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Abstract: A method to estimate the sensible heat flux (H) for unstable atmospheric condition requiring
measurements taken in half-hourly basis as input and involving the land surface temperature (LST),
HLST, was tested over a tall and dense aspen stand. The method avoids the need to estimate the zero-
plane displacement and the roughness length for momentum. The net radiation (Rn) and the latent
heat flux (λE) dominated the surface energy balance (SEB). Therefore, λE was estimated applying
the residual method using HLST as input, λER-LST. The sum of H and λE determined with the eddy
covariance (EC) method led to a surface energy imbalance of 20% Rn. Thus, the reference taken for
the comparisons were determined forcing the SEB using the EC Bowen ratio (BREB method). For clear
sky days, HLST performed close to HBREB. Therefore, it showed potential in the framework of remote
sensing because the input requirements are similar to current methods widely used. For cloudy days,
HLST scattered HBREB and nearly matched the accumulated sensible hear flux. Regardless of the time
basis and cloudiness, λER-LST was close to λEBREB. For all the data, both HLST and λER-LST were not
biased and showed, respectively, a mean absolute relative error of 24.5% and 12.5% and an index of
agreement of 68.5% and 80%.

Keywords: sensible heat flux; latent heat flux; in situ sensing; aspen forest

1. Introduction

In non-dry climates, the evapotranspiration or latent heat flux (λE) is one of the
dominant components of both the land-surface water and energy budgets. In dry and
semi-arid climates λE is a critical component of living things. Therefore, among other
issues, monitoring evapotranspiration rates is of interest to understand ecosystem sustain-
ability/vulnerability regardless of the climate [1–5]. Different methodologies are available
to determine λE and micrometeorological methods often involve the surface energy balance
and similarity theory [6–10]. The latter methods require the identification of the dominant
terms in the surface energy balance. On a half-hourly basis, for instance, the energy storage
in tall and dense canopies is significant [11–13]. When the dominant surface fluxes can be
determined using measurements taken at low frequency, the method becomes friendlier
because the instrumentation involved is more robust and affordable and requires minor
power supply. In addition, most similarity-based formulations allow involving remote
sensing products. Hence, provided they are used on clear-sky days, they can be applied at
non-local scales [14–20].

During the day, the sensible heat flux (H) on a half-hourly basis is a dominant term in
the surface energy balance. Thus, the aim of this paper was to continue research on testing a
recent method to estimate the H under unstable cases which involves measurements taken
at low frequency including the land surface temperature (LST), HLST [21]. Currently, HLST
has been tested over agricultural landscapes and mountain meadows, showing potential
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in the framework of remote sensing [22–24]. The good performance obtained in different
scenarios aimed here to adapt HLST for a tall and dense canopy. Here, the scenario selected
to test HLST was a Boreal Forest at a site which allowed estimation of the latent heat flux (LE)
as a residual of the surface energy balance. In this study the data analysis was mainly based
on the unstable condition and the criterion for the selection of unstable data was through
the sign of sensible heat flux, because under stable condition the measured surface fluxes
are expected to have major errors using the eddy covariance method [25,26]. Therefore, it
was omitted with the aim of excluding errors in the estimated HSR. The testing included
clear and cloudy days.

2. Materials

The campaign was carried out in a forest located in Prince Albert National Park
(Saskatchewan, Canada; 53.629◦ N, 106.200◦ W, 600.63 m asl) in 1996. A brief description
of the campaign accessed on (28 December 2021) (http:///boreas/TF/tf01tflx/comp/
TF01_Tower_Flux.txt; Black, 2000) is the following. The forest consisted in an even-aged
70-year-old aspen stand with a mean height of 21.5 m. Hazelnut (2.0 m tall) dominated
the understory. The forest had a minimum fetch of 3 km extending on a gentle rolling
topography and the aspen canopy closure averaged 89% from June to August. For July
and August, the mean leaf area index was 5.4 m2m−2 and 5.25 m2m−2, respectively [27]
and the following measurements on a half-hourly basis were obtained from the dataset
tf01_tower_flux.dat (freely downloadable). The soil heat flux was sampled at 3 cm below
the ground at seven points. The mean soil temperature and the volumetric fraction of water
were placed in a sublayer (3 cm thick) above the soil heat flux plates. The temperature and
pressure of the air, the wind speed, the friction velocity and the sensible heat and latent heat
fluxes (determined using the eddy covariance (EC) system) were measured at 39 m above
the ground. The wind speed was measured at the canopy top and the downwelling and
upwelling shortwave and longwave radiation were measured at 33 m above the ground.

3. Theory and Methods
3.1. Monin–Obukhov Similarity Theory (MOST)

The atmospheric surface layer is also known as the constant flux layer because fluxes
are nearly constant with height, with variations of less than 10 % under steady-state and
horizontal homogeneous conditions [28]. Monin and Obukhov (1954) introduced two
scaling parameters, which are independent of height in the surface layer for the structure
of turbulence [29]. The friction velocity (u∗) expressed as Equation (1) is [30]:

u∗ =
[(

u′w′
)2

+
(

v′w′
)2
] 1

4
(1)

where u′, v′ and w′ are the fluctuations from the mean three-dimensional windspeed of u, v
and w respectively. The second scaling parameter, which is a function of momentum and
sensible heat fluxes, is the Obukhov length, (Lo) expressed as Equation (2):

Lo = −
ρcpTau3

∗
kgH

(2)

where ρ is the density of air, cp the specific heat capacity of air at constant pressure, Ta the
absolute air temperature, k the von Karman constant and g the acceleration due to gravity.
The negative sign is the sign of the sensible heat flux corresponding to the vertical air
temperature difference between two heights. The Obukhov length can be interpreted as the
height, above (do + z), for which free convection dominates [31,32]. Another, similar key
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scaling parameter which determines the structure of turbulence is the turbulent temperature
scale (Ta) expressed as Equation (3) [30,31]:

Ta =
H

ρcpu∗
(3)

On the other hand, turbulent characteristics depend upon a dimensionless stability
parameter (ζ) expressed as Equation (4):

ζ =
z
L
= (z− d)/Lo (4)

where z is the height above the surface and d is the zero-plane displacement height. The
dimensionless stability parameter ζ is a theoretical indicator of the atmospheric stability.

3.2. Sensible Heat Flux

The summary of the method, fully described in Castellví and González-Dugo (2021) [24],
to estimate the sensible heat flux (half-hourly basis) is as follows. It combines similarity
and surface renewal formulation through Equations (5)–(7):

H = ρCp

√
kzu∗Φ−1

h
πτ

A (5)

1
τ u∗

=
1

2hc
(6)

LST − (T + b) = s A

where

s =
λh
2k

Z
hc

(
ln
(

z
z0m

)
+ 2
)

(7)

In Equation (5), z is the measurement height above the zero-plane displacement (d),
thus z = Z − d where Z is measurement height above the ground, Φh is the stability
correction function for heat transfer, λ and A, namely ramp period and amplitude, are two
parameters that identify a coherent motion in the surface sublayer above the canopy top.
By defining a macro parcel of air as a parcel of air which volume, per unit area, may cover
all the sources of scalar at the surface, a coherent motion (regular eddy motion of macro
parcels of air) is carried out by a coherent structure which is defined as an eddy capable to
impose some organization in the turbulence in the surface layer. Thus, the ramp period
accounts for the time that a macro parcel of air remained in contact with the surface and the
ramp amplitude for the net temperature increase (for an unstable case) while it remained
in contact with the surface [33–35].

Coherent structures near the canopy are mostly driven by shear rather than by buoy-
ancy [36]. Thus, Chen et al. (1997b) proposed to relate the ramp frequency and u∗/z [34].
Approaching the shear at the canopy top by u∗/hc (hc is the canopy height), the semi-
empirical Equation (6) was proven reliable for a variety of canopies. Assuming that the
maximum temperature to be reached by the parcel of air is LST, Equation (7) proposes a
linear relationship between quantities (LST–T) and A where T is the potential temperature
of the air measured at a reference height above the canopy [21,22]. In Equation (7), b is a
coefficient (hereafter referred to as offset) that corrects for the fact that (LST–T) may not
necessarily follow the adiabatic lapse rate at neutral conditions (i.e., case where A = 0 K)
and z0m is the roughness length for momentum. Because the factor [8k/π]1/2 approaches to
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one, combining Equations (5)–(7) the sensible heat flux can be estimated above the canopy
as Equation (8):

HLST = ρCp

[
zhcΦ−1

h

]1/2

Z
ku∗(LST − T − b)(

ln
(

z
z0m

)
+ 2
) (8)

3.3. Latent Heat Flux

The latent heat flux can be estimated as a residual of the surface energy balance (the
residual method) as Equation (9):

λER = Rn − G − S − H (9)

where Rn is the net radiation, G is the soil heat flux and S is the energy storage (per unit
time and surface) below the measurement height. The net radiation (Rn) was calculated
using four radiative components. The soil heat flux (Wm−2) and the total storage in a
column were estimated using Equations (10) and (11), respectively [37]:

G = Gzs + Cszs]∆Ts/∆t (10)

where Cs = 0.3 + 4.18θw.
S = 44.5∆ + 1.66 (11)

In Equation (10), overbar denotes spatial average, zs is the depth at which the soil heat
flux plates were collocated and the second term in the right hand denotes heat storage in
the soil above zs where Cs is the soil heat capacity (MJm−3K−1) and θw is the soil water
content. In Equation (10), ∆T is the change of temperature of the air at the reference height
on a half-hourly basis. Hereafter, λER determined using as input HLST and HEC is denoted
as λER-LST and λER-EC, respectively.

3.4. Solving the Sensible and Latent Heat Fluxes

For tall canopies, the zero-plane displacement and the roughness length for momen-
tum are related to each other and depend on the stability parameter [15,38,39]. It was
accounted here and Appendix A describes an iterative procedure to simultaneously esti-
mate d, z0m, u∗, HLST and λER-LST.

The land surface temperature was retrieved from the Stefan–Boltzman law and the
effective emissivity of the surface (ε0) was estimated as [40]; ε0 = εv(1− fs) + εsfs(1.74fs − 0.74)
+ 1.7372fs(1 − fs) where fs is the fraction cover and εv and εs are representative emissivities
for the canopy and understories. During the experiment, the fraction cover remained fairly
constant (fs = 0.89) and the emissivities for the aspen canopy and understories (hazelnut
and soil) were set to 0.97 and 0.96, respectively [41]. Thus, ε0 was set to 0.97. The offset
in Equation (7) was determined as in Castellví et al. (2016) [22]. Thus, the coefficient b at
sunrise and sunset was determined setting A = 0 K, at noon the offset was set to zero and
for the rest of the day it was calculated using a linear relationship from sunrise to noon and
from noon to sunset.

3.5. The Reference, Datasets and Performance Evaluation

The sum of the EC sensible heat flux and latent heat flux was significantly smaller that
the available net surface energy (shown in Section 4.1) which has implications on how HEC
and λEEC should be interpreted. Kidstone et al. (2010) conducted experiments over two
different land surfaces and implications for CO2 fluxes measurement using eddy covari-
ance method. Results suggested that spatio-temporal distributions of total surface fluxes
were in good agreement and difference between the relative magnitudes of the fluxes for
several investigated energy balance closure classes was observed [42]. Noman et al. (2019)
estimated surface fluxes including sensible and latent heat fluxes along variable fetch using
flux variance technique, linear regression was performed between the sum of turbulent
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fluxes and the available energy fluxes and energy balance closure was well behaved with
linear regression of R2 = 0.83 [43]. J. L. Chavez et al. (2009) evaluated the performance of
eddy covariance over cotton with large weighing lysimeters; results suggested the esti-
mated surface fluxes were underestimated with average error of about 30%. Energy balance
closure was 73.2–78.0% for daytime fluxes [44]. R. Ding et al. (2019) conducted experiments
in maize field of northwest China for evaluating performance of eddy covariance using
lysimeters. Energy balance ratio was 0.84 for stable conditions, indicating that lack of
energy balance closure occurred and estimated ET was adjusted by Bowen ratio forced
closure method [45]. Noman et al. investigated performance of flux variance method at
different heights and results suggested relatively better agreement between the energy
balance closure with slope of regression 0.55 and RMSE of 33.95 Wm−2 [46]. X. Wang
et al. (2010) performed experiments in maize fields for the estimation of energy fluxes
and evapotranspiration in arid area with shallow groundwater. Estimated latent heat flux
was adjusted using Bowen ratio with linear regression of R2 = 0.94 and slope of regression
was 0.732 and 0.634 respectively for half-hourly data in 2017 and 2018. The water balance
results showed average water table depth of 1.52 and 1.76 m for the growing season of 2017
and 2018 [47]. Here, the EC Bowen ratio (βEC) was used to refine the EC sensible heat and
latent heat fluxes, Equation (12), which were taken as a reference [27]:

HBREB =
(Rn− G− S)
(1 + βEC)

βEC (12)

A dataset was formed excluding rainy events [25]. July only included cloudy days.
August had 11 clear sky days and the rest were cloudy. Datasets were formed with samples
having different friction velocity thresholds (up to 0.6 m/s).

The performance of the flux estimates, Fest, was analyzed determining the sum of the
estimates over the sum of the reference (D), the mean absolute difference or error (MAE)
and the index of agreement (IA) expressed as below [48]:

D =

N
∑

i=1
Festi

N
∑

i=1
Fi

MAE =
1
N

N

∑
i=1
|Festi − Fi| and IA = 1− 1

2

N
∑

i=1
|Festi − Fi|

N
∑

i=1

∣∣Fi − F
∣∣ (13)

where F is the flux taken as reference, N is the total number of samples and overbar denotes av-
erage. The expression given in Equation (12) is valid when ∑N

i=1|FestiF| ≤ 2 ∑N
i=1
∣∣Fi − F

∣∣ [48]
and, here, the full expression to calculate IA was omitted because the datasets formed
accomplished this constrain. The performance of HLST (determined as proposed in the
Appendix A) was compared with the estimates obtained by assuming a fixed value for the
zero-plane displacement (selected by rule of thumb in a range of 0.6–0.85 times the canopy
height) and, in addition, by assuming that the offset may be neglected.

4. Results
4.1. Surface Energy Balance Using HEC and λEEC

Figure 1 shows the accumulated HEC, λEEC and (HEC + λEEC + G + S) standardized by
the net radiation for different friction velocity thresholds. Regardless of the month, it is
shown that the weight of the latent heat flux in the surface energy balance was much higher
than of the sensible heat flux. The energy partitioning in Figure 1 showed the need to refine
the EC fluxes. For all the data, about 20% of Rn was unexplained by (HEC + λEEC + G + S).
The surface energy balance improved as the friction velocity threshold increased. A good
closure (of about 10%) was obtained for a short dataset, for friction velocities higher than
0.5 m/s. Table 1 shows the coefficients D, MAE and IA for the sensible heat fluxes HEC and
HLST and the latent heat fluxes determined using the EC method, λEEC, and the residual
method, λER-EC and λER-LST. Regardless of the month, Table 1 shows that λER-EC was
closer to λEBREB than λEEC. The reasons of the surface energy imbalance are unknown
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(i.e., yet an unresolved problem), however, (on the basis of forcing the closure using the
Bowen ratio) Table 1 shows that the residual method was suitable to estimate the latent
heat flux. This is of interest because estimation of the Bowen ratio in the present context
appears difficult given that over very tall vegetation, measurements are expected in the
roughness sublayer (i.e., a layer where gradients are weak).
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Figure 1. Accumulated surface flux estimates, HEC (squares), λEEC (triangles) and
(HEC + λEEC + G + S) (circles), standardized by the net radiation (AFlux/ARn) for different friction
velocity thresholds in July (solid) and August (open).

Table 1. EC and LST sensible heat and latent heat flux estimates.

Dataset July (N = 282) August (N = 521)
Statistics D MAE a IA D MAE a IA
Method (Wm−2%) (%) (Wm−2%) (%)

HEC 0.87 28 22 74 0.82 32 23 69
λEEC 0.77 79 58 57 0.75 80 57 48

λER-EC 1.07 28 11 84 1.09 32 12 78
HLST 1.00 36 27 67 1.04 30 22 70

λER-LST 1.00 36 14 80 0.98 30 11 80
a MAE expressed in % indicates relative mean absolute error (MAE over the mean reference flux). N is the number
of samples.

4.2. Sensible Heat Flux

Figure 2 compares HEC and HLST against HBREB and Figure 3 shows the coefficients D,
MAE and IA for HEC and HLST determined for different friction velocity thresholds and
cloudiness. Regardless of the month, Figure 2 shows that HECt ended to underestimate
HBREB while HLST scattered around HBREB. Therefore, the coefficients D in Figure 3 show
that the accumulated HLST was consistently closer to the reference than using HEC. On
a half-hourly basis, the MAE and IA obtained for clear sky days showed that HLST and
HEC performed similarly. For cloudy days HEC was closer than HLST to HBREB, though the
MAE coefficients differed about 10 Wm−2 (regardless of the month and friction velocity
threshold). It is difficult to explain why the accumulated HLST was closer to HBREB than
HEC. The lack of closure of the EC surface energy balance was, partly, attributed to lack
of stationarity [49]. Though a steady flow on a half-hourly basis is also assumed in HLST,
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perhaps the use of measurements taken at low frequency as input tended to balance such
source of error. On the other hand, the higher IA coefficients obtained using HEC than
HLST can be attributed to the use of measurements taken at high frequency. That is, the
EC method requires as input direct measurements of the turbulence and, therefore, it is
expected to be highly correlated with the actual eddy flux.
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Figure 3. Coefficients D (top), MAE (middle) and IA (bottom) for sensible heat flux estimates
using the EC method (thin solid) and the LST method (thick solid) for different friction velocity
thresholds in clear sky days (open circle) and cloudy days (solid circle) in July (left panel) and August
(right panel).
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4.3. Latent Heat Flux

Figure 4 shows the coefficients D and IA obtained for λER-EC and λER-LST for different
friction velocity thresholds and cloudiness. Here, Figure 4 was included for completeness
(i.e., the results shown can qualitatively be inferred from Figure 3), however, the MAE
values were not shown (i.e., they are identical to the values shown in Figure 3). Regardless
of the cloudiness and friction velocity threshold and for all the data (Table 1), it is shown
that λER-LST nearly matched λEBREB. λER-EC tended to overestimate (7% and 9% in July and
August, respectively) λEBREB and the worst performance was obtained using λEEC. For
clear sky days, λER-EC and λER-LST performed close to λEBREB. For cloudy days, λER-EC
was closer to λEBREB than λER-LST but in August (which includes cloudy and clear sky
days), Figure 5, which compared λEEC, λER-EC and λER-LST against λEBREB, shows that
λER-LST scattered the 1:1 line and λER-EC tended to overestimate.
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The results of the linear regression analysis obtained for the samples collected dur-
ing clear sky days (August) showed the λER-LST performed close to λEBREB, λER-LST =
0.98 λEBREB + 4 Wm−2, with a coefficient of determination (R2) of 0.89. The bias was
negligible (1 Wm−2) and the mean absolute relative error was 9%. For cloudy days
in July, it was found: λER-LST = 0.96 λEBREB + 13 Wm−2, R2 = 0.85; bias = 0 Wm−2,
and the mean relative absolute error was 14% (Table 1). For cloudy days in August:
λER-LST = 0.98 λEBREB + 3 Wm−2, R2 = 0.82, bias = 8 Wm−2 and the mean relative absolute
error was 12%. Thus, −λER-LST performed excellently.

4.4. The Zero-Plane Displacement and the Offset

Table 2 shows the coefficients D, MAE and IA for HLST obtained for each month,
setting a given value for the zero-plane displacement and setting the offset to zero. For
completeness, the comparisons between λER-LST and λEBREB were also included.
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Table 2. LST sensible heat and latent heat flux estimates determined using different zero-plane
displacements at neutral conditions and neglecting the offset.

Dataset July (N = 282) August (N = 521)
Statistics D MAE a IA D MAE a IA

Case: (Wm−2 %) (%) (Wm−2 %) (%)

dN = 0.60hc HLST 1.24 49 36 55 1.30 43 31 53
λER-LST 0.89 49 20 55 1.30 43 16 70

dN = 0.65hc HLST 1.17 42 31 62 1.21 38 27 61
λER-LST 0.82 42 17 77 0.91 38 14 75

dN = 0.70hc HLST 1.07 38 28 66 1.12 30 22 68
λER-LST 0.97 38 15 79 0.95 30 11 78

dN = 0.75hc HLST 1.02 36 27 67 1.05 35 22 70
λER-LST 0.99 36 14 80 1.01 30 11 80

dN = 0.80hc HLST 0.88 36 27 67 0.97 30 22 70
λER-LST 1.05 36 14 80 1.01 30 11 80

dN = 0.85hc HLST 0.85 39 14 63 0.89 30 11 70
λER-LST 1.06 39 16 79 1.05 30 11 78

b = 0 HLST 1.21 45 33 60 1.13 35 25 64
λER-LST 0.91 45 18 75 0.94 35 13 78

a The MAE in % indicates relative mean absolute error (MAE over the mean reference flux). N is the number
of samples and dN, hc and b denote zero-plane displacement at neutral conditions, canopy height and offset,
respectively. In bold is the input modified.

4.4.1. Setting a Fixed Value for the Zero-Plane Displacement

The half-hourly difference, E, in closing Equation (A6) for a fixed dN/hc ratio,
E = z0m − (2.05 dN/d − 1.05)z0mN), was averaged for samples collected in cloudy days,
clear sky days and for all the data, hereafter referred to as Error. Figure 6 shows the
Error obtained for dN/hc ratios in the range 0.6–0.85. The smallest Errors were obtained
for dN values close to 0.75 hc . Comparing the results obtained in Table 1 for HEC with
those obtained in Table 2, it is inferred that HLST would be neither close to HEC nor HBREB
using approaches close to d = 0.65 hc , which are often taken as a rule of thumb [50,51].
Thus, the procedure to objectively select the zero-plane displacement for each sample
is recommended.
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Figure 6. Error (averaged (z0m/z0mN − 2.05 dN/d + 1.05)) for different ratios of the zero-plane
displacement at neutral conditions over the canopy height in July (dotted), clear sky (thin solid) and
cloudy (dashed) days in August and for all the data in August (thick solid).
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4.4.2. The Offset

The accumulated frequency of the offset (Figure 7) shows that, in general, the offset
ranged between −1 K and 1.25 K. The probability to observe an offset equal and smaller
than 0 K in August doubled July because for clear sky days the offset ranged between
0.18 K and 0.15 K. Thus, in practice, for clear sky days the offset could be neglected. While
Table 1 shows that the coefficient D was, in practice, one, Table 2 shows that when the offset
was neglected HLST overestimated HBREB by 21% and 13% in July and August, respectively.
The MAE and IA coefficients were worse, especially in July because August included clear
sky days. Therefore, it is not recommended to neglect the offset for cloudy days.
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5. Concluding Remarks

A method based on similarity and surface renewal formulation to estimate the sensible
heat flux for unstable cases was adapted to operate over tall canopies avoiding the need
to estimate the zero-plane displacement and roughness length for momentum. The input
requirements are the potential temperature of the air and wind speed at a reference height
above the canopy, the land surface temperature, the canopy height, the leaf area index
and the wind speed at the canopy top, though the latter is not required as input when
the reference height is in the inertial sublayer. The method includes an offset to adjust
the adiabatic temperature lapse rate which can be neglected for clear sky days. The
latter implies that, except for bare soils (research is pending), the offset can be neglected
regardless of the canopy type implying that (for clear sky days) the method shows potential
of application in the framework of remote sensing over forests. Given that the net radiation
and the latent heat flux dominated the surface energy balance, the latent heat flux was
determined using the residual method and, regardless of the cloudiness, the role of the
offset played a minor role. Thus, for cloudy days HLST scattered the reference and the
accumulated HLST closely matched the reference. Further research is required to compare
it with other models requiring the same or similar input. However, here it is concluded
that the method proposed to estimate the sensible heat flux is an alternative to consider
for modelling surface energy budgets in tall and dense canopies. In particular, it showed
potential in remote sensing applications.
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Appendix A. Solving the Sensible Heat and the Latent Heat Fluxes for Unstable Cases

The procedure combined flux-gradient and semi-empirical relationships to simultane-
ously solve the sensible heat flux (HLST, Equation (8)), the latent heat flux (λER-LST, where
λis latent heat of vaporization and subscript R-LST denotes that the latent heat flux was
determined as a residual of the surface energy balance using HLST as input, Equation (9)),
the stability parameter, the friction velocity, the zero-plane displacement and the roughness
length for momentum [15,39,40,52–55]. Because measurements over tall canopies are likely
taken below the inertial sublayer, the procedure preserves the continuity of the mean pro-
files for the wind speed and the potential temperature of the air above the canopy (i.e., there
is no need to know if the reference height is in the roughness or in the inertial sublayer).

In the following, the origin of the vertical axis is placed at the canopy top. Hence,
the mean wind profile (u(z)) extrapolated within the canopy decays to zero, u(zc) = 0 at
height (negative) zc = −dt + z0m where dt is dt = hc − d (hc is the canopy height and d is
the zero-plane displacement) and z0mis the roughness length for momentum. By defining
dt as the height that is enacting the total drag force on the canopy, it can be expressed as
(A1) [39,52]:

dt = β2Lc with β =
u∗
uh

(A1)

where u∗ is the friction velocity, uh is the wind speed at the canopy top and Lc is a pene-
tration depth into the canopy of a characteristic eddy size. It is estimated as Lc = 1/ (cda),
where cd is the drag coefficient at leaf scale and a is the leaf area per unit volume. For
unstable cases, it can be set to cd = 0.11 [56,57]. Denoting the stability function for the
transfer of momentum in a generalized form as Φm, the local shear above the canopy is
expressed as Equation (A2) [39,53]:

∂u
∂z

=
u∗

k(z + dt)
Φm where Φm =

{
φm ((z+dt)/L) ISL
ϕm((z+dt)/Ls) φm ((z+dt)/L) RSL

(A2)

where k is the von-Kármán constant and ISL and RSL denote inertial and roughness (above
the canopy) sublayers, respectively. The ISL is described by the Obukhov length (L), For
unstable conditions, Φm(x) = (1 − 16x)−1/4 [58] the RLS is described by the Obukhov length
and the shear length scale at the canopy top (Ls), Ls =

uh
∂u
∂z )z=0

[54] which can be expressed

as Equation (A3):
Ls = 2β2Lc (A3)

In Equation (A2), ϕm(x) = 1 − c1mexp[−c2mx], where c1m and c2m are two coefficients:

c1m =

(
1− k

2βϕm(z=0)

)
exp

( c2m

2

)

http://daac.ornl.gov/BOREAS/boreas.shtml
http://daac.ornl.gov/BOREAS/boreas.shtml
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and

c2m = k
(

3− 2β2Lc

ϕm|z=0

∂ϕm

∂z

∣∣∣∣
z=0

)
1

(2β ϕm|z=0 − k)

Integrating Equation (A2) from the canopy top to up to a reference height, the friction
velocity is expressed as Equation (A4):

u∗ =
k u(z)

ln
(

z+dt
zom

)
−Ψm((z+dt)/L) + Ψm(z0m/L) + Γ((z+dt)/Ls)

(A4)

where Ψm(x) = 2 ln
(

1+y
2

)
+ ln

(
1+y2

2

)
− 2 arctan(y) + π

2 being

y = (1− 16x)1/4 Γm((z+dt)/Ls) =
∞∫

z+dt

φm(z′ L)

(
1− ϕm(z′ /Ls)

)
dz′
z′ (it only admits numerical

solution) and the roughness length for momentum, z0m, is
z0m = dt exp

(
− k

β −Ψm(dt/L) + Ψm(z0m/L) + Γm(dt/Ls)

)
.

Similar for the temperature profile, the generalized stability function for the transfer
of heat, Φh, above the canopy is expressed as Equation (A5) [53,55]:

Φh =

{
φh ((z+dt)/L) ISL

ϕh((z+dt)/Ls) φh ((z+dt)/L) RSL
(A5)

For unstable conditions, Φh(x) = (1− 16x)−1/2 [58] and ϕh(x) = 1− c1hexp[−c2hx] where

the coefficients c1h and c2h are c1h =
(

1− k
2βϕh(z=0)

Pt

)
exp

( c2h
2
)

and

c2h = kPt

(
3
2
+

1
2
[1 + 0.4Pt]

1/2 − 2dt

ϕh|z=0

∂ϕh
∂z

∣∣∣∣
z=0

)
1

(2β ϕh|z=0 − kPt)

being Pt the turbulent Prandtl number at the canopy top, Pt = 0.5 + 0.3tanh
(

2Lc
L

)
.

Solving HLST and λER-LST. Provided that the zero-plane displacement at neutral
conditions is known, Equations (A1)–(A5), HLST and λER-LST can be iterated until a criterion
of convergence is achieved. Starting at neutral conditions, L = ∞ and dtN = hc − dN
(subscript N denotes neutral case), β and Ls are determined which allows for the calculation
of z0m, u∗, and a first proxy for HLST and λER-LST. The next iteration starts calculating a
proxy for the Obukhov length. Thus, a new proxy is obtained for z0m, u∗, β, dt, Ls, HLST
and λER-LST. The loop can be iterated until the difference in u∗between two consecutive
iterations is smaller than a given threshold, here 0.01 m/s.

Selection of the zero-plane displacement at neutral conditions. For unstable cases, the zero-
plane displacement and the roughness length for momentum decreases and increases, respec-
tively, with respect to their value at neutral stratification as; z0m = z0mN [1 + 1.15 (−hc/L)1/3]
and d = dN/[1 + 0.56 (−hc/L)1/3][39]. Combining the latter two relationships,

z0m − (2.05dN/d − 1.05); z0m N = 0 (A6)

After solving HLST and λER-LST using a given dN value (selected as a rule of thumb),
the values obtained in the iteration process for z0mN, d (i.e., once dt is solved) and z0m can
be used to check the closure of Equation (A6). The best closure obtained for a given dN
value within the range 0.6 hc ≤ dN ≤ 0.85 hc [15] can be used to objectively determine HLST
and λER-LST.
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