Sensible Heat and Latent Heat Flux Estimates in a Tall and Dense Forest Canopy under Unstable Conditions
Abstract
:1. Introduction
2. Materials
3. Theory and Methods
3.1. Monin–Obukhov Similarity Theory (MOST)
3.2. Sensible Heat Flux
3.3. Latent Heat Flux
3.4. Solving the Sensible and Latent Heat Fluxes
3.5. The Reference, Datasets and Performance Evaluation
4. Results
4.1. Surface Energy Balance Using HEC and λEEC
4.2. Sensible Heat Flux
4.3. Latent Heat Flux
4.4. The Zero-Plane Displacement and the Offset
4.4.1. Setting a Fixed Value for the Zero-Plane Displacement
4.4.2. The Offset
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Solving the Sensible Heat and the Latent Heat Fluxes for Unstable Cases
References
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46, W05301. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Ma, Y.; Liu, P. Overview of Ecohydrological Models and Systems at the Watershed Scale. IEEE Syst. J. 2015, 9, 1091–1099. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef]
- Brutsaert, W. Evaporation into the Atmosphere; (Environmental Fluid Mechanics); Springer: Dordrecht, The Nethelrands, 1982; 299p. [Google Scholar]
- Brotzge, J.A.; Crawford, K.C. Examination of the Surface Energy Budget: A Comparison of Eddy Correlation and Bowen Ratio Measurement Systems. J. Hydrometeorol. 2003, 4, 160–178. [Google Scholar] [CrossRef]
- Cuxart, J.; Boone, A.A. Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective. Bound. Layer Meteorol. 2020, 177, 427–459. [Google Scholar] [CrossRef]
- Brunet, Y. Turbulent Flow in Plant Canopies: Historical Perspective and Overview. Bound. Layer Meteorol. 2020, 177, 315–364. [Google Scholar] [CrossRef]
- Hu, Y.; Buttar, N.A.; Tanny, J.; Snyder, R.L.; Savage, M.J.; Lakhiar, I.A. Surface Renewal Application for Estimating Evapotranspiration: A Review. Adv. Meteorol. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Meyers, T.P.; Hollinger, S.E. An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 2004, 125, 105–115. [Google Scholar] [CrossRef]
- Castellví, F.; Medina, E.T.; Cavero, J. Surface eddy fluxes and friction velocity estimates taking measurements at the canopy top. Agric. Water Manag. 2020, 241, 106358. [Google Scholar] [CrossRef]
- Jackson, R.D. Evaluating Evapotranspiration at Local and Regional Scales. Proc. IEEE 1985, 73, 1086–1096. [Google Scholar] [CrossRef]
- Graefe, J. Roughness layer corrections with emphasis on SVAT model applications. Agric. For. Meteorol. 2004, 124, 237–251. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Andreu, A.; Kustas, W.P.; Polo, M.J.; Carrara, A.; González-Dugo, M.P. Modeling surface energy fluxes over a dehesa (oak savanna) ecosystem using a thermal based two-source energy balance model (TSEB) I. Remote Sens. 2018, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.M.P.; Kanchirapuzha, R.; Varma, M.R.R. Review of approaches for the estimation of sensible heat flux in remote sensing-based evapotranspiration models. J. Appl. Remote Sens. 2020, 14, 041501. [Google Scholar] [CrossRef]
- Buttar, N.A.; Yongguang, H.; Shabbir, A.; Lakhiar, I.A.; Ullah, I.; Ali, A.; Aleem, M.; Yasin, M.A. Estimation of evapotranspiration using Bowen ratio method. IFAC Pap. 2018, 51, 807–810. [Google Scholar] [CrossRef]
- Wang, J.; Buttar, N.A.; Hu, Y.; Lakhiar, I.A.; Javed, Q.; Shabbir, A. Estimation of sensible and latent heat fluxes using surface renewal method: Case study of a tea plantation. Agronomy 2021, 11, 179. [Google Scholar] [CrossRef]
- Castellví, F.; Gavilán, P.; González-Dugo, M.P. Combining the bulk transfer formulation and surface renewal analysis for estimating the sensible heat flux without involving the parameter kB-1. Water Resour. Res. 2014, 50, 8179–8190. [Google Scholar] [CrossRef] [Green Version]
- Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F. Daytime sensible heat flux estimation over heterogeneous surfaces usingmultitemporal land-surface temperature observations. Water Resour. Res. 2016, 52, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Castellví, F.; Oliphant, A.J. Daytime sensible and latent heat flux estimates for a mountain meadow using in-situ slow-response measurements. Agric. For. Meteorol. 2017, 236, 135–144. [Google Scholar] [CrossRef]
- Castellví, F.; González Dugo, M.P. A one-source model to estimate sensible heat flux in agricultural landscapes. Agric. For. Meteorol. 2021, 310, 108628. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D.; Kb, D.P.D.F.; William, J.M.; Loescher, H.W.; Luo, H.; Rebmann, C.; Kolle, O.; Heinesch, B.; et al. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Oliphant, A.J.; Grimmond, C.S.B.; Zutter, H.N.; Schmid, H.P.; Su, H.B.; Scott, S.L.; Offerle, B.; Randolph, J.C.; Ehman, J. Heat storage and energy balance fluxes for a temperate deciduous forest. Agric. For. Meteorol. 2004, 126, 185–201. [Google Scholar] [CrossRef]
- Barr, A.G.; Betts, A.K.; Black, T.A.; McCaughey, J.H.; Smith, C.D. Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. J. Geophys. Res. Atmos. 2001, 106, 33543–33550. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Dutton, J.A. Atmospheric turbulence. Models and methods for engineering aplications. In Atmospheric Turbulence: Models and Methods for Engineering Aplications; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Pahlow, M.; Parlange, M.B.; Porté-Agel, F. On Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound. Layer Meteorol. 2001, 99, 225–248. [Google Scholar] [CrossRef] [Green Version]
- Garratt, J.R. Review: The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Arya, S.P.S. Comments on “Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux”. J. Atmos. Sci. 2002, 29, 1230–1231. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.J.; Everson, C.S.; Odhiambo, G.O.; Mengistu, M.G.; Jarmain, C. Theory and Practice of Evaporation Measurement, with Special Focus on Surface Layer Scintillometry as an Operational Tool for the Estimation of Spatially Averaged Evaporation; Water Research Commission Report, 1335/1: Pretoria, South Africa, 2004. [Google Scholar]
- Paw, U.K.T.; Brunet, Y.; Collineau, S.; Shaw, R.H.; Maitani, T.; Qui, J.; Hipps, L. On coherent structures in turbulence above and within agricultural plant canopies. Agric. For. Meteorol. 1993, 63, 127. [Google Scholar] [CrossRef]
- Chen, W.; Novak, M.D.; Black, T.A.; Lee, X. Coherent eddies and temperature structure functions for three contrasting surfaces. Part II: Renewal model for sensible heat flux. Bound. Layer Meteorol. 1997, 84, 125–147. [Google Scholar] [CrossRef]
- Castellví, F. An Advanced Method Based on Surface Renewal Theory to Estimate the Friction Velocity and the Surface Heat Flux. Water Resour. Res. 2018, 54, 10134–10154. [Google Scholar] [CrossRef]
- Antonia, R.A.; Chambers, A.J.; Friehe, C.A.; Van Atta, C.W. Temperature Ramps in the Atmospheric Surface Layer. J. Atmos. Sci. 1979, 36, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Blanken, P.D.; Black, T.A.; Neumann, H.H.; Den Hartog, G.; Yang, P.C.; Nesic, Z.; Lee, X. The seasonal water and energy exchange above and within a boreal aspen forest. J. Hydrol. 2001, 245, 118–136. [Google Scholar] [CrossRef]
- Harman, I.N.; Finnigan, J.J. A simple unified theory for flow in the canopy and roughness sublayer. Bound. Layer Meteorol. 2007, 123, 339–363. [Google Scholar] [CrossRef]
- Zilitinkevich, S.S.; Mammarella, I.; Baklanov, A.A.; Joffre, S.M. The effect of stratification on the aerodynamic roughness length and displacement height. Bound. Layer Meteorol. 2008, 129, 179–190. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Validation of the Vegetation Cover Method for Land Surface Emissivity Estimation. In Recent Research Developments in Thermal Remote Sensing 2005; Elsevie: Amsterdam, The Netherlands, 2005; pp. 1–20. ISBN 81-7736-164-3. [Google Scholar]
- Ogawa, K.; Schmugge, T.; Jacob, F.; French, A. Estimation of broadband land surface emissivity from multi-spectral thermal infrared remote sensing. Agronomie 2002, 22, 695–696. [Google Scholar] [CrossRef] [Green Version]
- Kidston, J.; Brümmer, C.; Black, T.A.; Morgenstern, K.; Nesic, Z.; McCaughey, J.H.; Barr, A.G. Energy balance closure using eddy covariance above two different land surfaces and implications for CO2 flux measurements. Bound. Layer Meteorol. 2010, 136, 193–218. [Google Scholar] [CrossRef]
- Buttar, N.A.; Yongguang, H.; Tanny, J.; Akram, M.W.; Shabbir, A. Fetch Effect on Flux-Variance Estimations of Sensible and Latent Heat Fluxes of Camellia Sinensis. Atmosphere 2019, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Chávez, J.L.; Howell, T.A.; Copeland, K.S. Evaluating eddy covariance cotton ET measurements in an advective environment with large weighing lysimeters. Irrig. Sci. 2009, 28, 35–50. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Li, F.; Zhang, Y.; Tong, L.; Sun, Q. Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China. Agric. Water Manag. 2010, 98, 87–95. [Google Scholar] [CrossRef]
- Buttar, N.A.; Yongguang, H.; Chuan, Z.; Tanny, J.; Ullah, I.; Aleem, M. Height effect of air temperature measurement on sensible heat flux estimation using flux variance method. Pak. J. Agric. Sci. 2019, 56, 793–800. [Google Scholar]
- Wang, X.; Huo, Z.; Shukla, M.K.; Wang, X.; Guo, P.; Xu, X.; Huang, G. Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater. Agric. Water Manag. 2020, 228, 105922. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Blanken, P.D.; Black, T.A.; Yang, P.C.; Neumann, H.H.; Nesic, Z.; Staebler, R.; Den Hartog, G.; Novak, M.D.; Lee, X. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res. Atmos. 1997, 102, 28915–28927. [Google Scholar] [CrossRef] [Green Version]
- Simpson, I.J.; Edwards, G.C.; Thurtell, G.W.; Den Hartog, G.; Neumann, H.H.; Staebler, R.M. Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. J. Geophys. Res. Atmos. 1997, 102, 29331–29341. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Caselles, V.; Niclòs, R.; Coll, C.; Kustas, W.P. Estimating energy balance fluxes above a boreal forest from radiometric temperature observations. Agric. For. Meteorol. 2009, 149, 1037–1049. [Google Scholar] [CrossRef]
- Jackson, P.S. On The Displacement Height in The Logarithmic Velocity Profile. J. Fluid Mech. 1981, 111, 15–25. [Google Scholar] [CrossRef]
- Cellier, P.; Brunet, Y. Flux-gradient relationships above tall plant canopies. Agric. For. Meteorol. 1992, 58, 93–117. [Google Scholar] [CrossRef]
- Raupach, M.R.; Finnigan, J.J.; Brunet, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound. Layer Meteorol. 1996, 78, 351–382. [Google Scholar] [CrossRef]
- Harman, I.N.; Finnigan, J.J. Scalar concentration profiles in the canopy and roughness sublayer. Bound. Layer Meteorol. 2008, 129, 323–351. [Google Scholar] [CrossRef]
- Shaw, R.H.; Den Hartog, G.; Neumann, H.H. Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Bound. Layer Meteorol. 1988, 45, 391–409. [Google Scholar] [CrossRef]
- Mahrt, L. Surface heterogeneity and vertical structure of the boundary layer. Bound. Layer Meteorol. 2000, 96, 33–62. [Google Scholar] [CrossRef]
- Dyer, A.J. A review of flux-profile relationships. Bound. Layer Meteorol. 1974, 7, 363–372. [Google Scholar] [CrossRef]
Dataset | July (N = 282) | August (N = 521) | ||||
---|---|---|---|---|---|---|
Statistics | D | MAE a | IA | D | MAE a | IA |
Method | (Wm−2%) | (%) | (Wm−2%) | (%) | ||
HEC | 0.87 | 28 22 | 74 | 0.82 | 32 23 | 69 |
λEEC | 0.77 | 79 58 | 57 | 0.75 | 80 57 | 48 |
λER-EC | 1.07 | 28 11 | 84 | 1.09 | 32 12 | 78 |
HLST | 1.00 | 36 27 | 67 | 1.04 | 30 22 | 70 |
λER-LST | 1.00 | 36 14 | 80 | 0.98 | 30 11 | 80 |
Dataset | July (N = 282) | August (N = 521) | |||||||
---|---|---|---|---|---|---|---|---|---|
Statistics | D | MAE a | IA | D | MAE a | IA | |||
Case: | (Wm−2 | %) | (%) | (Wm−2 | %) | (%) | |||
dN = 0.60hc | HLST | 1.24 | 49 | 36 | 55 | 1.30 | 43 | 31 | 53 |
λER-LST | 0.89 | 49 | 20 | 55 | 1.30 | 43 | 16 | 70 | |
dN = 0.65hc | HLST | 1.17 | 42 | 31 | 62 | 1.21 | 38 | 27 | 61 |
λER-LST | 0.82 | 42 | 17 | 77 | 0.91 | 38 | 14 | 75 | |
dN = 0.70hc | HLST | 1.07 | 38 | 28 | 66 | 1.12 | 30 | 22 | 68 |
λER-LST | 0.97 | 38 | 15 | 79 | 0.95 | 30 | 11 | 78 | |
dN = 0.75hc | HLST | 1.02 | 36 | 27 | 67 | 1.05 | 35 | 22 | 70 |
λER-LST | 0.99 | 36 | 14 | 80 | 1.01 | 30 | 11 | 80 | |
dN = 0.80hc | HLST | 0.88 | 36 | 27 | 67 | 0.97 | 30 | 22 | 70 |
λER-LST | 1.05 | 36 | 14 | 80 | 1.01 | 30 | 11 | 80 | |
dN = 0.85hc | HLST | 0.85 | 39 | 14 | 63 | 0.89 | 30 | 11 | 70 |
λER-LST | 1.06 | 39 | 16 | 79 | 1.05 | 30 | 11 | 78 | |
b = 0 | HLST | 1.21 | 45 | 33 | 60 | 1.13 | 35 | 25 | 64 |
λER-LST | 0.91 | 45 | 18 | 75 | 0.94 | 35 | 13 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellví, F.; Buttar, N.A.; Hu, Y.; Ikram, K. Sensible Heat and Latent Heat Flux Estimates in a Tall and Dense Forest Canopy under Unstable Conditions. Atmosphere 2022, 13, 264. https://doi.org/10.3390/atmos13020264
Castellví F, Buttar NA, Hu Y, Ikram K. Sensible Heat and Latent Heat Flux Estimates in a Tall and Dense Forest Canopy under Unstable Conditions. Atmosphere. 2022; 13(2):264. https://doi.org/10.3390/atmos13020264
Chicago/Turabian StyleCastellví, Francesc, Noman Ali Buttar, Yongguang Hu, and Kamran Ikram. 2022. "Sensible Heat and Latent Heat Flux Estimates in a Tall and Dense Forest Canopy under Unstable Conditions" Atmosphere 13, no. 2: 264. https://doi.org/10.3390/atmos13020264
APA StyleCastellví, F., Buttar, N. A., Hu, Y., & Ikram, K. (2022). Sensible Heat and Latent Heat Flux Estimates in a Tall and Dense Forest Canopy under Unstable Conditions. Atmosphere, 13(2), 264. https://doi.org/10.3390/atmos13020264