Emeryk
Pharmaceutics 2025, 17(6), 696; https://doi.org/10.3390/pharmaceutics17060696 - 26 May 2025
Viewed by 675
Abstract
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface [...] Read more.
Background: Vibrating mesh nebulizers (VMNs) are not only used to deliver typical pulmonary drugs but are also a promising platform for novel formulations and therapeutic applications. Typically, these devices operate continuously or on demand and are directly connected to the outflow interface (mouthpiece or mask) without valving systems that could spare the drug during exhalation. This paper examines the possibility of increasing the delivery of inhaled budesonide aerosol by attaching a valved holding chamber (VHC) to selected VMNs. Methods: A laboratory in vitro study was conducted for seven budesonide (BUD) nebulization products (0.25 mg/mL). The rates of aerosol delivery from VMNs alone or VMN + VHC systems were determined gravimetrically for a simulated breathing cycle, while droplet size distributions in mists were measured by laser diffraction. Results: The VMN + VHC systems increased the amount of aerosol available for inhalation and the fraction of fine particles that could penetrate the pulmonary region. Depending on the VMN and BUD product, a relative increase of 30–300% in the total drug delivery (T) and 50–350% in the pulmonary drug availability (P) was obtained. The results are explained by the reduction in aerosol losses during exhalation (the fugitive emission) by the VHC and the simultaneous elimination of the largest droplets due to coalescence and deposition in the chamber. Both VMN and BUD affected the aerosol’s properties and discharge mass and thus the actual benefits of the VHC. Conclusions: While the results confirm the superiority of VMN + VHC over VMNs alone in nebulizing BUD suspensions, they also show that it is difficult to predict the effects quantitatively without testing the individual nebulizer–chamber–drug combination. Full article
Show Figures

Graphical abstract

23 pages, 2743 KiB  
Article
Aerosol, Clouds and Radiation Interactions in the NCEP Unified Forecast Systems
by Anning Cheng and Fanglin Yang
Meteorology 2025, 4(2), 14; https://doi.org/10.3390/meteorology4020014 - 23 May 2025
Viewed by 1118
Abstract
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and [...] Read more.
In this study, we evaluate aerosol, cloud, and radiation interactions in GFS.V17.p8 (Global Forecast System System Version 17 prototype 8). Two experiments were conducted for the summer of 2020. In the control experiment (EXP CTL), aerosols interact with radiation only, incorporating direct and semi-direct aerosol effects. The sensitivity experiment (EXP ACI) couples aerosols with both radiation and Thompson microphysics, accounting for aerosol indirect effects and fully interactive aerosol–cloud dynamics. Introducing aerosol and cloud interactions results in net cooling at the top of the atmosphere (TOA). Further analysis shows that the EXP ACI produces more liquid water at lower levels and less ice water at higher levels compared to the EXP CTL. The aerosol optical depth (AOD) shows a good linear relationship with cloud droplet number concentration, similar to other climate models, though with larger standard deviations. Including aerosol and cloud interactions generally enhances simulations of the Indian Summer Monsoon, stratocumulus, and diurnal cycles. Additionally, the study evaluates the impacts of aerosols on deep convection and cloud life cycles. Full article
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Methodological Advancements in Testing Agricultural Nozzles and Handling of Drop Size Distribution Data
by Giovanna Mazzi, Lorenzo Becce, Ayesha Ali, Mara Bortolini, Elena Gregoris, Matteo Feltracco, Elena Barbaro, Andreas Gronauer, Andrea Gambaro and Fabrizio Mazzetto
AgriEngineering 2025, 7(5), 139; https://doi.org/10.3390/agriengineering7050139 - 6 May 2025
Viewed by 1100
Abstract
Plant protection products are necessary to guarantee food security, but their drift into the environment, usually in the form of aerosol, poses a threat to the health of bystanders and surrounding ecosystems. Appropriate testing of plant protection equipment and of its possible configurations [...] Read more.
Plant protection products are necessary to guarantee food security, but their drift into the environment, usually in the form of aerosol, poses a threat to the health of bystanders and surrounding ecosystems. Appropriate testing of plant protection equipment and of its possible configurations is key to reducing drift while guaranteeing treatment efficacy. A key role in drift generation and treatment quality is played by the drop size distribution (DSD) of the employed spray nozzles. The DSD of nozzles can and should be tested before being employed by various methods. This paper recounts the recent experience in testing the DSD generated by two types of agricultural nozzles by an Oxford Lasers N60V Particle/Droplet Image Analysis (PDIA) system. The analyses put in place aimed at identifying the optimal instrument settings and adapting the methodology to the relevant ISO 25358:2018 standard. The cumulated DSD of the two nozzle types have then been fitted with a logistic function, with the aim to obtain nozzle performance models. The fitting has proven highly reliable, with correlation coefficients R20.98. These models are a satisfactory starting point to compare the performance of different PPEs. In perspective, the fitted nozzle models can help bridge the mathematical gap with other aspects of PPE performance, such as aerosol generation and downwind transport. Full article
Show Figures

Figure 1

12 pages, 590 KiB  
Article
Necessary Conditions for Earthly Life Floating in the Venusian Atmosphere
by Jennifer J. Abreu, Alyxander R. Anchordoqui, Nyamekye J. Fosu, Michael G. Kwakye, Danijela Kyriakakis, Krystal Reynoso and Luis A. Anchordoqui
Galaxies 2025, 13(3), 48; https://doi.org/10.3390/galaxies13030048 - 22 Apr 2025
Viewed by 539
Abstract
Millimeter-waveband spectra of Venus from both the James Clerk Maxwell Telescope (JCMT) and the Atacama Large Millimeter/submillimeter Array (ALMA) seem to indicate there may be evidence (signal-to-noise ratio of about 15σ) of a phosphine absorption-line profile against the thermal background from deeper, hotter [...] Read more.
Millimeter-waveband spectra of Venus from both the James Clerk Maxwell Telescope (JCMT) and the Atacama Large Millimeter/submillimeter Array (ALMA) seem to indicate there may be evidence (signal-to-noise ratio of about 15σ) of a phosphine absorption-line profile against the thermal background from deeper, hotter layers of the atmosphere. Phosphine is an important biomarker; e.g., the trace of phosphine in the Earth’s atmosphere is unequivocally associated with anthropogenic activity and microbial life (which produces this highly reducing gas even in an overall oxidizing environment). Motivated by the JCMT and ALMA tantalizing observations, we reexamine whether Venus could accommodate Earthly life. More concretely, we hypothesize that the microorganisms populating the Venusian atmosphere are not free floating but confined to the liquid environment inside cloud aerosols or droplets. Armed with this hypothesis, we generalize a study of airborne germ transmission to constrain the maximum size of droplets that could be floating in the Venusian atmosphere by demanding that their Stokes fallout times to reach moderately high temperatures are pronouncedly larger than the microbe’s replication time. We also comment on the effect of cosmic ray showers on the evolution of aerial microbial life. Full article
Show Figures

Figure 1

17 pages, 2533 KiB  
Article
Unveiling the Dynamics of NO3 at the Air–Water Interface and in Bulk Water: A Comparative Study with Cl and ClO
by Yongxia Hu, Ying Zhou, Mohammad Hassan Hadizadeh and Fei Xu
Molecules 2025, 30(8), 1724; https://doi.org/10.3390/molecules30081724 - 11 Apr 2025
Cited by 1 | Viewed by 520
Abstract
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at [...] Read more.
The interaction of nitrate radicals (NO3) with the air–water interface is a critical aspect of atmospheric chemistry, influencing processes such as secondary organic aerosol (SOA) formation, pollutant transformation, and nighttime oxidation. This study investigates the behavior of NO3 radicals at the air–water interface and in bulk water environments through ab initio molecular dynamics simulations, directly comparing them with Cl and ClO radicals. Three distinct configurations of NO3 in water droplets were analyzed: surface-parallel, surface-perpendicular, and bulk-phase. The results reveal environment-dependent dynamics, with surface-localized NO3 radicals exhibiting fewer but more flexible hydrogen bonds compared to bulk-solvated radicals. Analysis of radial distribution functions, coordination numbers, and population distributions demonstrates that NO3 radicals maintain distinct interfacial and bulk-phase preferences, with rapid equilibration in both environments. Electronic structure analysis shows significant modulation of spin density and molecular orbital distributions between surface and bulk environments. The comparative analysis with Cl and ClO radicals highlights how the unique planar geometry and delocalized π-system of NO3 influence its hydration patterns and interfacial activity. These results offer fundamental molecular-level insights into NO3 radical behavior at the air–water interface and in aqueous environments, enhancing our understanding of their role in heterogeneous atmospheric processes and nocturnal chemistry. Full article
Show Figures

Figure 1

13 pages, 1437 KiB  
Article
Control of Aerosolised Type A Influenza Virus H1N1 and a Coronavirus with Vapours Containing Catmint Essential Oil
by Muhammad Yasir, Mark D. P. Willcox, John Ings and Peter van Bruinessen
Hygiene 2025, 5(2), 15; https://doi.org/10.3390/hygiene5020015 - 6 Apr 2025
Viewed by 1539
Abstract
Background: Respiratory viruses spread through airborne droplets and aerosols, causing highly contagious acute respiratory syndromes in humans. This study evaluated the antiviral potential of vapours of catmint-oil-based formulations against respiratory viruses. Methods: The antiviral activity of formulations with or without catmint oil [...] Read more.
Background: Respiratory viruses spread through airborne droplets and aerosols, causing highly contagious acute respiratory syndromes in humans. This study evaluated the antiviral potential of vapours of catmint-oil-based formulations against respiratory viruses. Methods: The antiviral activity of formulations with or without catmint oil (CO) in solution or in aerosolised form was determined against influenza virus H1N1 ATCC VR-1469 and mouse hepatitis virus (MHV-1) ATCC/VR261. In solution, both viruses were exposed to CO formulations for 2–3 h. In aerosolised form, H1N1 was exposed to formulations for 2 min in a closed cylinder and MHV-1 for 10 min in a booth. The antiviral effect of the formulations was evaluated by growing H1N1 in a Madin–Darby canine kidney (MDCK; ATCC-CRL-2936) and MHV-1 in A9 ATCC/CCL 1.4 cells using TCID50 and a plaque assay, respectively. Transmission electron microscopy (TEM) was conducted to investigate the mode of action of the formulations. Results: In solution, the formulation containing hydrogenated CO (HCO), bromelain, N-acetylcysteine and Tween 20 (Formulation (1)) reduced the viability of H1N1 by 2.6 ± 0.07 log10 (p = 0.025) and MHV-1 by 4.5 ± 0.14 log10 (p = 0.014) within 2–3 h. In vapourised form, Formulation (1) produced similar antiviral effects against H1N1, reducing it by 3.00 ± 0.07 log10 (p = 0.002) within 2 min, and Formulation (1) produced a 3.00 ± 0.07 log10 reduction of MHV-1 (p < 0.001) within 10 min (the minimum time needed to detect infective viral particles in the experimental set-ups). Formulation (3) (without bromelain) reduced H1N1 by 1.57 ± 0.14 log10 (p = 0.008) after 2 min and MHV-1 by 1.3 ± 0.04 log10 (p = 0.057) after 10 min. In the absence of catmint oil (Formulation (4)) or in the absence of catmint oil and bromelain (Formulation (5)), there were only slight reductions in the viability of aerosolised H1N1 (1.00 ± 0.14 log10, p = 0.046; <1 log10, p = 0.966, respectively) and MHV-1 (1.07 ± 0.02 log10, p = 0.013; 0.16 ± 0.03 log10, p = 0.910, respectively). The TEM analysis showed that the formulation disrupted the H1N1 envelopes and caused a reduction in size of the viral particles. Conclusions: The catmint-oil-based formulations reduced the H1N1 and MHV-1 by disrupting the vial envelopes. Full article
Show Figures

Figure 1

18 pages, 832 KiB  
Article
Extending a COVID-19 Job Exposure Matrix: The SARS-CoV-2 or COVID-19 Job Exposure Matrix Module (SCoVJEM Module) for Population-Based Studies
by Ximena P. Vergara, Kathryn Gibb, David P. Bui, Elisabeth Gebreegziabher, Elon Ullman and Kyle Peerless
Int. J. Environ. Res. Public Health 2025, 22(3), 448; https://doi.org/10.3390/ijerph22030448 - 18 Mar 2025
Viewed by 517
Abstract
The risk of workplace SARS-CoV-2 transmission is increased by aerosolization or droplets and increased respiratory rates or increased viral stability in cold environments. Few methods exist for identifying occupational risks of SARS-CoV-2 transmission. We extended a SARS-CoV-2 job exposure matrix (JEM) into four [...] Read more.
The risk of workplace SARS-CoV-2 transmission is increased by aerosolization or droplets and increased respiratory rates or increased viral stability in cold environments. Few methods exist for identifying occupational risks of SARS-CoV-2 transmission. We extended a SARS-CoV-2 job exposure matrix (JEM) into four dimensions, talking loudly (Loud) (very loud, loud, somewhat loud, or not), physical activity (PA) (high, medium or low), and cold (Cold) (cold or not) and hot environments (Hot) (hot or not), using data from the Occupational Information Network (O*NET) and a priori questions for each and noise measurements for 535 occupations. We classified 70%+ occupations as loud or very loud (74.6%); whereas 13.8% were high PA, 18.5% exposed to cold, and 23.7% exposed to hot temperatures. Applying to California 2019 workforce data to explore by race/ethnicity and sex, we found 21.2% worked in very loud and 12.6% in high PA occupations and 15.7% in cold and 17.8% hot environments. Latino workers were highly represented in very loud and high PA levels among farming (83.8 and 78.4%) and construction (58.7% and 50.3%). More males worked in each highest exposure level than females. This JEM provides aerosol transmission proxies for COVID-19 risk factors and merits investigation as a tool for epidemiologic studies. Full article
(This article belongs to the Special Issue Health-Related Risk Caused by Occupational Environmental Exposure)
Show Figures

Figure 1

Back to TopTop