Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection
Abstract
:1. Introduction
- Is high lower free tropospheric moisture a prerequisite to heavy deep-convective precipitation events, and to which levels does the convection appear to be the most sensitive?
- Are there substantial differences in the above relationships amongst different oceanic basins, where forcing effects such as surface wind convergence may be different, or between tropical land and ocean regions?
- How closely does the suite of current climate models replicate the observed convective transition statistics?
2. Science Rationale
3. Observation Sufficiency to Distinguish the Convective Transition Relationship
3.1. Separation Using IMERG Precipitation
3.2. Separation Precipitation Conditions Using Polarimetric Differential Phase
4. Sampling of Precipitation Conditions for the Constellation Simulation
4.1. Satellite Orbital Separation
4.2. Constellation Design Considerations
5. Joint Observations with Operational Passive MW Radiometers
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The fraction of events that are P/E events quickly drops off as the number of satellites in the constellation is reduced.
- The effective separation between each of the ray paths tends to decrease as the orbit inclination decreases. For a 30-degree inclination, a spacecraft separation of 4-min increases the number of events with a larger value of deff and nearly doubles the number of P/E events, compared to the = 2-min separation.
- A constellation placed into a 60-degree inclination collects slightly more events than one at 30- or 45-degree inclination. This occurs since the GNSS transmitting satellites orbit in a ~55-degree inclination, and the transmitting and receiving satellites are in view slightly more often.
- A polar orbit collects slightly more events than any of the inclined orbits, but also the largest fraction of events whose effective separation exceeds 100 km. Unlike the inclined orbit, these observations would not sample the precipitation diurnal cycle.
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
---|---|---|---|---|---|---|---|---|
S | Alt | Total Events | Frac Total Events >100-km Spacing | Frac Total Events ( > 2) | Frac Total Events ( > 2) P/E Events | Frac P/E Events 50–150 km Spacing | P/E Events Per Day | |
S = 8 = 2 | 30 | 475 | 93,108 | 0.035 | 0.106 | 0.820 | 0.443 | 203 |
30 | 600 | 91,304 | 0.043 | 0.115 | 0.850 | 0.458 | 223 | |
45 | 475 | 93,548 | 0.034 | 0.108 | 0.869 | 0.532 | 219 | |
45 | 600 | 91,040 | 0.047 | 0.108 | 0.874 | 0.528 | 216 | |
60 | 475 | 98,408 | 0.107 | 0.109 | 0.894 | 0.523 | 239 | |
60 | 600 | 96,324 | 0.135 | 0.108 | 0.895 | 0.509 | 234 | |
98 | 800 | 102,284 | 0.350 | 0.112 | 0.925 | 0.496 | 265 | |
S = 4 = 2 | 30 | 475 | 94,512 | 0.038 | 0.068 | 0.490 | 0.464 | 80 |
30 | 600 | 92,228 | 0.046 | 0.072 | 0.520 | 0.475 | 87 | |
45 | 475 | 95,212 | 0.036 | 0.067 | 0.559 | 0.583 | 91 | |
45 | 600 | 92,488 | 0.049 | 0.067 | 0.571 | 0.576 | 90 | |
60 | 475 | 100,100 | 0.108 | 0.066 | 0.614 | 0.540 | 101 | |
60 | 600 | 98,152 | 0.139 | 0.066 | 0.620 | 0.529 | 101 | |
98 | 800 | 103,536 | 0.351 | 0.067 | 0.702 | 0.497 | 123 | |
S = 4 = 4 | 30 | 475 | 93,424 | 0.275 | 0.086 | 0.726 | 0.468 | 146 |
30 | 600 | 91492 | 0.332 | 0.092 | 0.760 | 0.449 | 161 | |
45 | 475 | 93,924 | 0.422 | 0.085 | 0.789 | 0.483 | 159 | |
45 | 600 | 91,376 | 0.444 | 0.085 | 0.791 | 0.463 | 153 | |
60 | 475 | 98,856 | 0.547 | 0.082 | 0.823 | 0.371 | 169 | |
60 | 600 | 96,884 | 0.547 | 0.083 | 0.818 | 0.344 | 165 | |
98 | 800 | 102,644 | 0.757 | 0.081 | 0.861 | 0.210 | 180 | |
S = 3 = 2 | 30 | 475 | 94,916 | 0.038 | 0.058 | 0.319 | 0.462 | 44 |
30 | 600 | 92,500 | 0.045 | 0.061 | 0.351 | 0.471 | 50 | |
45 | 475 | 95,628 | 0.037 | 0.056 | 0.386 | 0.620 | 53 | |
45 | 600 | 93,060 | 0.050 | 0.056 | 0.392 | 0.627 | 52 | |
60 | 475 | 100,604 | 0.110 | 0.054 | 0.442 | 0.571 | 60 | |
60 | 600 | 98,592 | 0.139 | 0.055 | 0.446 | 0.552 | 61 | |
98 | 800 | 103,892 | 0.350 | 0.054 | 0.533 | 0.531 | 76 | |
S = 2 = 2 | 30 | 475 | 95,228 | 0.039 | 0.047 | 0.121 | 0.448 | 14 |
30 | 600 | 92,724 | 0.046 | 0.050 | 0.148 | 0.472 | 17 | |
45 | 475 | 95,980 | 0.037 | 0.045 | 0.160 | 0.636 | 18 | |
45 | 600 | 93,584 | 0.051 | 0.045 | 0.165 | 0.634 | 18 | |
60 | 475 | 100,976 | 0.111 | 0.042 | 0.206 | 0.626 | 22 | |
60 | 600 | 98,968 | 0.141 | 0.043 | 0.208 | 0.637 | 23 | |
98 | 800 | 104,204 | 0.351 | 0.042 | 0.273 | 0.634 | 30 |
References
- Rio, C.; Del Genio, A.D.; Hourdin, F. Ongoing Breakthroughs in Convective Parameterization. Curr. Clim. Chang. Rep. 2019, 5, 95–111. [Google Scholar] [CrossRef]
- Schiro, K.A.; Neelin, J.D.; Adams, D.K.; Lintner, B.R. Deep Convection and Column Water Vapor over Tropical Land versus Tropical Ocean: A Comparison between the Amazon and the Tropical Western Pacific. J. Atmos. Sci. 2016, 73, 4043–4063. [Google Scholar] [CrossRef]
- Sahany, S.; Neelin, J.D.; Hales, K.; Neale, R.B. Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models. J. Atmos. Sci. 2012, 69, 1340–1358. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-H.; Neelin, J.D.; Mechoso, C.R. Tropical Convective Transition Statistics and Causality in the Water Vapor–Precipitation Relation. J. Atmos. Sci. 2017, 74, 915–931. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Neelin, J.D. A Process-Oriented Diagnostic to Assess Precipitation-Thermodynamic Relations and Application to CMIP6 Models. Geophys. Res. Lett. 2021, 48, e2021GL094108. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Neelin, J.D.; Chen, C.-C.; Chen, W.-T.; Donner, L.J.; Gettelman, A.; Jiang, X.; Kuo, K.-T.; Maloney, E.; Mechoso, C.R.; et al. Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: GCM Evaluation. J. Atmos. Sci. 2020, 77, 379–403. [Google Scholar] [CrossRef]
- Padullés, R.; Turk, F.J.; Ao, C.O.; de la Torre-Juárez, M.; Kuo, Y.-H.; Neelin, J.D. Global tropics precipitation relationships to free tropospheric water vapor using radio occultations. J. Atmos Sci. 2021; in review. [Google Scholar]
- Schiro, K.A.; Neelin, J.D. Deep Convective Organization, Moisture Vertical Structure, and Convective Transition Using Deep-Inflow Mixing. J. Atmos. Sci. 2019, 76, 965–987. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Braun, S.; Bennartz, R.; Velden, C.; DeMaria, M.; Atlas, R.; Dunion, J.; Marks, F.; Rogers, R.; Annane, B.; et al. An overview of the TROPICS NASA Earth Venture Mission. Q. J. R. Meteorol. Soc. 2018, 144, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Sy, O.O.; Tanelli, S.; Durden, S.L.; Peral, E.; Sacco, G.-F.; Chahat, N.E.; Hristova-Veleva, S.; Heymsfield, A.J.; Bansemer, A.; Knosp, B.; et al. Scientific Products from the First Radar in a CubeSat (RainCube): Deconvolution, Cross-Validation, and Retrievals. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1000320. [Google Scholar] [CrossRef]
- Battaglia, A.; Kollias, P.; Dhillon, R.; Roy, R.; Tanelli, S.; Lamer, K.; Grecu, M.; Lebsock, M.; Watters, D.; Mroz, K.; et al. Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward. Rev. Geophys. 2020, 58, e2019RG000686. [Google Scholar] [CrossRef]
- Stephens, G.; Freeman, A.; Richard, E.; Pilewskie, P.; Larkin, P.; Chew, C.; Tanelli, S.; Brown, S.; Posselt, D.; Peral, E. The Emerging Technological Revolution in Earth Observations. Bull. Am. Meteorol. Soc. 2020, 101, E274–E285. [Google Scholar] [CrossRef]
- Stephens, G.L.; van den Heever, S.C.; Haddad, Z.S.; Posselt, D.J.; Storer, R.L.; Grant, L.D.; Sy, O.O.; Rao, T.N.; Tanelli, S.; Peral, E. A Distributed Small Satellite Approach for Measuring Convective Transports in the Earth’s Atmosphere. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4–13. [Google Scholar] [CrossRef]
- Cardellach, E.; Oliveras, S.; Rius, A.; Tomás, S.; Ao, C.O.; Franklin, G.W.; Iijima, B.A.; Kuang, D.; Meehan, T.K.; Padullés, R.; et al. Sensing Heavy Precipitation with GNSS Polarimetric Radio Occultations. Geophys. Res. Lett. 2019, 46, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Padullés, R.; Ao, C.O.; Turk, F.J.; de la Torre Juárez, M.; Iijima, B.; Wang, K.N.; Cardellach, E. Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite. Atmos. Meas. Tech. 2020, 13, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-N.; de la Torre Juárez, M.; Ao, C.O.; Xie, F. Correcting negatively biased refractivity below ducts in GNSS radio occultation: An optimal estimation approach towards improving planetary boundary layer (PBL) characterization. Atmos. Meas. Tech. 2017, 10, 4761–4776. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, R.; Halperin, L.; Leroy, S.; Gagnon, A.; Cahoy, K.; Clark, J. Analyzing Constellation Performance for the Radio Occultation Tomography of Internal Gravity Waves. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7225–7236. [Google Scholar] [CrossRef]
- Cao, C.; Wang, W.; Lynch, E.; Bai, Y.; Ho, S.; Zhang, B. Simultaneous Radio Occultation for Intersatellite Comparison of Bending Angles toward More Accurate Atmospheric Sounding. J. Atmos. Ocean. Technol. 2020, 37, 2307–2320. [Google Scholar] [CrossRef]
- Xu, X.; Han, Y.; Luo, J.; Wickert, J.; Asgarimehr, M. Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms. Remote Sens. 2019, 11, 571. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Petersen, W.A.; Kirstetter, P.-E.; Tian, Y. Performance of IMERG as a Function of Spatiotemporal Scale. J. Hydrometeorol. 2016, 18, 307–319. [Google Scholar] [CrossRef]
- Turk, F.J.; Padullés, R.; Ao, C.O.; de la Juarez, M.T.; Wang, K.-N.; Franklin, G.W.; Lowe, S.T.; Hristova-Veleva, S.M.; Fetzer, E.J.; Cardellach, E.; et al. Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements. Remote Sens. 2019, 11, 2399. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Ho, S.; Zhang, B.; Cao, C.; Chen, Y. Consistency and Stability of SNPP ATMS Microwave Observations and COSMIC-2 Radio Occultation over Oceans. Remote Sens. 2021, 13, 3754. [Google Scholar] [CrossRef]
- Iacovazzi, R.; Lin, L.; Sun, N.; Liu, Q. NOAA Operational Microwave Sounding Radiometer Data Quality Monitoring and Anomaly Assessment Using COSMIC GNSS Radio-Occultation Soundings. Remote Sens. 2020, 12, 828. [Google Scholar] [CrossRef] [Green Version]
- Turk, F.J.; Padullés, R.; Cardellach, E.; Ao, C.O.; Wang, K.-N.; Morabito, D.D.; de la Juarez, M.T.; Oyola, M.; Hristova-Veleva, S.; Neelin, J.D. Interpretation of the Precipitation Structure Contained in Polarimetric Radio Occultation Profiles Using Passive Microwave Satellite Observations. J. Atmos. Ocean. Technol. 2021, 38, 1727–1745. [Google Scholar] [CrossRef]
- Neelin, J.D.; Peters, O.; Hales, K. The transition to strong convection. J. Atmos. Sci. 2009, 66, 2367–2384. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Schiro, K.A.; Neelin, J.D. Convective Transition Statistics over Tropical Oceans for Climate Model Diagnostics: Observational Baseline. J. Atmos. Sci. 2018, 75, 1553–1570. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; McCoy, R.B.; Klein, S.A.; Cederwall, R.T.; Wiscombe, W.J.; Jensen, M.P.; Johnson, K.L.; Clothiaux, E.E.; Gaustad, K.L.; Long, C.N.; et al. CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data: A New Data Product for Climate Studies. Bull. Am. Meteorol. Soc. 2010, 91, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Emmenegger, T.; Kuo, H.Y.; Xie, S.; Zhang, C.; Tao, C.; Neelin, J.D. Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM data. J. Clim. 2021; in review. [Google Scholar]
- Holloway, C.E.; Neelin, J.D. Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. J. Atmos. Sci. 2009, 66, 1665–1683. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Neelin, J.D. Reverse engineering the tropical precipitation-buoyancy relationship. J. Atmos. Sci. 2018, 75, 1587–1608. [Google Scholar] [CrossRef]
- Schiro, K.A.; Sullivan, S.C.; Kuo, Y.-H.; Su, H.; Gentine, P.; Elsaesser, G.S.; Jiang, J.H.; Neelin, J.D. Environmental Controls on Tropical Mesoscale Convective System Precipitation Intensity. J. Atmos. Sci. 2020, 77, 4233–4249. [Google Scholar] [CrossRef]
- Romps, D.M. A Direct Measure of Entrainment. J. Atmos. Sci. 2010, 67, 1908–1927. [Google Scholar] [CrossRef]
- Schiro, K.A.; Ahmed, F.; Giangrande, S.E.; Neelin, J.D. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proc. Natl. Acad. Sci. USA 2018, 115, 4577–4582. [Google Scholar] [CrossRef] [Green Version]
- Storer, R.L.; Posselt, D.J. Environmental impacts on the flux of mass through deep convection. Q. J. R. Meteorol. Soc. 2019, 145, 3832–3845. [Google Scholar] [CrossRef]
- Ho, S.; Anthes, R.A.; Ao, C.O.; Healy, S.; Horanyi, A.; Hunt, D.; Mannucci, A.J.; Pedatella, N.; Randel, W.J.; Simmons, A.; et al. The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bull. Am. Meteorol. Soc. 2020, 101, E1107–E1136. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Tibshirani, R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Stat. Sci. 1986, 1, 54–75. [Google Scholar] [CrossRef]
- Cardellach, E.; Tomás, S.; Oliveras, S.; Padullés, R.; Rius, A.; de la Torre-Juárez, M.; Turk, F.J.; Ao, C.O.; Kursinski, E.R.; Schreiner, B. Sensitivity of PAZ LEO Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events. IEEE Trans. Geosci. Remote Sens. 2014, 53, 190–206. [Google Scholar] [CrossRef]
- Padullés, R.; Cardellach, E.; Turk, F.J.; Ao, C.O.; de la Torre Juárez, M.; Gong, J.; Wu, D.L. Sensing Horizontally Oriented Frozen Particles with Polarimetric Radio Occultations Aboard PAZ: Validation Using GMI Coincident Observations and Cloudsat a Priori Information. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4101513. [Google Scholar] [CrossRef]
- Fiolleau, T.; Roca, R. An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4302–4315. [Google Scholar] [CrossRef]
- Hinson, D.P. Radio occultation measurements of transient eddies in the northern hemisphere of Mars. J. Geophys. Res. Planets 2006, 111, E05002. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.R.; Randel, W.J.; Sjoberg, J.P. Evaluation of Tropospheric Moisture Characteristics Among COSMIC-2, ERA5 and MERRA-2 in the Tropics and Subtropics. Remote Sens. 2021, 13, 880. [Google Scholar] [CrossRef]
- Ruston, B.; Healy, S. Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements. Atmos. Sci. Lett. 2019, 22, e1019. [Google Scholar] [CrossRef]
- Maier, M.W.; Gallagher, F.W.; Germain, K.S.; Anthes, R.; Zuffada, C.; Menzies, R.; Piepmeier, J.; Pietro, D.D.; Coakley, M.M.; Adams, E. Architecting the Future of Weather Satellites. Bull. Am. Meteorol. Soc. 2021, 102, E589–E610. [Google Scholar] [CrossRef]
Region | Temp (K) | Min Number of Temperatures Discriminated | |||
---|---|---|---|---|---|
6 | 5 | 4 | 3 | ||
Global Tropics (0.5 K) | 263 | ||||
263.5 | |||||
264 | |||||
264.5 | |||||
265 | |||||
265.5 | |||||
266 | |||||
266.5 | |||||
267 | |||||
West Pacific Ocean (1 K) | 262 | ||||
263 | |||||
264 | |||||
265 | |||||
266 | |||||
267 | |||||
East Pacific Ocean (1 K) | 261 | ||||
262 | |||||
263 | |||||
264 | |||||
265 | |||||
266 | |||||
267 | |||||
Indian Ocean (1 K) | 262 | ||||
263 | |||||
264 | |||||
265 | |||||
266 | |||||
267 | |||||
268 | |||||
Atlantic Ocean (1 K) | 262 | ||||
263 | |||||
264 | |||||
265 | |||||
266 | |||||
N/A | N = 5000 | N = 10,000 | N = 20,000 | N = 30,000 |
Region | Total N RO | ( > 1.5)/Total | ( > 2)/Total |
---|---|---|---|
Global Tropics | 402,549 | 0.018120 | 0.013350 |
West Pacific | 59,991 | 0.027687 | 0.020320 |
East Pacific | 99,633 | 0.016802 | 0.012436 |
Indian Ocean | 61,768 | 0.018569 | 0.013583 |
Atlantic Ocean | 55,964 | 0.009721 | 0.007469 |
Region | Events in Region | Ratio of Events in Region Relative to Total Constellation Coverage | Fraction Events in Region That Are P/E Events ( > 2) |
---|---|---|---|
Global Tropics | 33,564 | 0.352 | 0.0380 |
West Pacific | 5648 | 0.059 | 0.0524 |
East Pacific | 9200 | 0.097 | 0.0253 |
Indian Ocean | 5056 | 0.053 | 0.0411 |
Atlantic Ocean | 5384 | 0.057 | 0.0208 |
Min Required Total Observations | |||||
---|---|---|---|---|---|
Region | 30,000 | 20,000 | 10,000 | 5000 | |
Global Tropics (0.5 K) | 6 temps | 5 temps | |||
N ( > 2) | 400 | 267 | |||
N in region | 10,526 | 7024 | |||
N total | 29,900 (13) | 19,925 (9) | |||
West Pacific (1 K) | 5 temps | 4 temps | |||
N ( > 2) | 406 | 101 | |||
N in region | 7748 | 1928 | |||
N total | 131,322 (55) | 32,501 (14) | |||
East Pacific (1 K) | 6 temps | 5 temps | 3 temps | ||
N ( > 2) | 248 | 124 | 62 | ||
N (region) | 9802 | 4901 | 2449 | ||
N (total) | 101,055 (42) | 50,528 (21) | 25,345 (11) | ||
Indian Ocean (1 K) | 6 temps | 4 temps | 3 temps | ||
N ( > 2) | 271 | 135 | 67 | ||
N in region | 6594 | 3297 | 1629 | ||
N total | 124,410 (52) | 62,205 (26) | 30,676 (13) | ||
Atlantic Ocean (1 K) | 4 temps | 3 temps | |||
N ( > 2) | 74 | 37 | |||
N in region | 3682 | 1779 | |||
N total | 64,589 (27) | 31,460 (14) |
Global Tropics | Western Pacific Ocean | Eastern Pacific Ocean | Indian Ocean | Atlantic Ocean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Alt | Total Events | Days | Total Events | Days | Total Events | Days | Total Events | Days | Total Events | Days | |
8 | 30 | 475 | 5325 | 3 | 7705 | 4 | 5749 | 3 | 8237 | 4 | 7847 | 4 |
8 | 45 | 475 | 7811 | 4 | 11,177 | 5 | 9063 | 4 | 13,149 | 6 | 11,326 | 5 |
8 | 60 | 475 | 8660 | 4 | 12,508 | 6 | 9376 | 4 | 15,165 | 7 | 11,880 | 5 |
8 | 98 | 800 | 6956 | 3 | 10,385 | 5 | 7183 | 3 | 12,285 | 5 | 7744 | 4 |
4 | 30 | 475 | 14,740 | 7 | 23,283 | 10 | 17,186 | 8 | 23,204 | 10 | 24,120 | 11 |
4 | 45 | 475 | 19925 | 9 | 32,501 | 14 | 25,345 | 11 | 30,676 | 13 | 31,460 | 14 |
4 | 60 | 475 | 20,930 | 9 | 32,622 | 14 | 23,082 | 10 | 36,268 | 15 | 39,840 | 16 |
4 | 98 | 800 | 15,224 | 6 | 23,993 | 10 | 15,402 | 6 | 27,859 | 11 | 22,160 | 9 |
3 | 30 | 475 | 27,338 | 12 | 43,778 | 19 | 32,695 | 14 | 44,786 | 19 | 46,835 | 20 |
3 | 45 | 475 | 34,504 | 15 | 55,835 | 24 | 45,967 | 20 | 51,263 | 22 | 65,526 | 28 |
3 | 60 | 475 | 35,297 | 15 | 62,723 | 25 | 38,274 | 16 | 68,089 | 28 | 60,044 | 24 |
3 | 98 | 800 | 24,058 | 10 | 36,322 | 14 | 25,469 | 10 | 51,195 | 20 | 35,935 | 14 |
2 | 30 | 475 | 95,947 | 41 | 139,400 | 59 | 120,492 | 51 | 182,302 | 77 | 352,345 | 149 |
2 | 45 | 475 | 107,677 | 45 | 176,270 | 74 | 156,607 | 66 | 169,235 | 71 | 236,753 | 74 |
2 | 60 | 475 | 93,939 | 38 | 178,946 | 71 | 102,635 | 41 | 250,580 | 100 | 143,702 | 57 |
2 | 98 | 800 | 58,948 | 23 | 97,450 | 38 | 58,120 | 23 | 131,733 | 51 | 96,391 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turk, F.J.; Padullés, R.; Morabito, D.D.; Emmenegger, T.; Neelin, J.D. Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection. Atmosphere 2022, 13, 259. https://doi.org/10.3390/atmos13020259
Turk FJ, Padullés R, Morabito DD, Emmenegger T, Neelin JD. Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection. Atmosphere. 2022; 13(2):259. https://doi.org/10.3390/atmos13020259
Chicago/Turabian StyleTurk, F. Joseph, Ramon Padullés, David D. Morabito, Todd Emmenegger, and J. David Neelin. 2022. "Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection" Atmosphere 13, no. 2: 259. https://doi.org/10.3390/atmos13020259
APA StyleTurk, F. J., Padullés, R., Morabito, D. D., Emmenegger, T., & Neelin, J. D. (2022). Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection. Atmosphere, 13(2), 259. https://doi.org/10.3390/atmos13020259