Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Nonlinear PRP and SAT Responses to ENSO during the 1901–2014 Period
3.2. Austral Winter PRP and SAT Composites Stratified by Mean States: ALL-, EN + LN-, and NEU-Years
3.2.1. PRP Anomaly Patterns
3.2.2. SAT Anomaly Patterns
3.2.3. WVEL and HVEL Anomaly Patterns
3.3. Austral Summer PRP and SAT Composites Stratified by Mean States: ALL-, EN + LN-, and NEU-Years
3.3.1. PRP Anomaly Patterns
3.3.2. SAT Anomaly Patterns
3.3.3. WVEL and HVEL Anomaly Patterns
4. Conclusions and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ropelewski, C.F.; Halpert, M.S. Global and Regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef] [Green Version]
- Ropelewski, C.F.; Halpert, M.S. Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation. J. Clim. 1989, 2, 268–284. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.B.; Hada, K. Characteristics of rainfall over Brazil: Annual variations and connections with the Southern Oscillation. Theor. Appl. Climatol. 1990, 42, 81–91. [Google Scholar] [CrossRef]
- Pisciottano, G.; Díaz, A.; Cazes, G.; Mechoso, C.R. El Niño-Southern Oscillation impact on rainfall in Uruguay. J. Clim. 1994, 7, 1286–1302. [Google Scholar] [CrossRef] [Green Version]
- Diaz, A.F.; Studzinski, C.D.; Mechoso, C.R. Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. J. Clim. 1998, 11, 251–271. [Google Scholar] [CrossRef]
- Grimm, A.M.; Ferraz, S.E.T.; Gomes, J. Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events. J. Clim. 1998, 11, 2863–2880. [Google Scholar] [CrossRef] [Green Version]
- Grimm, A.; Barros, V.; Doyle, M. Climate Variability in Southern South America Associated with El Niño and La Niña Events. J. Clim. 2000, 13, 35–58. [Google Scholar] [CrossRef]
- Kousky, V.E.; Ropelewski, C.F. Extremes in the Southern Oscillation and their Relationship to Precipitation Anomalies with Emphasis on the South American Region. Rev. Bras. Meteorol. 1989, 4, 351–363. [Google Scholar]
- Aceituno, P. On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. Mon. Weather Rev. 1988, 116, 505–524. [Google Scholar] [CrossRef] [Green Version]
- Kiladis, G.N.; Diaz, H.F. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Clim. 1989, 2, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Nogués-Paegle, J.; Mechoso, C.; Fu, R.; Berbery, E.; Chao, W.; Chen, T.-C.; Cook, K.; Diaz, A.; Enfield, D.; Ferreira, R. Progress in Pan American CLIVAR research: Understanding the South American monsoon. Meteorologica 2002, 27, 1–30. [Google Scholar]
- Zhou, J.; Lau, K.M. Principal modes of interannual and decadal variability of summer rainfall over South America. Int. J. Climatol. 2001, 21, 1623–1644. [Google Scholar] [CrossRef]
- Barros, V.R.; Silvestri, G.E. The relation between sea surface temperature at the subtropical South-Central Pacific and precipitation in Southeastern South America. J. Clim. 2002, 15, 251–267. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Falvey, M. The coastal winds off western subtropical South America in future climate scenarios. Int. J. Climatol. 2009, 29, 543–554. [Google Scholar] [CrossRef]
- Berman, A.L.; Silvestri, G.; Compagnucci, R.; Velasco Herrera, V. Oceanic influence on southernmost South American precipitation. Atmosfera 2012, 25, 217–233. [Google Scholar]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A.; et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Battisti, D.S.; Garreaud, R.D.; McCabe, G.J.; Bitz, C.M. Interhemispheric Effects of Interannual and Decadal ENSO-Like Climate Variations on the Americas. In Interhemispheric Climate Linkages: Present and Past Climates in the Americas and their Societal Effects; Markgraf, V., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 1–16. ISBN 9780124726703. [Google Scholar]
- Kayano, M.T.; Andreoli, R.V.; de Souza, R.A.F.; Garcia, S.R. Spatiotemporal variability modes of surface air temperature in South America during the 1951–2010 period: ENSO and non-ENSO components. Int. J. Climatol. 2017, 37, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Kucharski, F.; Feng, J.; Zhao, S.; Zheng, J. Two leading modes of the interannual variability in South American surface air temperature during austral winter. Clim. Dyn. 2018, 51, 2141–2156. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Chen, S.; Song, L.; Chen, W. Interdecadal Modulation of AMO on the Winter North Pacific Oscillation-Following Winter ENSO Relationship. Adv. Atmos. Sci. 2019, 36, 1393–1403. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.K.; Lopez, H.; Goes, M. Pacific mean-state control of atlantic multidecadal oscillation-El Niño relationship. J. Clim. 2020, 33, 4273–4291. [Google Scholar] [CrossRef]
- McGregor, S.; Timmermann, A.; Stuecker, M.F.; England, M.H.; Merrifield, M.; Jin, F.F.; Chikamoto, Y. Recent Walker circulation strengthening and pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 2014, 4, 888. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, F.; Parvin, A.; Rodriguez-Fonseca, B.; Farneti, R.; Martin-Rey, M.; Polo, I.; Mohino, E.; Losada, T.; Mechoso, C.R. The teleconnection of the tropical Atlantic to Indo-Pacific sea surface temperatures on inter-annual to centennial time scales: A review of recent findings. Atmosphere 2016, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, F.; Ikram, F.; Molteni, F.; Farneti, R.; Kang, I.S.; No, H.H.; King, M.P.; Giuliani, G.; Mogensen, K. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 2016, 46, 2337–2351. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Castruccio, F.; England, M.H.; Bates, S.C.; Danabasoglu, G.; McGregor, S.; Arblaster, J.M.; Xie, S.P.; Rosenbloom, N. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 2021, 14, 36–42. [Google Scholar] [CrossRef]
- Maleski, J.J.; Martinez, C.J. Coupled impacts of ENSO AMO and PDO on temperature and precipitation in the Alabama–Coosa–Tallapoosa and Apalachicola–Chattahoochee–Flint river basins. Int. J. Climatol. 2018, 38, e717–e728. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. El Niño–Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. Int. J. Climatol. 2019, 39, 1359–1372. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int. J. Climatol. 2020, 40, 2183–2200. [Google Scholar] [CrossRef]
- Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Avila-Diaz, A.; de Souza, I.P.; Souza, R.A.F. Pacific and atlantic multidecadal variability relations with the choco and caribbean low-level jets during the 1900–2015 period. Atmosphere 2021, 12, 1120. [Google Scholar] [CrossRef]
- He, Z.; Dai, A.; Vuille, M. The Joint Impacts of Atlantic and Pacific Multidecadal Variability on South American Precipitation and Temperature. J. Clim. 2021, 34, 7959–7981. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Kumar, A.; Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 1997, 10, 1769–1786. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Matsuura, K.; Willmott, C.J. Terrestrial Air Temperature: 1900–2017 Gridded Monthly Time Series, Version 5.01. Available online: http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsT2017.html (accessed on 22 April 2020).
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef] [Green Version]
- Global Precipitation Climatology Centre (GPCC) Monthly Gridded Precipitation Data. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html (accessed on 3 May 2019).
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Wilks, D.S., Ed.; Academic Press: San Diego, CA, USA, 2011; ISBN 9780123850232. [Google Scholar]
- Wang, X.Y.; Li, X.; Zhu, J.; Tanajura, C.A.S. The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ. Res. Lett. 2018, 13, 094015. [Google Scholar] [CrossRef] [Green Version]
- Barichivich, J.; Gloor, E.; Peylin, P.; Brienen, R.J.W.; Schöngart, J.; Espinoza, J.C.; Pattnayak, K.C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 2018, 4, eaat8785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enfield, D.B.; Mestas-Nuñez, A.M. Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Clim. 1999, 12, 2734–2746. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112, 1–27. [Google Scholar] [CrossRef]
EN | 1902, 1904, 1905, 1911, 1913, 1914, 1918, 1919, 1923, 1925, 1930, 1940, 1941, 1953, 1957, 1963, 1965, 1968, 1972, 1976, 1977, 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009 |
LN | 1903, 1908, 1909, 1910, 1916, 1917, 1922, 1924, 1926, 1933, 1938, 1942, 1944, 1949, 1950, 1954, 1955, 1964, 1970, 1971, 1973, 1974, 1975, 1984, 1988, 1995, 1998, 1999, 2007, 2010, 2011 |
CACP | CAWP | WACP | WAWP | |
---|---|---|---|---|
EN | 1913, 1914, 1918, 1919, 1923, 1963, 1965, 1968, 1972, 1976 | 1902, 1904, 1905, 1911, 1977, 1982, 1986, 1987, 1991, 1994 | 1953, 1957, 2002, 2004, 2006, 2009 | 1940, 1941 |
LN | 1916, 1917, 1922, 1964, 1970, 1971, 1973, 1974, 1975 | 1903, 1908, 1909, 1910, 1984, 1988, 1995 | 1949, 1950, 1954, 1955, 2007, 2010, 2011 | 1933, 1938, 1942, 1944 |
Mean State | ALL × EN + LN | ALL × NEU |
---|---|---|
CACP | 0.91 | 0.27 |
CAWP | 0.60 | 0.71 |
WACP | 0.77 | 0.70 |
WAWP | 0.70 | 0.82 |
Mean State | ALL × EN + LN | ALL × NEU |
---|---|---|
CACP | 0.93 | 0.54 |
CAWP | 0.84 | 0.72 |
WACP | 0.88 | 0.79 |
WAWP | 0.88 | 0.90 |
Mean State | ALL × EN + LN | ALL × NEU |
---|---|---|
CACP | 0.90 | 0.50 |
CAWP | 0.75 | 0.70 |
WACP | 0.72 | 0.72 |
WAWP | 0.77 | 0.82 |
Mean State | ALL × EN + LN | ALL × NEU |
---|---|---|
CACP | 0.94 | 0.61 |
CAWP | 0.86 | 0.70 |
WACP | 0.89 | 0.88 |
WAWP | 0.88 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayano, M.T.; Cerón, W.L.; Andreoli, R.V.; Souza, R.A.F.; Avila-Diaz, A.; Zuluaga, C.F.; Carvalho, L.M.V. Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America? Atmosphere 2022, 13, 231. https://doi.org/10.3390/atmos13020231
Kayano MT, Cerón WL, Andreoli RV, Souza RAF, Avila-Diaz A, Zuluaga CF, Carvalho LMV. Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America? Atmosphere. 2022; 13(2):231. https://doi.org/10.3390/atmos13020231
Chicago/Turabian StyleKayano, Mary T., Wilmar L. Cerón, Rita V. Andreoli, Rodrigo A. F. Souza, Alvaro Avila-Diaz, Cristian Felipe Zuluaga, and Leila M. V. Carvalho. 2022. "Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America?" Atmosphere 13, no. 2: 231. https://doi.org/10.3390/atmos13020231
APA StyleKayano, M. T., Cerón, W. L., Andreoli, R. V., Souza, R. A. F., Avila-Diaz, A., Zuluaga, C. F., & Carvalho, L. M. V. (2022). Does the El Niño-Southern Oscillation Affect the Combined Impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the Precipitation and Surface Air Temperature Variability over South America? Atmosphere, 13(2), 231. https://doi.org/10.3390/atmos13020231