Simulation of an Extreme Precipitation Event Using Ensemble-Based WRF Model in the Southeastern Coastal Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation
2.2. GEFS Ensembles
2.3. WRF Model Setup
3. Results
3.1. The 3-Hourly and 6-Hourly Cumulative Precipitation Simulations by WRF Ensembles
3.2. Temporal Validation of WRF Ensemble Simulations
3.3. Spatial Validation of WRF Ensemble Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. Adecade ofweather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Ingram, W. Extreme precipitation: Increases all round. Nat. Clim. Chang. 2016, 6, 443–444. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Fu, G.; Yu, J.; Yu, X.; Ouyang, R.; Zhang, Y.; Wang, P.; Liu, W.; Min, L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Ning, L.; Qian, Y.F. Interdecadal change in extreme precipitationover south China and its mechanism. Adv. Atmos. Sci. 2009, 26, 109–118. [Google Scholar] [CrossRef]
- Xu, X.; Du, Y.G.; Tang, J.P.; Wang, Y. Variations of temperature and precipitation extremes in recent two decades over China. Atmos. Res. 2011, 101, 143–154. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Song, D.; Cai, S. China Meteorological Disasters: Fujian; China Meteorological Press: Beijing, China, 2007. (In Chinese)
- Li, Y.; Lu, G.; Wu, Z.; He, H.; Shi, J.; Ma, Y.; Weng, S. Evaluation of optimized WRF precipitation forecast over a complex topography region during flood season. Atmosphere 2016, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; He, H.; Zhang, Y. Evaluation of simulation results for different parameterization schemes of land process. J. Anhui Agric. Sci. 2016, 44, 210–215, 220. (In Chinese) [Google Scholar]
- Milovac, J.; Warrach-Sagi, K.; Behrendt, A.; Späth, F.; Ingwersen, J.; Wulfmeyer, V. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. J. Geophs. Res. 2016, 121, 624–649. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Grill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note No. 2008, NCAR/TN–475 + STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Yang, Q.; Yu, Z.; Wei, J.; Yang, C.; Gu, H.; Xiao, M.; Shang, S.; Dong, N.; Gao, L.; Arnault, J.; et al. Performance of the WRF model in simulating intense precipitation events over the Hanjiang River Basin, China–A multi-physics ensemble approach. Atmos. Res. 2021, 248, 105206. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Hardesty, R.M.; Turner, D.D.; Behrendt, A.; Cadeddu, M.P.; Di Girolamo, P.; Schlüssel, P.; Van Baelen, J.; Zus, F. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys. 2015, 53, 819–895. [Google Scholar] [CrossRef]
- Wei, J.; Dong, N.; Fersch, B.; Arnault, J.; Wagner, S.; Laux, P.; Zhang, Z.; Yang, Q.; Yang, C.; Shang, S.; et al. Role of reservoir regulation and groundwater feedback in a simulated ground-soil-vegetation continuum: A long-term regional scale analysis. Hydrol. Process. 2021, 35, e14341. [Google Scholar] [CrossRef]
- Gallus, W.A., Jr. Application of object-based verification techniques to ensemble precipitation forecasts. Weather Forecast. 2010, 25, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.S.; Hamill, T.M.; Wei, X.; Song, Y.; Toth, Z. Ensemble Data Assimilation with the NCEP Global Forecast System. Mon. Weather Rev. 2008, 136, 463–482. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhu, Y.; Hou, D.; Kleist, D. Comparison of the Ensemble Transform and the Ensemble Kalman Filter in the NCEP Global Ensemble Forecast System. Weather Forecast. 2016, 31, 2058–2074. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Hou, D.; Luo, Y.; Peng, J.; Wobus, R. The NCEP Global Ensemble Forecast System with the EnKF Initialization. Weather Forecast. 2017, 32, 1989–2004. [Google Scholar] [CrossRef]
- Gao, L.; Huang, J.; Chen, X.; Chen, Y.; Liu, M. Contributions of natural climate changes and human activities to the trend of extreme precipitation. Atmos. Res. 2018, 205, 60–69. [Google Scholar] [CrossRef]
- Gao, L.; Huang, J.; Chen, X.; Chen, Y.; Liu, M. Risk of extreme precipitation under nonstationarity conditions during the second flood season in the southeastern coastal region of China. J. Hydrometeorol. 2017, 18, 669–681. [Google Scholar] [CrossRef]
- Lei, X.; Gao, L.; Ma, M.; Wei, J.; Xu, L.; Wang, L.; Lin, H. Does non-stationarity of extreme precipitation exist in the Poyang Lake Basin of China? J. Hydrol. Reg. Stud. 2021, 37, 100920. [Google Scholar] [CrossRef]
- Li, J.; Tang, J. Experiment of WRF multi-physics short range ensemble forecasts in southeastern China. J. Nanjing Univ. Nat. Sci. 2012, 48, 677–688. (In Chinese) [Google Scholar]
- Zhang, K.; Wang, D.; Zhang, Y.; Wu, Z.; Li, G. Study on impacts of dynamic downscaling and multi-physical parameterization scheme combination on ensemble forecast of annually first rainy season in South China. J. Trop. Meteorol. 2020, 36, 668–682. (In Chinese) [Google Scholar]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Dai, D.; Chen, L.; Ma, Z.; Xu, Z. Evaluation of the WRF physics ensemble using a multivariable integrated evaluation approach over the Haihe river basin in northern China. Clim. Dyn. 2021, 57, 557–575. [Google Scholar] [CrossRef]
ID | Name | Latitude | Longitude | Elevation | ID | Name | Latitude | Longitude | Elevation |
---|---|---|---|---|---|---|---|---|---|
1 | Guangze | 27.52 | 117.30 | 264 | 35 | Wuping | 25.15 | 116.07 | 267 |
2 | Shaowu | 27.33 | 117.47 | 192 | 36 | Shagnhang | 25.05 | 116.42 | 199 |
3 | Wuyishan | 27.77 | 118.03 | 221 | 37 | Yongan | 25.97 | 117.35 | 206 |
4 | Pucheng | 27.92 | 118.53 | 275 | 38 | Datian | 25.70 | 117.83 | 401 |
5 | Jianyang | 27.33 | 118.12 | 196 | 39 | Zhangping | 25.30 | 117.40 | 203 |
6 | Songxi | 27.52 | 118.80 | 201 | 40 | Longyan | 25.10 | 117.03 | 342 |
7 | Zhenghe | 27.37 | 118.82 | 221 | 41 | Huaan | 25.02 | 117.53 | 161 |
8 | Jian’ou | 27.05 | 118.32 | 156 | 42 | Anxi | 25.07 | 118.15 | 89 |
9 | Shouning | 27.53 | 119.42 | 826 | 43 | Yongtai | 25.87 | 118.93 | 86 |
10 | Zhouning | 27.15 | 119.35 | 900 | 44 | Pinnan | 26.92 | 118.98 | 871 |
11 | Fuan | 27.10 | 119.65 | 46 | 45 | Yongchun | 25.33 | 118.27 | 170 |
12 | Zherong | 27.25 | 119.90 | 670 | 46 | Dehua | 25.48 | 118.23 | 517 |
13 | Fuding | 27.33 | 120.20 | 38 | 47 | Xianyou | 25.37 | 118.70 | 77 |
14 | Ninghua | 26.23 | 116.63 | 359 | 48 | Xiuyu | 25.23 | 118.98 | 23 |
15 | Qingliu | 26.20 | 116.85 | 310 | 49 | Fujiao | 26.08 | 119.33 | 26 |
16 | Taining | 26.90 | 117.17 | 345 | 50 | Change | 25.97 | 119.50 | 8 |
17 | Jiangle | 26.73 | 117.47 | 154 | 51 | Fuqing | 25.72 | 119.38 | 38 |
18 | Jianning | 26.83 | 116.85 | 342 | 52 | Pingtan | 25.52 | 119.78 | 31 |
19 | Shunchang | 26.80 | 117.80 | 174 | 53 | Putian | 25.43 | 119.00 | 29 |
20 | Mingxi | 26.40 | 117.15 | 319 | 54 | Yongding | 24.72 | 116.72 | 222 |
21 | Shaxian | 26.40 | 117.80 | 120 | 55 | Changtai | 24.62 | 117.75 | 42 |
22 | Sanming | 26.27 | 117.62 | 213 | 56 | Nanjing | 24.52 | 117.37 | 28 |
23 | Nanping | 26.65 | 118.17 | 128 | 57 | Pinghe | 24.37 | 117.32 | 37 |
24 | Gutian | 26.58 | 118.73 | 356 | 58 | Zhangzhou | 24.50 | 117.65 | 29 |
25 | Youxi | 26.17 | 118.15 | 127 | 59 | Longhair | 24.45 | 117.82 | 8 |
26 | Minqing | 26.23 | 118.85 | 40 | 60 | Zhangpu | 24.13 | 117.60 | 51 |
27 | Xiapu | 26.88 | 120.00 | 13 | 61 | Tongan | 24.72 | 118.13 | 15 |
28 | Minhou | 26.15 | 119.15 | 50 | 62 | Nanan | 24.97 | 118.37 | 45 |
29 | Luoyuan | 26.50 | 119.53 | 57 | 63 | Chongwu | 24.90 | 118.92 | 23 |
30 | Ningde | 26.33 | 119.53 | 33 | 64 | Xiamen | 24.48 | 118.07 | 138 |
31 | Fuzhou | 26.08 | 119.28 | 85 | 65 | Jinjiang | 24.82 | 118.57 | 55 |
32 | Lianjiang | 26.20 | 119.53 | 7 | 66 | Zhaoan | 23.77 | 117.13 | 20 |
33 | Changting | 25.85 | 116.37 | 311 | 67 | Dongshan | 23.78 | 117.50 | 54 |
34 | Liancheng | 25.68 | 116.75 | 382 | 68 | Yunxiao | 23.98 | 117.37 | 20 |
d01 | d02 | d03 | |
---|---|---|---|
Microphysics | WSM6 | WSM6 | WSM6 |
Radiation physics | RRTMG | RRTMG | RRTMG |
Surface layer physics | Monin-Obukho | Monin-Obukho | Monin-Obukho |
Land surface physics | Noah | Noah | Noah |
Planetary boundary layer physics | YSU | YSU | YSU |
Cumulus parameterization | Kain-Frisc | Kain-Frisc | - |
Index | Name | Formula | Optimal Value |
---|---|---|---|
NRMSE | Normalized Root Mean Square Error | 0 | |
PCC | Pearson Correlation Coefficient | 1 | |
CSI | Critical Success Index | 1 |
3hP | 6hP | |||||
---|---|---|---|---|---|---|
NRMSE | PCC | CSI | NRMSE | PCC | CSI | |
En00 | 0.67 | 0.28 | 0.55 | 0.51 | 0.52 | 0.72 |
En01 | 0.57 | 0.45 | 0.56 | 0.46 | 0.55 | 0.72 |
En02 | 0.74 | 0.16 | 0.59 | 0.51 | 0.43 | 0.74 |
En03 | 0.65 | 0.82 | 0.53 | 0.62 | 0.79 | 0.69 |
En04 | 0.54 | 0.77 | 0.56 | 0.47 | 0.89 | 0.71 |
En05 | 0.58 | 0.38 | 0.58 | 0.41 | 0.67 | 0.74 |
En06 | 0.49 | 0.63 | 0.59 | 0.42 | 0.72 | 0.73 |
En07 | 0.80 | 0.07 | 0.54 | 0.63 | 0.29 | 0.72 |
En08 | 0.58 | 0.49 | 0.50 | 0.49 | 0.64 | 0.67 |
En09 | 0.63 | 0.74 | 0.52 | 0.60 | 0.79 | 0.71 |
En10 | 0.61 | 0.37 | 0.56 | 0.48 | 0.56 | 0.73 |
En11 | 0.61 | 0.34 | 0.59 | 0.53 | 0.44 | 0.73 |
En12 | 0.73 | 0.01 | 0.61 | 0.55 | 0.21 | 0.75 |
En13 | 0.58 | 0.79 | 0.52 | 0.54 | 0.85 | 0.70 |
En14 | 0.62 | 0.53 | 0.48 | 0.51 | 0.68 | 0.69 |
En15 | 0.66 | 0.29 | 0.60 | 0.47 | 0.54 | 0.76 |
En16 | 0.63 | 0.34 | 0.58 | 0.53 | 0.47 | 0.74 |
En17 | 0.62 | 0.65 | 0.50 | 0.56 | 0.74 | 0.70 |
En18 | 0.67 | 0.33 | 0.55 | 0.56 | 0.42 | 0.73 |
En19 | 0.81 | 0.02 | 0.61 | 0.69 | 0.16 | 0.75 |
En20 | 0.58 | 0.52 | 0.52 | 0.47 | 0.70 | 0.69 |
Enmean | 0.63 | 0.43 | 0.55 | 0.53 | 0.58 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Wei, J.; Lei, X.; Ma, M.; Wang, L.; Guan, X.; Lin, H. Simulation of an Extreme Precipitation Event Using Ensemble-Based WRF Model in the Southeastern Coastal Region of China. Atmosphere 2022, 13, 194. https://doi.org/10.3390/atmos13020194
Gao L, Wei J, Lei X, Ma M, Wang L, Guan X, Lin H. Simulation of an Extreme Precipitation Event Using Ensemble-Based WRF Model in the Southeastern Coastal Region of China. Atmosphere. 2022; 13(2):194. https://doi.org/10.3390/atmos13020194
Chicago/Turabian StyleGao, Lu, Jianhui Wei, Xiangyong Lei, Miaomiao Ma, Lan Wang, Xiaojun Guan, and Hui Lin. 2022. "Simulation of an Extreme Precipitation Event Using Ensemble-Based WRF Model in the Southeastern Coastal Region of China" Atmosphere 13, no. 2: 194. https://doi.org/10.3390/atmos13020194
APA StyleGao, L., Wei, J., Lei, X., Ma, M., Wang, L., Guan, X., & Lin, H. (2022). Simulation of an Extreme Precipitation Event Using Ensemble-Based WRF Model in the Southeastern Coastal Region of China. Atmosphere, 13(2), 194. https://doi.org/10.3390/atmos13020194