Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station
Abstract
:1. Introduction
2. Lidar and Satellite Instruments
3. Measurement Technique
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weitkamp, C. Lidar: Range Resolved Optical Remote Sensing of the Atmosphere; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–18. [Google Scholar]
- Monod, A.; Liu, Y. Aerosol formation and heterogeneous chemistry in the atmosphere. EPJ Web Conf. 2011, 18, 04002. [Google Scholar] [CrossRef]
- Perevedentsev, Y.P.; Shantalinskii, K.M.; Sherstyukov, B.G.; Guryanov, V.V. Current Climatic Changes in the Troposphere, Stratosphere, and Mesosphere, and Inter-Layer Interactions. IOP Conf. Ser. Earth Environ. Sci. 2019, 386, 012003. [Google Scholar] [CrossRef]
- Goessling, H.F.; Bathiany, S. Why CO2 cools the middle atmosphere—A consolidating model perspective. Earth Syst. Dynam. 2016, 7, 697–715. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Nakane, H.; Sugimoto, N.; Matsui, I.; Sasano, Y.; Fujinuma, Y.; Ikeuchi, I.; Kurokawa, J.-I.; Furuhashi, N. Algorithm improvement and validation of National Institute for Environmental Studies ozone differential absorption lidar at the Tsukuba Network for Detection of Stratospheric Change complementary station. Appl. Opt. 2006, 45, 3561–3576. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, M.; Nagai, T.; Sakai, T.; Hirose, Y. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide. Appl. Opt. 2007, 46, 2269–2279. [Google Scholar] [CrossRef] [PubMed]
- Godin, S.; Bergeret, V.; Bekki, S.; David, C.; Mégie, G. Study of the interannual ozone loss and the permeability of the Antarctic Polar Vortex from long-term aerosol and ozone lidar measurements in Dumont d’Urville (66.4°, 140° S). J. Geophys. Res. 2001, 106, 1311–1330. [Google Scholar] [CrossRef]
- Gaudel, A.; Ancellet, G.; Godin-Beekmann, S. Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44° N, 6.7° E. Atmos. Environ. 2015, 113, 78–89. [Google Scholar] [CrossRef]
- Hu, S.; Hu, H.; Wu, Y.; Zhou, J.; Qi, F.; Yue, G. Atmospheric ozone measured by differential absorptionlidar over Hefei. Proc. SPIE 2003, 4893. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Hu, H.; Tan, K.; Tao, Z.; Shao, S.; Cao, K.; Fang, X.; Yu, S. Mobile lidar for measurements of SO2 and 03 in the low troposphere. Proc. SPIE 2005, 5832. [Google Scholar] [CrossRef]
- McDermid, I.S.; Godin, S.M.; Lindquist, L.O. Ground-based laser DIAL system for long-term measurements of stratospheric ozone. Appl. Opt. 1990, 29, 3603–3612. [Google Scholar] [CrossRef]
- McDermid, I.S.; Beyerle, G.; Haner, D.A.; Leblanc, T. Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility. Appl. Opt. 2002, 41, 7550–7555. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecht, W.; McGee, T.J.; Twigg, L.W.; Claude, H.; Schönenborn, F.; Sumnicht, G.K.; Silbert, D. Intercomparison of stratospheric ozone and temperature profiles during the October 2005 Hohenpeißenberg Ozone Profiling Experiment (HOPE). Atmos. Meas. Tech. 2009, 2, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, A.N.; Stolyarchuk, S.Y.; Shmirko, K.A.; Bukin, O.A. Lidar Measurements of Variability of the Vertical Ozone Distribution Caused by the Stratosphere–Troposphere Exchange in the Far East Region. Atmos. Ocean. Opt. 2013, 26, 126–134. [Google Scholar] [CrossRef]
- Burlakov, V.D.; Dolgii, S.I.; Nevzorov, A.V. Modification of the measuring complex at the Siberian Lidar Station. Atmos. Ocean. Opt. 2004, 17, 756–762. [Google Scholar]
- Dolgii, S.I.; Nevzorov, A.A.; Nevzorov, A.V.; Romanovskii, O.A.; Makeev, A.P.; Kharchenko, O.V. Lidar Complex for Measurement of Vertical Ozone Distribution in the Upper Troposphere–Stratosphere. Atmos. Ocean. Opt. 2018, 31, 702–708. [Google Scholar] [CrossRef]
- Fang, X.; Li, T.; Ban, C.; Wu, Z.; Li, J.; Li, F.; Cen, Y.; Tian, B. A mobile differential absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet. Opt. Express 2019, 27, 4126–4139. [Google Scholar] [CrossRef]
- Leblanc, T.; Brewer, M.A.; Wang, P.S.; Granados-Muñoz, M.J.; Strawbridge, K.B.; Travis, M.; Firanski, B.; Sullivan, J.T.; McGee, T.J.; Sumnicht, G.K.; et al. Validation of the TOLNet lidars: The Southern California Ozone Observation Project (SCOOP). Atmos. Meas. Tech. 2018, 11, 6137–6162. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.T.; McGee, T.J.; Sumnicht, G.K.; Twigg, L.W.; Hoff, R.M. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore–Washington, D.C. region. Atmos. Meas. Tech. 2014, 7, 3529–3548. [Google Scholar] [CrossRef] [Green Version]
- De Young, R.; Carrion, W.; Ganoe, R.; Pliutau, D.; Gronoff, G.; Berkoff, T.; Kuang, S. Langley mobile ozone lidar: Ozone and aerosol atmospheric profiling for air quality research. Appl. Opt. 2017, 56, 721–730. [Google Scholar] [CrossRef]
- Alvarez, R.J.; Senff, C.J.; Langford, A.O.; Weickmann, A.M.; Law, D.C.; Machol, J.L.; Merritt, D.A.; Marchbanks, R.D.; Sandberg, S.P.; Brewer, W.A.; et al. Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling. J. Atmos. Ocean. Technol. 2011, 28, 1258–1272. [Google Scholar] [CrossRef]
- Wang, L.; Newchurch, M.; Alvarez, R.; Berkoff, T.; Brown, S.; Carrion, W.; De Young, R.; Johnson, B.; Ganoe, R.; Gronoff, G.; et al. Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns. Atmos. Meas. Tech. 2017, 10, 3865–3876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, R.J.; Senff, C.J.; Weickmann, A.M.; Sandberg, S.P.; Langford, A.O.; Marchbanks, R.D.; Brewer, W.A.; Hardesty, R.M. Reconfiguration of the NOAA TOPAZ Lidar for Ground-based Measurement of Ozone and Aerosol Backscatter. In Proceedings of the 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012; pp. 249–252. [Google Scholar]
- Strawbridge, K.B.; Travis, M.S.; Firanski, B.J.; Brook, J.R.; Staebler, R.; Leblanc, T. A fully autonomous ozone, aerosol and nighttime water vapor lidar: A synergistic approach to profiling the atmosphere in the Canadian oil sands region. Atmos. Meas. Tech. 2018, 11, 6735–6759. [Google Scholar] [CrossRef] [Green Version]
- Browell, E.V.; Ismail, S.; Grant, W.B. Differential absorption lidar (DIAL) measurements from air and space. Appl. Phys. B 1998, 67, 399–410. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Sun, X.; Fan, G.; Xiang, Y.; Fu, Y.; Dong, Y. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source. Opt. Express. 2020, 28, 13786–13800. [Google Scholar] [CrossRef] [PubMed]
- Orphal, J.; Staehelin, J.; Tamminen, J.; Braathen, G.; De Backer, M.-R.; Bais, A.; Balis, D.; Barbe, A.; Bhartia, P.K.; Birk, M.; et al. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015. J. Mol. Spectrosc. 2016, 327, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, X.; Chance, K. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 365–372. [Google Scholar] [CrossRef]
- Wang, H.; Chai, S.; Tang, X.; Zhou, B.; Bian, J.; Zheng, X.D.; Vomel, H.; Yu, K.; Wang, W. Application of temperature dependent ozone absorption cross-sections in total ozone retrieval at Kunming and Hohenpeissenberg stations. Atmos. Environ. 2019, 215, 116890. [Google Scholar] [CrossRef]
- Liu, X.; Chance, K.; Sioris, C.E.; Kurosu, T.P. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements. Atmos. Chem. Phys. 2007, 7, 3571–3578. [Google Scholar] [CrossRef] [Green Version]
- Dolgii, S.I.; Nevzorov, A.A.; Nevzorov, A.V.; Gridnev, Y.; Kharchenko, O.V. Temperature Correction of the Vertical Ozone Distribution Retrieval at the Siberian Lidar Station Using the MetOp and Aura Data. Atmosphere 2020, 11, 1139. [Google Scholar] [CrossRef]
- Gorshelev, V.; Serdyuchenko, A.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmos. Meas. Tech. 2014, 7, 609–624. [Google Scholar] [CrossRef] [Green Version]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Malicet, J.; Daumont, D.; Charbonnier, J.; Parisse, A.; Chakir, A.; Brion, J. Ozone UV spectroscopy 2. Absorption cross-sections and temperature-dependence. J. Atmos. Chem. 1995, 21, 263–273. [Google Scholar] [CrossRef]
- Molecular Spectroscopy and Chemical Kinetics Group Studies at the IUP, University of Bremen. Temperature Dependent Absorption Cross Sections Measured with the SCIAMACHY Satellite Spectrometer. Version 4.0 for Ozone. Available online: https://www.iup.uni-bremen.de/gruppen/molspec/databases/sciamachydata/index.html (accessed on 9 December 2021).
- Molecular Spectroscopy and Chemical Kinetics Group Studies at the IUP, University of Bremen. Temperature-Dependent Absorption Cross-Sections of O3 in the 231–794 nm Range Recorded with GOME FM. O3 Data. Available online: https://www.iup.uni-bremen.de/gruppen/molspec/databases/gomefmdata/index.html (accessed on 9 December 2021).
- Burlakov, V.D.; Dolgii, S.I.; Nevzorov, A.A.; Nevzorov, A.V.; Gridnev, Y.; Kharchenko, O.V. Measurements of Ozone Vertical Profiles in the Upper Troposphere–Stratosphere over Western Siberia by DIAL, MLS, and IASI. Atmosphere 2020, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- August, T.; Klaes, D.; Schlüssel, P.; Hultberg, T.; Crapeau, M.; Arriaga, A.; O’Carroll, A.; Coppens, D.; Munro, R.; Calbet, X. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1340–1371. [Google Scholar] [CrossRef]
- Matvienko, G.G.; Belan, B.D.; Panchenko, M.V.; Romanovskii, O.A.; Sakerin, S.M.; Kabanov, D.M.; Turchinovich, S.A.; Turchinovich, Y.S.; Eremina, T.A.; Kozlov, V.S.; et al. Complex experiment on studying the microphysical, chemical, and optical properties of aerosol particles and estimating the contribution of atmospheric aerosol-to-earth radiation budget. Atmos. Meas. Tech. 2015, 8, 4507–4520. [Google Scholar] [CrossRef] [Green Version]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A.; et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite. IEEE TGRS Trans. Geosci. Remote Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration). Microwave Limb Sounder. The MLS Temperature Product. Available online: https://mls.jpl.nasa.gov/products/temp_product.php (accessed on 9 December 2021).
- NASA (National Aeronautics and Space Administration). MLS Temperature Data. Available online: https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/MLS/ (accessed on 9 December 2021).
- Measures, R.M. Laser Remote Sensing: Fundamentals and Applications; Reprint 1984 de Krieger Publishing Company; Krieger Publishing Company: Malabar, FL, USA, 1992; pp. 237–280. [Google Scholar]
- Burlakov, V.D.; Dolgii, S.I.; Nevzorov, A.A.; Nevzorov, A.V.; Romanovskii, O.A. Algorithm for Retrieval of Vertical Distribution of Ozone from DIAL Laser Remote Measurements. Opt. Mem. Neural Netw. Inf. Opt. 2015, 24, 295–302. [Google Scholar] [CrossRef]
- Dolgii, S.I.; Nevzorov, A.A.; Nevzorov, A.V.; Romanovskii, O.A.; Kharchenko, O.V. Intercomparison of Ozone Vertical Profile Measurements by Differential Absorption Lidar and IASI/MetOp Satellite in the Upper Troposphere-Lower Stratosphere. Remote Sens. 2017, 9, 447. [Google Scholar] [CrossRef] [Green Version]
Wavelength, nm | Temperature, K | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
193 | 203 | 213 | 223 | 233 | 243 | 253 | 263 | 273 | 283 | 293 | |
Online | |||||||||||
299 | 4.12 × 10−19 | 4.15 × 10−19 | 4.25 × 10−19 | 4.15 × 10−19 | 4.3 × 10−19 | 4.25 × 10−19 | 4.36 × 10−19 | 4.36 × 10−19 | 4.38 × 10−19 | 4.46 × 10−19 | 4.58 × 10−19 |
308 | 1.13 × 10−19 | 1.14 × 10−19 | 1.16 × 10−19 | 1.17 × 10−19 | 1.18 × 10−19 | 1.19 × 10−19 | 1.24 × 10−19 | 1.25 × 10−19 | 1.28 × 10−19 | 1.31 × 10−19 | 1.35 × 10−19 |
Offline | |||||||||||
341 | 5.62 × 10−22 | 5.94 × 10−22 | 6.1 × 10−22 | 6.95 × 10−22 | 7.05 × 10−22 | 7.59 × 10−22 | 8.15 × 10−22 | 8.9 × 10−22 | 9.9 × 10−22 | 1.08 × 10−21 | 1.15 × 10−21 |
353 | 4.95 × 10−23 | 6.4 × 10−23 | 7.25 × 10−23 | 8.88 × 10−23 | 9.57 × 10−23 | 1.1 × 10−22 | 1.27 × 10−22 | 1.45 × 10−22 | 1.67 × 10−22 | 2.02 × 10−22 | 2.38 × 10−22 |
Wavelength, nm | Temperature, K | ||||
---|---|---|---|---|---|
218 | 228 | 243 | 273 | 295 | |
Online | |||||
299 | 4.1 × 10−19 | 4.1 × 10−19 | 4.25 × 10−19 | 4.3 × 10−19 | 4.6 × 10−19 |
308 | 1.2 × 10−19 | 1.2 × 10−19 | 1.2 × 10−19 | 1.26 × 10−19 | 1.36 × 10−19 |
Offline | |||||
341 | 6 × 10−22 | 6 × 10−22 | 6 × 10−22 | 6 × 10−22 | 1.2 × 10−21 |
353 | 6.5 × 10−23 | 7.5 × 10−23 | 1 × 10−22 | 1.5 × 10−22 | 2.2 × 10−22 |
Wavelength, nm | Temperature, K | ||||
---|---|---|---|---|---|
203 | 223 | 243 | 273 | 293 | |
Online | |||||
299 | 4.1 × 10−19 | 4.12 × 10−19 | 4.25 × 10−19 | 4.44 × 10−19 | 4.56 × 10−19 |
308 | 1.13 × 10−19 | 1.17 × 10−19 | 1.21 × 10−19 | 1.28 × 10−19 | 1.34 × 10−19 |
Offline | |||||
341 | 5.59 × 10−22 | 6.74 × 10−22 | 7.61 × 10−22 | 9.67 × 10−22 | 1.14 × 10−22 |
353 | 6.06 × 10−23 | 8.58 × 10−23 | 1.15 × 10−22 | 1.73 × 10−22 | 2.42 × 10−22 |
Wavelength, nm | Temperature, K | ||||
---|---|---|---|---|---|
202 | 221 | 241 | 273 | 293 | |
Online | |||||
299 | 4.12 × 10−19 | 4.16 × 10−19 | 4.27 × 10−19 | 4.49 × 10−19 | 4.59 × 10−19 |
308 | 1.18 × 10−19 | 1.19 × 10−19 | 1.23 × 10−19 | 1.31 × 10−19 | 1.36 × 10−19 |
Offline | |||||
341 | 5.74 × 10−22 | 6.25 × 10−22 | 7.16 × 10−22 | 9.49 × 10−22 | 1.13 × 10−21 |
353 | 5.72 × 10−23 | 6.93 × 10−23 | 9.91 × 10−23 | 1.86 × 10−22 | 2.41 × 10−22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgii, S.; Nevzorov, A.A.; Nevzorov, A.V.; Gridnev, Y.; Kharchenko, O.; Romanovskii, O.A. Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station. Atmosphere 2022, 13, 293. https://doi.org/10.3390/atmos13020293
Dolgii S, Nevzorov AA, Nevzorov AV, Gridnev Y, Kharchenko O, Romanovskii OA. Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station. Atmosphere. 2022; 13(2):293. https://doi.org/10.3390/atmos13020293
Chicago/Turabian StyleDolgii, Sergey, Alexey A. Nevzorov, Alexey V. Nevzorov, Yurii Gridnev, Olga Kharchenko, and Oleg A. Romanovskii. 2022. "Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station" Atmosphere 13, no. 2: 293. https://doi.org/10.3390/atmos13020293
APA StyleDolgii, S., Nevzorov, A. A., Nevzorov, A. V., Gridnev, Y., Kharchenko, O., & Romanovskii, O. A. (2022). Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station. Atmosphere, 13(2), 293. https://doi.org/10.3390/atmos13020293