Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Domain and Its Drought Status
2.1.1. Study Domain
2.1.2. Drought Status
2.2. Data Sources
2.2.1. Meteorological Datasets
2.2.2. Large-Scale Ocean Atmosphere Circulation Modes
3. Methodology
3.1. Standardized Precipitation Evapotranspiration Index (SPEI)
3.2. Pearson Correlation
3.3. Cross Correlation
3.4. Stepwise Multiple Regression
3.5. Partial Correlation
4. Results
4.1. Long-Term Modes of Both Teleconnections and Climatic Parameters
4.2. Spatial Pattern for Synchronous Correlation
4.3. Asynchronous Correlation on Different Timescales
4.4. Combined Effects of Climate Modes on Regional Droughts Variability
4.5. Influences of Teleconnections on Single Climatic Factor
5. Discussion
6. Conclusions and Recommendations
- (i).
- Hydroclimatic conditions in Xinjiang exhibit a persistently fluctuating dry condition since the late 1990s. Short-term drought variability (SPEI-3, SPEI-6, SPEI-12) indicates the occurrence of intermittent wetness. However, long-term drought variability (SPEI-24, SPEI-36, SPEI-48) indicates that hydrological system has been in a prolonged dry epoch on interannual timescale.
- (ii).
- The synchronous ENSO exhibit significant positive correlation with Xinjiang dry and wet variations. El Niño favors wetness in Xinjiang, while La Niña may exacerbate drought effect in the region. The contemporaneous and lagged stepwise regression models indicate that the effect of ENSO on regional drought is relatively weak among the four teleconnection modes. Moreover, the annual drought variation (SPEI-12) reaches an anti-phase peak in response to ENSO at a lag of around 1-year, showing a maximum negative correlation. This suggests the delayed effect of ENSO on drought behavior, that not only through cold and warm phases (El Niño and La Niña), but also through the precursor patterns to affect drought variability in the region.
- (iii).
- In comparison with asynchronous patterns, synchronous PDO has a stronger effect on Xinjiang drought, indicating a significant positive correlation between the two. Positive (negative) phase PDO may contribute to the wet (dry) period in the region. This teleconnection effect is consistent with the impact of ENSO mode on dry/wet variations. Synchronous PDO is the dominant signal for annual-scale drought variation in Xinjiang among four oceanic atmospheric oscillations. Given the coupling effect of ENSO and PDO, the impacts of in-phase ENSO and PDO on regional drought may have a superposition effect, hence the combination of cold-phase ENSO (La Niña) and negative-phase PDO may exacerbate the drought states in Xinjiang.
- (iv).
- Both synchronous and asynchronous AMO signal indicates a significant negative correlation with the drought variations. Positive (negative) phase AMO may in favor of the dryness (wetness) in Xinjiang. The AMO has shown an anti-phase fluctuation with regional drought behavior since the mid-1980s. Furthermore, AMO appears a significant impact on long-term drought variability. Among four ocean-atmospheric circulation indices, AMO is the predominant teleconnection for interannual-scale drought evolution in Xinjiang.
- (v).
- The significant negative correlation between synchronous AO and SPEI indicates that positive (negative) phase in AO may contribute to Xinjiang dry (wet) epochs. A hot spot in synchronous correlation of AO and SPEI occurs within 12-month time window, indicating that AO mainly affects the intra-annual scale drought variability over Xinjiang. However as the lag time increases, the anti-phase variation transforms to in-phase over a delay-time of 1-year, with a maximum positive correlation during the lag time of 1–2-year. These findings embody the high complexity in the effect of AO on Xinjiang drought behavior.
- (vi).
- Teleconnections show positive correlation with Xinjiang precipitation on intra-annual to inter-annual time scales, except for AO, which is negatively correlated with precipitation within a 2-year moving window. Oceanic atmospheric circulation indices indicate positive correlation with regional temperature, with the correlation increased by increasing time scale. On intra-annual to short-term inter-annual scales, ENSO and PDO mainly affect Xinjiang drought by influencing regional precipitation, with no teleconnection effect of the two on temperature variability. However, AMO acts mainly on the dry/wet variation in Xinjiang by affecting regional temperature on both intra-annual and interannual timescales. The AO signal has a certain effect on precipitation variability among short-term drought behavior.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Q.; He, H.; Gao, J.; Nie, Q.; Cui, Y.; Wei, C.; Xie, X. Analysis of Temporal-Spatial Variation Characteristics of Drought: A Case Study from Xinjiang, China. Water 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Singh, V. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wang, R.; Peng, W.; Liu, X.; Wu, W.; Chen, X.; Zhang, S. Responses of Water Level in China’s Largest Freshwater Lake to the Meteorological Drought Index (SPEI) in the Past Five Decades. Water 2018, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Du, S.; Li, F.; Ding, Y. Study on the Spatial and Temporal Characteristics of Mesoscale Drought in China under Future Climate Change Scenarios. Water 2021, 13, 2761. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y. Spatio-temporal variation of hydrological drought under climate change during the period 1960–2013 in the Hexi Corridor, China. J. Arid Land 2016, 8, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Bake, B.; Zhang, J.; Rasulov, H. Spatio-temporal patterns of drought in North Xinjiang, China, 1961–2012 based on meteorological drought index. J. Arid Land 2015, 7, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Zhao, Y.; khan, J.; Rahman, G.; Rafiq, M.; Moazzam, M. Spatial and Temporal Analysis of Rainfall and Drought Condition in Southwest Xinjiang in Northwest China, Using Various Climate Indices. Environ. Earth Sci. 2021, 5, 201–216. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Yu, X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961–2015. PeerJ 2018, 06, e4926. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhou, L.; Huang, S. A hybrid drought index combining meteorological, hydrological, and agricultural information based on the entropy weight theory. Arab. J. Geosci. 2018, 11, 91. [Google Scholar] [CrossRef]
- Yao, J.; Tuoliewubieke, D.; Chen, J.; Huo, W.; Hu, W. Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Ault, T. On the essentials of drought in a changing climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.; Haug, G.; Timmermann, A.; Damsté, J.; Brauer, A.; Sigman, D.; Cane, M.; Verschuren, D. Reduced Interannual Rainfall Variability in East Africa During the Last Ice Age. Science 2011, 333, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Rajsekhar, D.; Gorelick, S. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef] [Green Version]
- Kaniewski, D.; Marriner, N.; Ilan, D.; Morhange, C.; Thareani, Y.; Campo, E. Climate change and water management in the biblical city of Dan. Sci. Adv. 2017, 3, e1700954. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Erb, M.; Emile-Geay, J.; Hakim, G.; Steiger, N.; Steig, E. Atmospheric dynamics drive most interannual U.S. droughts over the last millennium. Sci. Adv. 2020, 6, eaay7268. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Wang, S.; Gillies, R.; Kravitz, B.; Hipps, L.; Rasch, P. Spatiotemporal variations in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970–2018). Nat. Commun. 2015, 6, 8657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalra, A.; Li, L.; Li, X.; Ahmad, S. Improving Streamflow Forecast Lead Time Using Oceanic-Atmospheric Oscillations for Kaidu River Basin, Xinjiang, China. J. Hydrol. Eng. 2013, 18, 1031–1040. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Apurv, T.; Xu, Y.; Wang, Z.; Cai, X. Multidecadal Changes in Meteorological Drought Severity and Their Drivers in Mainland China. J. Geophys. Res. Atmos. 2019, 124, 12937–12952. [Google Scholar] [CrossRef]
- Zhang, K.; Dai, S.; Dong, X. Dynamic Variability in Daily Temperature Extremes and Their Relationships with Large-scale Atmospheric Circulation During 1960–2015 in Xinjiang, China. Chin. Geogr. Sci. 2020, 30, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.; Dai, A.; van der Schrier, G.; Jones, P.; Barichivich, J.; Briffa, K.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.; Kug, J.; Jin, F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.; Stuecker, M.; et al. El Niño–Southern Oscillation complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- McPhaden, M.; Zebiak, S.; Glantz, M. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Wu, B.; Li, T.; Collins, M.; Clark, R.; Zhou, T.; Murphy, J.; Tan, G. Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Sci. Adv. 2020, 6, eaax4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.; Yu, J.; Stuecker, M.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [Green Version]
- Cobb, K.; Westphal, N.; Sayani, H.; Watson, J.; Lorenzo, E.; Cheng, H.; Edwards, R.; Charles, C. Highly Variable El Nino-Southern Oscillation Throughout the Holocene. Science 2013, 339, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emerton, R.; Cloke, H.; Stephens, E.; Zsoter, E.; Woolnough, S.; Pappenberger, F. Complex picture for likelihood of ENSO-driven flood hazard. Nat. Commun. 2017, 8, 14796. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Kumar, A.; Zhu, J.; Huang, B.; Tseng, Y.; Wang, X. On the Shortening of the Lead Time of Ocean Warm Water Volume to ENSO SST Since 2000. Sci. Rep. 2017, 7, 4294. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Li, H.; Wu, J.; Zhang, T.; Liu, J.; Liu, B.; Chen, Y.; Baishan, J. Impact of El Niño and Southern Oscillation on the summer precipitation over Northwest China. Atmos. Sci. Lett. 2019, 20, e928. [Google Scholar] [CrossRef] [Green Version]
- Kayano, M.; Andreoli, R.; Cerón, W.; Souza, R. The Role of the Indian Ocean Basin-Wide and El Niño–Southern Oscillation Modes in Interannual Rainfall Variability over South America during Austral Summer. Atmosphere 2021, 12, 1094. [Google Scholar] [CrossRef]
- Carré, M.; Sachs, J.; Purca, S.; Schauer, A.; Braconnot, P.; Falcón, R.; Julien, M.; Lavallée, D. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 2014, 345, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Zhan, H.; Jin, M.; Liang, X. Influence of solar activity and EI Niño-Southern Oscillation on precipitation extremes, streamflow variability and flooding events in an arid-semiarid region of China. J. Hydrol. 2021, 601, 126630. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Du, M.; Chen, Q.; He, C.; Zhang, J.; Zhu, Y.; Gong, Y. The Influence of ENSO and MJO on Drought in Different Ecological Geographic Regions in China. Remote Sens. 2021, 13, 875. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Balling, R.; Goodrich, G. Analysis of drought determinants for the Colorado River Basin. Clim. Chang. 2007, 82, 179–194. [Google Scholar] [CrossRef]
- Ahmadi, M.; Salimi, S.; Hosseini, S.; Poorantiyosh, H.; Bayat, A. Iran’s precipitation analysis using synoptic modeling of major teleconnection forces (MTF). Dyn. Atmos. Ocean. 2019, 85, 41–56. [Google Scholar] [CrossRef]
- Hanley, D.; Bourassa, M.; O’Brien, J.; Smith, S.; Spade, E. A Quantitative Evaluation of ENSO Indices. J. Clim. 2003, 16, 1249–1258. [Google Scholar] [CrossRef]
- Biabanaki, M.; Eslamian, S.; Koupai, J.; Cañón, J.; Boni, G.; Gheysari, M. A principal components/singular spectrum analysis approach to ENSO and PDO influences on rainfall in western Iran. Hydrol. Res. 2013, 45, 250–262. [Google Scholar] [CrossRef]
- Mann, M.; Steinman, B.; Brouillette, D.; Miller, S. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 2021, 371, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Noorisameleh, Z.; Gough, W.; Mirza, M. Persistence and spatial–temporal variability of drought severity in Iran. Environ. Sci. Pollut. Res. 2021, 28, 48808–48822. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, W.; Huang, F.; Li, Q.; Uchenna-Ochege, F.; Li, L. Spatial-temporal characteristics and influencing factors of relative humidity in arid region of Northwest China during 1966–2017. J. Arid Land 2020, 12, 397–412. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Wang, Z. Response of Natural Vegetation to Climate in Dryland Ecosystems: A Comparative Study between Xinjiang and Arizona. Remote Sens. 2020, 12, 3567. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Homaee, M. Drought trend, frequency and extremity across a wide range of climates over Iran. Meteorol. Appl. 2020, 27, e1899. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J. A Multiscalar Drought Index Sensitive to Global Warming The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Manatsa, D.; Mushore, T.; Lenouo, A. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theor. Appl. Climatol. 2017, 127, 259–274. [Google Scholar] [CrossRef]
- Stojanovic, M.; Liberato, M.; Sorí, R.; Vázquez, M.; Phan-Van, T.; Duongvan, H.; Hoang Cong, T.; Nguyen, P.; Nieto, R.; Gimeno, L. Trends and Extremes of Drought Episodes in Vietnam Sub-Regions during 1980–2017 at Different Timescales. Water 2020, 12, 813. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Mao, W.; Chen, J.; Dilinuer, T. Recent signal and impact of wet-to-dry climatic shift in Xinjiang, China. J. Geogr. Sci. 2021, 31, 1283–1298. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D. Precipitation trends and teleconnections identified using quantile regressions over Xinjiang, China: Variability and changes identified by quantile regressions. Int. J. Climatol. 2016, 37, 1510–1525. [Google Scholar] [CrossRef]
- Kambezidis, H.; Li, Y.; Zhou, M. Trends in Dryness Index Based on Potential Evapotranspiration and Precipitation over 1961–2099 in Xinjiang, China. Adv. Meteorol. 2014, 2014, 548230. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Huang, A.; Zhao, Y.; Yang, Q.; Jiang, J.; La, M. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang. Theor. Appl. Climatol. 2015, 119, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, C. Impacts of the superimposed climate trends on droughts over 1961–2013 in Xinjiang, China. Theor. Appl. Climatol. 2017, 129, 977–994. [Google Scholar] [CrossRef]
- Luo, N.; Yu, R.; Mao, D.; Wen, B.; Liu, X. Spatiotemporal variations of wetlands in the northern Xinjiang with relationship to climate change. Wetl. Ecol. Manag. 2021, 29, 617–631. [Google Scholar] [CrossRef]
- Ning, G.; Luo, M.; Zhang, Q.; Wang, S.; Liu, Z.; Yang, Y.; Wu, S.; Zeng, Z. Understanding the Mechanisms of Summer Extreme Precipitation Events in Xinjiang of Arid Northwest China. J. Geophys. Res. Atmos. 2021, 126, e2020JD034111. [Google Scholar] [CrossRef]
- Yang, P.; Xia, J.; Zhan, C.; Zhang, Y.; Hu, S. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960–2014. Theor. Appl. Climatol. 2018, 132, 167–180. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Jin, L.; Bai, H. Characteristics of the dry/wet trend over arid central Asia over the past 100 years. Clim. Res. 2010, 41, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Xia, J.; Zhang, Y.; Han, J.; Wu, X. Quantile regression and clustering analysis of standardized precipitation index in the Tarim River Basin, Xinjiang, China. Theor. Appl. Climatol. 2018, 134, 901–912. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.; Liu, L.; Zhang, W.; Lu, C.; Zhang, Y. High Mountains Becoming Wetter While Deserts Getting Drier in Xinjiang, China since the 1980s. Land 2021, 10, 1131. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.; Qin, D. New perspectives on `warming–wetting’ trend in Xinjiang, China. Adv. Clim. Chang. Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Chen, Y.; Li, D.; Zuo, J.; Zhu, N.; Chen, Z. Has the Bosten Lake Basin been dry or wet during the climate transition in Northwest China in the past 30 years? Theor. Appl. Climatol. 2020, 141, 627–644. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yao, J.; He, Q.; Chen, J. Changes in precipitation amounts and extremes across Xinjiang (northwest China) and their connection to climate indices. PeerJ 2021, 9, e10792. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, A. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Alexandersson, H. A Homogeneity Test Applied to Precipitation Data. Int. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Buishand, T. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Ye, X.; Wu, Z. Contrasting Impacts of ENSO on the Interannual Variations of Summer Runoff between the Upper and Mid-Lower Reaches of the Yangtze River. Atmosphere 2018, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xie, N.; Gao, M. The Relationship between the Wintertime Cold Extremes over East Asia with Large-Scale Atmospheric and Oceanic Teleconnections. Atmosphere 2019, 10, 813. [Google Scholar] [CrossRef] [Green Version]
- Abiy, A.; Melesse, A.; Abtew, W. Teleconnection of Regional Drought to ENSO, PDO, and AMO: Southern Florida and the Everglades. Atmosphere 2019, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; He, Y.; Cai, Y.; Cui, X.; Qu, X. Analysis of Spatiotemporal Variability in Extreme Climate and Potential Driving Factors on the Yunnan Plateau (Southwest China) during 1960–2019. Atmosphere 2021, 12, 1136. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C. An Approach toward a Rational Classification of Climate. Geogr. Res. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Helali, J.; Salimi, S.; Lotfi, M.; Hosseini, S.; Bayat, A.; Ahmadi, M.; Naderizarneh, S. Investigation of the effect of large-scale atmospheric signals at different time lags on the autumn precipitation of Iran’s watersheds. Arab. J. Geosci. 2020, 13, 932. [Google Scholar] [CrossRef]
- Onwuegbuzie, A.; Collins, K. A Typology of Mixed Methods Sampling Designs in Social Science Research. Qual. Rep. 2007, 12, 281–316. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, B.; Zou, C.; Hu, B.; Liu, Y.; Hao, Y. On the teleconnection patterns to precipitation in the eastern Tianshan Mountains, China. Clim. Dyn. 2017, 49, 3123–3139. [Google Scholar] [CrossRef]
- Mohammadrezaei, M.; Soltani, S.; Modarres, R. Evaluating the effect of ocean-atmospheric indices on drought in Iran. Theor. Appl. Climatol. 2020, 140, 219–230. [Google Scholar] [CrossRef]
- Choubin, B.; Khalighi-Sigaroodi, S.; Malekian, A.; Ahmad, S.; Attarod, P. Drought forecasting in a semi-arid watershed using climate signals: A neuro-fuzzy modeling approach. J. Mt. Sci. 2014, 11, 1593–1605. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y. Spatio-temporal pattern of meteorological droughts and its possible linkage with climate variability. Int. J. Climatol. 2017, 38, 2082–2096. [Google Scholar] [CrossRef]
- Wu, J.; Tan, X.; Chen, X.; Lin, K. Dynamic changes of the dryness/wetness characteristics in the largest river basin of South China and their possible climate driving factors. Atmos. Res. 2020, 232, 104685. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Guo, Y.; Gan, B.; Cai, W.; Huang, G.; Li, X.; Geng, T.; Jing, Z.; Li, S.; et al. Greenhouse warming intensifies north tropical Atlantic climate variability. Sci. Adv. 2021, 7, eabg9690. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kug, J.; Jeong, S. Intensification of terrestrial carbon cycle related to El Niño–Southern Oscillation under greenhouse warming. Nat. Commun. 2017, 8, 1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, K.; Ruscher, P. Large scale climate oscillations and mesoscale surface meteorological variability in the Apalachicola-Chattahoochee-Flint River Basin. J. Hydrol. 2014, 517, 700–714. [Google Scholar] [CrossRef]
- Rajagopalan, B.; Cook, E.; Lall, U.; Ray, B. Spatiotemporal Variability of ENSO and SST Teleconnections to Summer Drought over the United States during the Twentieth Century. J. Clim. 2000, 13, 4244–4255. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2726. [Google Scholar] [CrossRef] [Green Version]
- Kubota, H.; Wu, Y.; Zhang, G.; Shen, H.; Xu, Y.; Bake, B. Attribute Analysis of Aridity Variability in North Xinjiang, China. Adv. Meteorol. 2016, 2016, 9610960. [Google Scholar] [CrossRef] [Green Version]
- Byakatonda, J.; Parida, B.; Moalafhi, D.; Kenabatho, P. Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmos. Res. 2018, 213, 492–508. [Google Scholar] [CrossRef]
- Allan, R.; Pereira, L.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998; Volume 56. [Google Scholar]
- Li, Y.; Yao, N.; Sahin, S.; Appels, W. Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theor. Appl. Climatol. 2017, 129, 1017–1034. [Google Scholar] [CrossRef]
- Li, C.; Zhao, T. Seasonal Responses of Precipitation in China to El Niño and Positive Indian Ocean Dipole Modes. Atmosphere 2019, 10, 372. [Google Scholar] [CrossRef] [Green Version]
SPEI | Independent | Coefficient | Std. Error | t | p | VIF |
---|---|---|---|---|---|---|
SPEI-3 | Constant | −0.016 | 0.02 | −0.823 | 0.411 | |
AO | −0.14 | 0.028 | −4.973 | <0.001 | 1.034 | |
AMO | −0.41 | 0.094 | −4.349 | <0.001 | 1.012 | |
PDO | 0.085 | 0.02 | 4.279 | <0.001 | 1.023 | |
SPEI-6 | Constant | −0.029 | 0.02 | −1.473 | 0.141 | |
AO | −0.285 | 0.036 | −7.852 | <0.001 | 1.04 | |
AMO | −0.65 | 0.097 | −6.731 | <0.001 | 1.019 | |
PDO | 0.127 | 0.021 | 6.145 | <0.001 | 1.022 | |
SPEI-12 | Constant | −0.034 | 0.019 | −1.795 | 0.073 | |
PDO | 0.208 | 0.022 | 9.653 | <0.001 | 1.008 | |
AMO | −0.927 | 0.098 | −9.45 | <0.001 | 1.019 | |
AO | −0.329 | 0.045 | −7.31 | <0.001 | 1.027 | |
SPEI-24 | Constant | −0.042 | 0.018 | −2.311 | 0.021 | |
AMO | −1.271 | 0.099 | −12.878 | <0.001 | 1.012 | |
PDO | 0.249 | 0.023 | 10.839 | <0.001 | 1.003 | |
AO | −0.318 | 0.055 | −5.734 | <0.001 | 1.015 | |
SPEI-36 | Constant | −0.038 | 0.018 | −2.129 | 0.034 | |
AMO | −1.545 | 0.098 | −15.779 | <0.001 | 1.027 | |
PDO | 0.172 | 0.033 | 5.194 | <0.001 | 1.906 | |
AO | −0.256 | 0.062 | −4.11 | <0.001 | 1.045 | |
ENSO | 0.208 | 0.064 | 3.251 | 0.001 | 1.875 | |
SPEI-48 | Constant | −0.031 | 0.018 | −1.714 | 0.087 | |
AMO | −1.677 | 0.1 | −16.747 | <0.001 | 1.034 | |
ENSO | 0.335 | 0.079 | 4.259 | <0.001 | 1.92 | |
PDO | 0.108 | 0.037 | 2.962 | 0.003 | 2.01 | |
AO | −0.155 | 0.068 | −2.273 | 0.023 | 1.088 |
SPEI | Independent | Coefficient | Std. Error | t | p | VIF |
---|---|---|---|---|---|---|
SPEI-3 | Constant | −0.005 | 0.02 | −0.258 | 0.796 | |
lag17AMO | −0.459 | 0.098 | −4.684 | <0.001 | 1.103 | |
lag1PDO | 0.109 | 0.02 | 5.46 | <0.001 | 1.078 | |
lag0AO | −0.1 | 0.028 | −3.512 | <0.001 | 1.042 | |
lag8ENSO | −0.074 | 0.026 | −2.835 | 0.005 | 1.143 | |
SPEI-6 | Constant | −0.013 | 0.019 | −0.67 | 0.503 | |
lag17AMO | −0.732 | 0.099 | −7.364 | <0.001 | 1.11 | |
lag0PDO | 0.157 | 0.021 | 7.657 | <0.001 | 1.056 | |
lag0AO | −0.209 | 0.036 | −5.796 | <0.001 | 1.032 | |
lag8ENSO | −0.075 | 0.027 | −2.792 | 0.005 | 1.144 | |
SPEI-12 | Constant | −0.014 | 0.019 | −0.76 | 0.447 | |
lag0PDO | 0.24 | 0.021 | 11.423 | <0.001 | 1.02 | |
lag18AMO | −1.105 | 0.096 | −11.486 | <0.001 | 1.012 | |
lag0AO | −0.221 | 0.044 | −5.049 | <0.001 | 1.008 | |
SPEI-24 | Constant | 0.034 | 0.018 | 1.852 | 0.064 | |
lag0AMO | −1.172 | 0.1 | −11.779 | <0.001 | 1.024 | |
lag0PDO | 0.181 | 0.031 | 5.899 | <0.001 | 1.802 | |
lag22AO | 0.263 | 0.058 | 4.521 | <0.001 | 1.118 | |
lag0ENSO | 0.094 | 0.047 | 1.992 | 0.047 | 1.684 | |
SPEI-36 | Constant | 0.044 | 0.018 | 2.442 | 0.015 | |
lag0AMO | −1.359 | 0.101 | −13.483 | <0.001 | 1.034 | |
lag0PDO | 0.109 | 0.036 | 3.029 | 0.003 | 2.194 | |
lag37AO | 0.316 | 0.067 | 4.721 | <0.001 | 1.228 | |
lag0ENSO | 0.284 | 0.064 | 4.421 | <0.001 | 1.881 | |
SPEI-48 | Constant | 0.064 | 0.018 | 3.535 | <0.001 | |
lag0AMO | −1.455 | 0.101 | −14.37 | <0.001 | 1.003 | |
lag0ENSO | 0.554 | 0.06 | 9.295 | <0.001 | 1.015 | |
lag44AO | 0.433 | 0.065 | 6.645 | <0.001 | 1.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Xing, B. Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere 2022, 13, 230. https://doi.org/10.3390/atmos13020230
Yang R, Xing B. Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere. 2022; 13(2):230. https://doi.org/10.3390/atmos13020230
Chicago/Turabian StyleYang, Ruting, and Bing Xing. 2022. "Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China" Atmosphere 13, no. 2: 230. https://doi.org/10.3390/atmos13020230
APA StyleYang, R., & Xing, B. (2022). Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere, 13(2), 230. https://doi.org/10.3390/atmos13020230