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Abstract: In recent years, the Weather Research and Forecast (WRF) model has been utilized to
generate quantitative precipitation forecasts with higher spatial and temporal resolutions. However,
factors including horizontal resolution, domain size, and the physical parameterization scheme have
a strong impact on the dynamic downscaling ability of the WRF model. In this study, the influence
of these factors has been analyzed in precipitation forecasting for the Xijiang Basin, southern
China—a region with complex topography. The results indicate that higher horizontal resolutions
always result in higher Critical Success Indexes (CSI), but higher biases as well. Meanwhile, the
precipitation forecast skills are also influenced by the combination of microphysics parameterization
scheme and cumulus convective parameterization scheme. On the basis of these results, an
optimized configuration of the WRF model is built in which the horizontal resolution is 10 km,
the microphysics parameterization is the Lin scheme, and the cumulus convective parameterization
is the Betts–Miller–Janjic scheme. This configuration is then evaluated by simulating the daily
weather during the 2013–2014 flood season. The high Critical Success Index scores and low biases
at various thresholds and lead times confirm the high accuracy of the optimized WRF model
configuration for Xijiang Basin. However, the performance of the WRF model varies from different
sub-basins due to the complexity of the mesoscale convective system (MCS) over this region.

Keywords: the Weather Research and Forecast Model; precipitation; Xijiang Basin; horizontal
resolution; domain size; physical parameterization scheme

1. Introduction

Quantitative precipitation forecast (QPF) plays a significant role in the prevention of natural
disasters such as flood and rainstorms [1,2]. Numerical weather forecasts have been commonly
used to provide QPF products in recent years [3–5]. However, the global numerical weather
forecast models can not meet the requirement of high spatial and temporal resolution of a
specific region with complicated topography, due to the limitation of computer resources. Many
regional numerical weather forecast models—such as the Regional Atmospheric Modeling System
(RAMS), the Pennsylvania State University–National Center for Atmospheric Research (PSU/NCAR)
mesoscale model (MM5) and the Weather Research and Forecast model (WRF)—have been provided
as dynamic downscaling tools to generate higher spatial and temporal resolution QPF products on
the basis of global numerical weather forecasts [6,7]. Numerous studies have indicated that regional
numerical weather forecast models are more capable of predicting precipitation in complicated
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topography than global models, as higher resolution helps to reveal local circulations and orographic
forcing [8].

However, predicting precipitation in a complex terrain region remains challenging, and the
performance of regional model remains to be improved [9]. Although a great range of options have
been provided for regional models in order to be flexible to any region in the world, studies have
indicated that there is still a need to establish a proper configuration for a given area with complex
terrain. Carvalho et al. [10] simulated wind energy in an area of Portugal with complex terrain
under different numerical and physical options, and the results indicated that the MM5–Yonsei
University–Noah was the most suitable parameterization set for this site, and demonstrated that
the increase of domain resolution alone cannot improve the model performance significantly.
Zhang et al. [11] also found out that increasing the vertical resolution by the use of the WRF model
may not help to predict 2-m temperature and 10-m wind speed in complex terrain. Cheng and
Steenburgh [12] suggested that using a more sophisticated land surface model was not able to get
a higher forecast skill over the Western United States.

Numerous options, including spatial resolutions, domain size, and microphysics
parameterization schemes, always make it difficult to establish a proper dynamic configuration
for a given region. However, model characteristics such as land surface model and vertical
horizontal resolution may have less influence on precipitation forecast when compared with physical
parameterizations. It is more feasible to concentrate on the optimization of several key options.
Horizontal resolution is the most important option when setting up a downscaling configuration
for regional models. However, the capability of increasing precipitation forecast skill with higher
resolution remains to be discussed. The prediction skills of South Asia increased with higher
horizontal resolution, while the skills did not enhance to Southeast Asia and oceans [13]. Another
aspect that we must take into consideration is the domain size of simulation. Larger domain sizes
lead to larger internal variability of model and longer computing time, but a small domain size
makes it difficult for regional models to catch sight of large-scale features inherited from the lateral
boundary conditions [14]. Dynamic downscaling method was effective only when the domain sizes
get relatively smaller, but a calibrated domain size was needed for subdomains [15]. Microphysics
and convective parameterization in regional models help to resolve micro-scale weather systems,
and play an important role on the distribution and intensity of precipitation forecasts in regions
with complex terrain. Haghroosta et al. [16] suggested that we should select suitable options for
different variables.

The Xijiang Basin of south China has a complex topography, and rainstorm disasters are frequent
due to the influence of monsoon climate and the occurrence of tropical cyclones. Because the QPF of
Xijiang Basin still has low accuracy, there is an urgent need to provide QPF products with higher
spatial and temporal resolutions. The Weather Research and Forecast (WRF) model has been proved
to be an efficient dynamic downscaling tool in recent years [17]. In this paper, horizontal resolution,
domain size, and physical parameterization of the WRF model are optimized through sensitivity
tests. An optimized dynamic downscaling configuration is established in Xijiang Basin, and the
configuration is verified by evaluating precipitation forecast accuracy during the 2013–2014 flood
seasons (1st June–31st August).

2. Data and Methodology

2.1. Study Area and Data Sources

The Xijiang Basin is located at 21.31 ◦ N–26.49 ◦ N and 102.14 ◦ E–112.88 ◦ E, and covers an area
of 406,000 km2 (Figure 1). The region contains the major tributary of the Pearl River, which originates
in the Maxiong Mountains of Yunnan Province, southwest China, and flows through the Guizhou,
Guangxi, and Guangdong Provinces, before entering the South China Sea through the Pearl River
Delta. Elevation in the basin decreases from the northwest (the Yunnan–Guizhou Plateau) to the
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southeast delta area. The runoff generation mechanism and concentration time under such complex
topography are still under investigation. What is more, the complex topography makes it difficult to
gather adequate precipitation information, which is essential to flood forecasts. These factors make it
challenging to forecast flood events prior to the periods of runoff concentration.

Figure 1. Regional map showing the location of three ground-based meteorological stations (red dots),
the Xijiang River System (blue), and the local topography (elevation in metre) of the Xijiang Basin. The
geographical location of the study region within China is shown in the small inset map (bottom left).

The region is characterized by a subtropical-to-tropical monsoon climate [18]. Mean annual
rainfall over the last three decades varied between 900 and 2200 mm (Figure 2). The Beipanjiang (BPJ)
and Nanpanjiang (NPJ) sub-basins are situated to the west, where the annual precipitation is
between 900 and 1300 mm. The annual precipitation of the Hongshuihe (HSH) and Yujiang (YJ)
Basins are relatively higher than those of BPJ and NPJ, but lower than the others, which include
Qianjiang–Liujiang (QLJ), Guijiang (GJ), Xunjiang (XUN), and Xijiang (XIJ). The flooding season
extends from April to September, during which nearly 72%–88% of the annual runoff is formed. The
area of each sub-basin is shown in Table 1.

Table 1. The area of each sub-basin over Xijiang Basin.

Sub Basin Area (km2)

Nanpanjiang (NPJ) 67,191
Beipanjiang (BPJ) 31,399

Hongshuihe (HSH) 64,288
Yujiang (YJ) 92,515

Qianjiang–Liujiang (QLJ) 75,208
Guijiang (GJ) 22,611

Xunjiang (XUN) 21,694
Xijiang (XIJ) 31,794



Atmosphere 2016, 7, 145 4 of 17

Figure 2. Mean annual precipitation (mm/year) for the 1980–2010 period from the National Oceanic
and Atmospheric Administration’s Climate Prediction Center (CPC) unified gauge-based analysis.

The Global Forecast System (GFS) forecast data was used as input to the WRF model.
Although the GFS model provides various forecast products with different horizontal resolutions,
this study mainly focused on the downscaling capability of the WRF model. The resolution of
the 0.5◦ × 0.5◦ GFS product is too high to conduct a sensitivity test, while the resolution of the
2.5◦ × 2.5◦ GFS product is too coarse. Thus, the GFS forecast product we used in this study was
at a horizontal resolution of 1◦ × 1◦ and had a frequency of 6 h. The model chosen to conduct
the simulations was WRF version 3.5 of the Advanced Research (ARW) solver. It represented the
current state-of-the-art in mesoscale model development, and was established as a successor to the
long-standing MM5 model, sharing much of the same dynamics and model physics. A more detailed
description can be found in a previous study [19]. The observed precipitation of the Xijiang Basin
was derived from the real-time operational system of daily precipitation analysis over China on
a 0.25◦ × 0.25◦ grid, which was merged from over 2400 stations over mainland China and satellite
estimates [20].

2.2. Experimental Design of Sensitivity Tests

Seven typical rainstorms (Table 2), formed because of substantial convective systems, were
selected from the 2005–2010 Xijiang Basin data.

All simulations were integrated for 24 h. Different horizontal resolutions, domain sizes, and
physical parameterizations were used for each case. All other options (such as integration steps and
soil level) which were of lesser importance to the simulations were kept the same. All simulations
were run on a Lambert conformal projection. The vertical structure of the model included 28
layers covering the whole troposphere, and the model top was at 50 mb. With the exception
of the microphysical and convective parameterization schemes, the physical parameterization
schemes for all simulations used were: Yonsei University scheme for the boundary layer [21],
the Monin–Obukhov scheme for the surface layer [22], Dudhia for shortwave [23], the Rapid
Radiative Transfer Model (RRTM) for longwave radiation [24], and the Noah scheme [25] for
land surface.
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Table 2. Selected rainstorms over the Xijiang Basin.

Event
Occurrence

Time

Areal Average in
Proceedings of the

Precipitation (mm/day) Weather System
Location of

Rainstorm Center

Maximum Grid
Precipitation

(mm/day)

Case1
0000 UTC

5–6 June 2005 54.1
South Asia High and
Southwest monsoon 106.42 ◦E 23.13 ◦N 147.0

Case2 45.3
Southwest vortex

110.68 ◦E 23.65 ◦N 202.00000 UTC High-Level trough
21–22 June 2005 and Shear line

Case3
0000 UTC

57.4 Tropical storm 110.18 ◦E 24.14 ◦N 208.816–17 July 2006

Case4

High and low
0000 UTC 47.0 level jet 109.4 ◦E 24.35 ◦N 228.0

12–13 June 2007 Shear Line

Case5 0000 UTC 83.1 South Asia High 109.26 ◦E 24.15 ◦N 288.112–13 June 2008 and Trough

Case6 49.9
High-Level trough

109.2 ◦E 23.5 ◦N 219.20000 UTC Shear line and
3-4 July 2009 Southwest monsoon

Case7 0000 UTC 39.0 Southwest vortex 110.82 ◦E 22.86 ◦N 252.51–2 June 2010

2.2.1. Experimental Design of Horizontal Resolution and Domain Size Sensitivity

For the horizontal resolution sensitivity tests, different nesting strategies were set with different
domain sizes (Figure 3 and Table 3). The results of different horizontal resolutions, 45 km (d01),
30 km (d01), 20 km (d01), 15 km (d02), 10 km (d02) and 5 km (d03) were compared to investigate the
influence of horizontal resolution and domain size on precipitation forecasts.

Figure 3. Map of domain sizes of the d01–d03 simulations.
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Table 3. Nesting strategy and horizontal resolution for each domain.

Nesting Strategy Horizontal Resolution for Each Domain

Single domain d01 (45 km)
Single domain d01 (30 km)
Single domain d01 (20 km)

Two domain nested d01 (45 km), d02 (15 km)
Two domain nested d01 (30 km), d02 (10 km)

Three domain nested d01 (45 km), d02 (15 km), d03 (5 km)

Studies have indicated that the numerical forecast models are capable of resolving mesoscale
convective systems when the horizontal resolution is higher than 10 km, which means that
the utilization of a cumulus convective parameterization scheme at such a high resolution may
overestimate the processes of cumulus convections. However, a discussion still exists about whether
the high horizontal resolution (<10 km) numerical models are able to resolve the convective processes
completely when the scale of cumulus convective processes is lower than 5 km. Thus, the Lin
microphysics scheme [26] and the Betts–Miller–Janjic (BMJ) cumulus convection scheme [27] were
used for all sensitivity tests.

2.2.2. Experimental Design of Physical Parameterization Sensitivity

Seven microphysics parameterizations were used for parameterization sensitivity tests,
including: the Kessler scheme [28], the Lin scheme [26], the the WRF Single-Moment (WSM) 3
scheme [29], the WSM5 scheme [29], the Ferrier scheme [30], the WSM6 scheme [29], and the
Thompson scheme [31]. Three convective parameterizations were utilized: the Kain–Fritsch (KF)
scheme [32], the Betts–Miller–Janjic (BMJ) scheme [27], and the Grell–Devenyi (GD) scheme [33].
Each microphysics scheme and convective scheme was permutated and combined for all cases,
while the horizontal resolution and domain size was based on the results of the sensitivity test.

2.3. Model Evaluation

The bilinear interpolation method—which had been widely used in the evaluation of numerical
weather forecast models—was utilized to regrid all WRF model outputs into the same observation
grid points at a horizontal resolution of 0.25◦. Although the bilinear method may smooth the
precipitation field, we mostly focused on the comparison of different resolutions. The utilization of
the same bilinear interpolation method may have limited influence on the results of the comparison.

A 2 × 2 contingency table (Table 4) was used to evaluate the accuracy of precipitation forecast.

Table 4. Contingency table.

Forecast Observation

YES NO

YES a b
NO c d

On the basis of this table, The Critical Success Index (CSI; also known as the threat score) was
calculated as:

CSI =
a

a + b + c
(1)

the Bias (B) was defined as:

B =
a + b
a + c

(2)
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The false alarm rate (FAR) was calculated as:

FAR =
b

a + b
(3)

The probability of detection (POD) indexes was calculated as:

POD =
a

a + c
(4)

The best score is 1 for CSI and POD, and the best score is 0 for FAR. However, the CSI, Bias, FAR,
and POD alone were unable to evaluate the performance of the simulations. Thus, two additional
statistical methods were also employed: mean relative error (MRE) and correlation coefficient (R),
calculated as follows:

MRE =
1
N

N

∑
i=1

xi − yi
yi

(5)

R =
∑N

i=1(xi − x̄)(yi − ȳ)√
∑N

i=1(xi − x̄)2 ∑N
i=1(yi − ȳ)2

(6)

where N was the total number of verification grid points, xi and yi were the model simulated
and observed values, respectively, x̄ and ȳ were the mean forecasted and observed precipitation,
respectively, and m was the total number of grid points beyond a threshold.

3. Results

3.1. Influence of Horizontal Resolution and Domain Size on Simulations

The results from different horizontal resolutions indicated that the WRF model was able to
simulate all precipitation processes from Case 1 to Case 7. In order to investigate the downscaling
ability of the WRF model at different horizontal resolutions, the Bias (B), false alarm rate (FAR),
and probability of detection (POD) indexes were calculated at different thresholds. From Figure 4,
we can see that the CSI scores increased as the horizontal resolution got higher. Especially when
the horizontal resolution was 5 km, the CSI score was always the highest compared to the other
resolutions. The POD indexes showed results similar to the CSI scores. Although the CSI and POD
scores at a horizontal resolution of 10 km were lower than that of 5 km, the results were better than
other resolutions.

When the bias and FAR are taken into consideration, higher horizontal resolution always
resulted in higher bias and FAR scores. When the threshold was greater than 60 mm/day, the bias
increased significantly at a horizontal resolution of 5 km. The biases of 15 km and 10 km were almost
the same, which were close to the value of 1 when the threshold was greater than 100 mm/day.
Although the FAR scores at a horizontal resolution of 10 km were higher than that of 20 km, it was
much lower than other resolutions.

Differences still exist, especially for the simulation of rainstorm centers. Here, we selected
Case 5 as a typical case because the amount of areal average precipitation and maximum grid
precipitation was greatest when compared with other cases. It was obvious that the main rain belt
which covered southern GJ and the center of the HSH sub-basin was well captured by all horizontal
resolutions (Figure 5). However, the location of rainstorm center showed great diversity with different
resolutions. When the horizontal resolution was below 15 km, the rainstorm center located in the
center of the QLJ sub-basin was not well captured. The amount of simulated precipitation was about
140 mm/day, while the observed precipitation exceeded 200 mm/day. Although the distribution at a
horizontal resolution of 10 km and 5 km was much closer than observation, the discontinuity of rain
bands at a horizontal resolution of 5 km made it more difficult to locate the real rainstorm center.
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Figure 4. Mean critical success index (CSI), bias (B) false alarm rate (FAR), and probability of
detection (POD) scores for seven case studies at different horizontal resolutions (5 km, 10 km, 15 km,
20 km, 30 km, 45 km).

Figure 5. Study region maps showing the observed and simulated precipitation (mm) distribution at
different horizontal resolutions for Case 5.

3.2. Influence of Physical Parameterization Scheme on Simulations

The domain configuration of physical parameterization sensitivity tests was based on the results
of horizontal resolution sensitivity tests, and the outer domain was d01 with a horizontal resolution
of 30 km and the inner domain was d02 with a horizontal resolution of 10 km. The B, FAR, and POD
scores at a threshold of 100 mm/day were calculated for physical parameterization sensitivity tests
as well (Figure 6). Greater differences were observed when different cumulus convective schemes
and microphysics schemes were used. Although the KF convective scheme always leads to higher
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CSI scores when compared with the other two convective schemes, its biases were always higher
than others. When the cumulus convective scheme was the BMJ scheme, the CSI score was greatly
influenced by the choice of microphysics scheme. It was clear that the combination of BMJ convective
scheme and Lin microphysics scheme always leads to higher CSI and POD scores, and lower biases
and FAR scores than other combinations.

Figure 6. Mean CSI, B, FAR, and POD scores for seven case studies at different physical
parameterization schemes (threshold ≥ 100 mm/day). (KF: Kain–Fritsch; BMJ: Betts–Miller–Janjic;
GD: Grell–Devenyi; WSM: WRF–Single–Moment.)

3.3. Evaluation of Precipitation Forecast with the Optimized Configuration

Based on the results of horizontal resolution and domain size sensitivity tests, we concluded
that the optimized configuration of the WRF model for the Xijiang Basin was the two domain
nested strategy, in which the outer domain was d01 with a horizontal resolution of 30 km while
the inner domain was d02 with a horizontal resolution of 10 km. Meanwhile, the Lin microphysics
parameterization scheme and the BMJ cumulus convective parameterization scheme was the best
configuration for physical parameterizations. In order to evaluate the performance of the optimized
configuration, the WRF model was integrated for 96 h and initialized daily from 1st June to 31st
August in 2013 and 2014, driven by GFS 1 degree forecast data and updated lateral boundary
condition every 6 h.

3.3.1. Evaluation of Grid Point Forecast

From the result of the correlation coefficient of 24 h total grid point precipitation between
prediction and observation, it was clear that the WRF model with optimized configuration performed
well (Figure 7).
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Figure 7. Study region maps showing the spatial distribution of correlation coefficient (R) in the
Xijiang Basin. (a) 24 h lead time; (b) 48 h lead time; (c) 72 h lead time; (d) 96 h lead time.

The R values of GJ and QLJ sub-basins were >0.7 at a lead time of 24 h. However, the results
showed significant regional variations, and the differences between north and south regions were
up to 0.4 when the lead time was 24 h. The R values for YJ and XUN sub-basins were <0.3.
The differences reduced with the extension of the forecast period, because the forecast accuracy in
the north region decreased, while the forecast accuracy in the south region remained the same.

The spatial distribution of CSI and bias scores at a threshold of 0.1 mm/day are shown in
Figures 8 and 9. The CSI score for the whole Xijiang Basin was >0.4 for all forecast periods,
confirming the accuracy of the optimized configuration. However, the highest CSI score was located
in the eastern Xijiang River Basin, which differs with the results of R. Bias was >1.0 for almost all
locations and forecast periods, meaning that the forecast precipitation area was greater than that of
the observed data. BPJ and the northern YJ sub-basins showed the greatest biases when compared
with other sub-basins, and the bias scores reached a value of 1.5.

Figure 8. Study region maps showing the spatial distribution of CSI score (≥0.1 mm/day) in the
Xijiang Basin. (a) 24 h lead time; (b) 48 h lead time; (c) 72 h lead time; (d) 96 h lead time.
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Figure 9. Study region maps showing the spatial distribution of Bias (≥0.1 mm/day) in the Xijiang
Basin. (a) 24 h lead time; (b) 48 h lead time; (c) 72 h lead time; (d) 96 h lead time.

In order to have a more reasonable evaluation of precipitation forecasts over Xijiang Basin,
the percentiles of the climatological distribution of observed 24 h precipitation was taken into
consideration. However, it was difficult to determine a fixed rainfall amount for all the gridpoints,
due to the lack of observations for such a long period. We finally decided to utilize a threshold
of 20 mm/day as the 90th percentile daily precipitation based on the results from Wu et al. [34].
The CSI and Bias scores at a threshold of 20 mm/day were shown in Figures 10 and 11.

It was obvious that the CSI score at a threshold of 20 mm/day was much lower than that of
0.1 mm/day. When the lead time was 24 h, the CSI score reached a value of above 0.5 in NPJ,
HSH, QLJ and GJ sub-basins. However, the forecast skill decreased significantly as the extension
of forecast periods, especially in the QLJ sub-basin. Large biases were observed in NPJ, YJ, XUN, and
XIJ sub-basins, where the bias scores were greater than 1.9. Meanwhile, the HSH sub-basin showed
slight biases for all forecast periods.

Figure 10. Study region maps showing the spatial distribution of CSI score (≥20 mm/day) in the
Xijiang Basin. (a) 24 h lead time; (b) 48 h lead time; (c) 72 h lead time; (d) 96 h lead time.
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Figure 11. Study region maps showing the spatial distribution of Bias (≥20 mm/day) in the
Xijiang Basin. (a) 24 h lead time; (b) 48 h lead time; (c) 72 h lead time; (d) 96 h lead time.

Figure 12. Mean relative error (MRE) of areal average forecast (yellow bars = 0–24 h;
blue bars = 24–48 h; green bars = 48–72 h; red bars = 72–96 h) precipitation ((a) 0–10 mm; (b) 10–20 mm;
(c) > 20 mm) for each sub-basin (BPJ = Beipanjiang; NPJ = Nanpanjiang; QLJ = Qianjiang–Liujiang;
YJ = Yujiang; GJ = Guijiang; XUN = Xunjiang; XIJ = Xijiang).
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3.3.2. Evaluation of Average Precipitation Forecast

The observed mean precipitation of each sub-basin was calculated and divided into three classes
of rainfall amount: 0–10 mm/day, 10–20 mm/day, and >20 mm/day, based on the analysis of
percentiles in previous sections.

For the MRE results (Figure 12), the WRF model showed remarkable differences among different
sub-basins. When the observed average precipitation was lower than 10 mm/day, the MRE values of
most sub-basins were higher than 100%, which indicated that a wet bias existed for most sub-basins.
The MRE value decreased as the observed mean precipitation increased. The MRE values were
between −50% and 150% for all sub-basins when the observed precipitation was between 10 and
20 mm/day, and the value of HSH sub-basin was lowest when compared with other sub-basins.
A dry bias was observed for most sub-basins when the area average precipitation was beyond
20 mm/day. However, the values of mean relative error, which were between −70% and 50% for
most sub-basins, were relatively low when compared with the other two classes of rainfall amount.

3.4. Discussion

Higher horizontal resolution may provide a more detailed description of rainbands, and always
leads to higher precipitation intensity, and is capable of resolving mesoscale weather systems (the
main factor in precipitation generation). A lot of studies have studied the causes of extreme
precipitation for case 5, and pointed out the mesocale low altitude jet flow and the orographic lift
effects contribute most to the generation of precipitation in the QLJ sub-basin [35,36]. Although the
rainstorm centers located in the GJ and HSH sub-basins are well captured at any horizontal resolution,
the rainstorm center over the QLJ sub-basin is missed unless the horizontal resolution is increased to
10 km. However, the improvement of forecast accuracy by increasing the horizontal resolution is
limited; such a result is similar to those of Bresch et al. [37] and Gallus [38]. The appearance
of discontinuous rainbands and the intensity of forecast precipitation far exceed the observation
when the grid resolution is beyond 10 km, which indicates that high horizontal resolution may
explicitly resolve mesoscale features. However, this may not be true because the spatial resolution
of observed data does not allow a proper term of verification when the detailed forecast rainfall field
at a grid spacing lower than 25 km. Further investigations are needed to improve the verification of
precipitation forecasts at a resolution higher than 10 km.

The selection of physical parameterization schemes used by the model simulations is the
most important factor, because microphysics and convective parameterization directly influence
the generation of precipitation. The main differences of microphysics schemes are shown in
Table 5. Among these seven microphysics schemes, the Lin, Ferrier, WSM6, and Thompson
scheme take both the ice phase transformation and mixed-phase clouds transformation into
consideration. However, the forecast skills of these schemes are not always higher than others,
which indicates that microphysics schemes must coordinate with other parameterization schemes
to give a better description of the microphysical processes. The Kain–Fritsch convective scheme is
developed from the Fritsch–Chappell scheme, which considered both the downdrafts and convective
available potential energy (CAPE). However, the deep convection processes—which are also of great
importance to the Xijiang Basin—are not well described in the KF scheme. The BMJ scheme takes both
the shallow and deep convection processes into consideration, and a modified moist-adiabatic profile
is used as the convective adjustment reference profile. This may contribute to the higher forecast
skill of the BMJ scheme when the Lin microphysics scheme is used. The GD ensemble scheme runs
various cumulus trigger schemes for each grid, and the results are averaged to the model. Although
this treatment takes the uncertainties of convective processes into account, the deep convection may
play a more important role in the generation of precipitation over the Xijiang Basin.
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Table 5. Differences in microphysics schemes.

Microphysics Scheme Ice Phase Transformation Phase Transformation of Mixed-Phase Clouds

Kessler NO NO
Lin YES YES

WSM3 YES NO
WSM5 YES NO
Ferrier YES YES
WSM6 YES YES

Thompson YES YES

The results of 2013–2014 simulations using the optimized configuration indicate that the
optimized configuration of the WRF model is capable of forecasting precipitation over complex
topography, and spatial distribution of the CSI scores are similar to the climatological distribution of
flood season precipitation shown in Figure 13. Forecast accuracy varies among different sub-basins,
and the WRF model always shows higher forecast accuracy in QLJ, HSH, and BPJ sub-basins, where
the climatological precipitation is between 500 and 800 mm. Biases exist for the western NPJ sub-basin
and the northern XIJ sub-basin, which indicate that the WRF model at a horizontal resolution of
10 km may have overestimated the convection processes in these areas. The precipitation forecast
skill at the southern YJ sub-basin is always lowest when compared with other sub-basins, while the
climatological precipitation is highest, with a value of above 1000 mm. A higher horizontal resolution
of the WRF model may be needed for this area to resolve mesoscale convective system (MCS) at
small scales.

Figure 13. Mean precipitation from 1st June to 31st August for the 1980–2010 period.

4. Conclusions

In this study, the influence of horizontal resolution, domain size, and physical parameterization
scheme on WRF simulation results was analyzed using precipitation forecasts for the Xijiang Basin,
southern China. On the basis of the results, it was found that increasing the horizontal resolution
always led to a better description of precipitation field. However, the forecast skills are not always
increased as the resolution is increased. Given that the horizontal resolution of the initial and lateral
boundary condition is 1◦ × 1◦, the most appropriate domain configuration is the inner domain d02
with a horizontal resolution of 10 km, while the outer domain is d01 with a horizontal resolution
of 30 km. In addition, microphysics parameterization schemes and convective parameterization
schemes are the most important consideration for precipitation forecasting. The performance of
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the WRF model improves when the Lin microphysics and the BMJ convective parameterization
schemes are used. The evaluation of precipitation forecasts from 1st June to 31st August in 2013 and
2014 have proved that the sensitivity tests are effective for building a proper dynamic downscaling
configuration for the Xijiang Basin.

Fuzzy verification—which takes the uncertainties in the observations into account—is suitable
for discontinuous fields like precipitation [39]. This method would be used in the future to improve
the verification process of WRF over the selected study area. In addition, further studies to improve
the forecasting accuracy of heavy rains are needed. It should be noted that the performance of
the WRF model varies from different sub-basins due to the complexity of the mesoscale convective
system (MCS) over this region. The horizontal resolution may need to be improved to give a more
accurate description of MCS in the southern YJ sub-basin. Furthermore, increased attention should
be paid to improving the physical parameterizations. In this study, only the influence of different
schemes on precipitation simulation was considered. Issues such as downdraft, entrainment-related
parameters, and the consumption time of Convective Available Potential Energy (CAPE) should be
calibrated to make a more realistic representation of the MCS. However, the modification of these
issues must be coordinated with the weather system, which requires a lot of work, and has not
been taken into consideration in this paper. The investigation of these issues should be the focus
of future studies.
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