The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Processing Method
2.2.1. Correlation Analysis
2.2.2. Spatial Autocorrelation Analysis
2.2.3. High–Low Cluster Analysis and Cold–Hot Spot Analysis
2.2.4. Time Series Data Processing Method
3. Results
3.1. Spatial Distribution of XCH4
3.2. Temporal Variation of CH4 in China
3.3. Anomaly of CH4 and Its Significance
3.3.1. Mining Operations
3.3.2. Landfill
3.3.3. Rice Producing Area
3.3.4. Geological Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, Y.; Li, X.M.; Yan, H.B.; Kuang, S.Y. China’s efforts to peak carbon emissions: Targets and practice. Chin. J. Urban Environ. Stud. 2021, 9, 2150004. [Google Scholar] [CrossRef]
- Supharatid, S. Assessment of cmip3-cmip5 climate models precipitation projection and implication of flood vulnerability of Bangkok. Am. J. Clim. Chang. 2015, 4, 140–162. [Google Scholar] [CrossRef]
- Ma, X.; Shi, T.; Xu, H.; He, B.; Qiu, R.; Han, G.; Gong, W. On-line wavenumber optimization for a ground-based CH4-dial. J. Quant. Spectrosc. Radiat. Transf. 2019, 229, 106–119. [Google Scholar] [CrossRef]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Fernandez-Amador, O.; Oberdabernig, D.A.; Tomberger, P. Do methane emissions converge? Evidence from global panel data on production- and consumption-based emissions. Empir. Econ. 2021. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Zhang, M.; Pei, Z.; Xu, H.; Qiu, R.; Zhang, H.; Gong, W. An inversion method for estimating strong point carbon dioxide emissions using a differential absorption lidar. J. Clean. Prod. 2020, 271, 122434. [Google Scholar] [CrossRef]
- Solarin, S.A.; Gil-Alana, L.A. Persistence of methane emission in oecd countries for 1750–2014: A fractional integration approach. Environ. Model. Assess. 2021, 26, 497–509. [Google Scholar] [CrossRef]
- Shi, T.Q.; Han, G.; Ma, X.; Gong, W.; Chen, W.B.A.; Liu, J.Q.; Zhang, X.Y.; Pei, Z.P.; Gou, H.L.; Bu, L.B. Quantifying CO2 uptakes over oceans using lidar: A tentative experiment in bohai bay. Geophys. Res. Lett. 2021, 48, e2020GL091160. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhang, L.F.; Wu, T.X.; Duan, Y.N.; Cen, Y.; IEEE. Analysis on the spatial-temporal variations of methane over China using sciamachy data. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013; pp. 1786–1789. [Google Scholar]
- Zhang, X.; Jiang, H.; Lu, X.; Cheng, M.; Zhang, X.; Li, X.; Zhang, L. Estimate of methane release from temperate natural wetlands using ENVISAT/SCIAMACHY data in China. Atmos. Environ. 2013, 69, 191–197. [Google Scholar] [CrossRef]
- Dils, B.; De Maziere, M.; Mueller, J.F.; Blumenstock, T.; Buchwitz, M.; de Beek, R.; Demoulin, P.; Duchatelet, P.; Fast, H.; Frankenberg, C.; et al. Comparisons between SCIAMACHY and ground-based ftir data for total columns of CO, CH4, CO2 and N2O. Atmos. Chem. Phys. 2006, 6, 1953–1976. [Google Scholar] [CrossRef] [Green Version]
- Bergamaschi, P.; Frankenberg, C.; Meirink, J.F.; Krol, M.; Villani, M.G.; Houweling, S.; Dentener, F.; Dlugokencky, E.J.; Miller, J.B.; Gatti, L.V.; et al. Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Cressot, C.; Chevallier, F.; Bousquet, P.; Crevoisier, C.; Dlugokencky, E.J.; Fortems-Cheiney, A.; Frankenberg, C.; Parker, R.; Pison, I.; Scheepmaker, R.A.; et al. On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmos. Chem. Phys. 2014, 14, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xie, P.; Xu, J.; Li, A.; Sun, Y. Observation of CO2 regional distribution using an airborne infrared remote sensing spectrometer (air-irss) in the north China plain. Remote Sens. 2019, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.D.; Zhang, X.Y.; Chuai, X.W.; Huang, X.J.; Wang, Z. Long-term trends of atmospheric CH4 concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Karppinen, T.; Lamminpaa, O.; Tukiainen, S.; Kivi, R.; Heikkinen, P.; Hatakka, J.; Laine, M.; Chen, H.; Lindqvist, H.; Tamminen, J. Vertical distribution of arctic methane in 2009–2018 using ground-based remote sensing. Remote Sens. 2020, 12, 917. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Miyamoto, Y.; Morino, I.; Machida, T.; Nagahama, T.; Sawa, Y.; Matsueda, H.; Wunch, D.; Kawakami, S.; Uchino, O. Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution fourier transform spectrometers and a comparison to gosat data measured over Tsukuba and Moshiri. Atmos. Meas. Tech. 2012, 5, 2003–2012. [Google Scholar] [CrossRef] [Green Version]
- Ohyama, H.; Kawakami, S.; Tanaka, T.; Morino, I.; Uchino, O.; Inoue, M.; Sakai, T.; Nagai, T.; Yamazaki, A.; Uchiyama, A.; et al. Observations of xco2 and XCH4 with ground-based high-resolution FTS at Saga, Japan, and comparisons with GOSAT products. Atmos. Meas. Tech. 2015, 8, 5263–5276. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Liu, B.; Gong, W.; Shi, L.; Zhang, Y.; Ma, Y.; Zhang, J.; Chen, T.; Bai, K.; Stoffelen, A.; et al. Technical note: First comparison of wind observations from ESA’s satellite mission aeolus and ground-based radar wind profiler network of China. Atmos. Chem. Phys. 2021, 21, 2945–2958. [Google Scholar] [CrossRef]
- Wecht, K.J.; Jacob, D.J.; Sulprizio, M.P.; Santoni, G.W.; Wofsy, S.C.; Parker, R.; Boesch, H.; Worden, J. Spatially resolving methane emissions in California: Constraints from the calnex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, GEOSTATIONARY) satellite observations. Atmos. Chem. Phys. 2014, 14, 8173–8184. [Google Scholar] [CrossRef] [Green Version]
- Sheng, J.-X.; Jacob, D.J.; Maasakkers, J.D.; Zhang, Y.; Sulprizio, M.P. Comparative analysis of low-earth orbit (TROPOMI) and Geostationary (GEOCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: Application to the southeast USA. Atmos. Meas. Tech. 2018, 11, 6379–6388. [Google Scholar] [CrossRef] [Green Version]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; de Brugh, J.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.W.T.; Hase, F.; et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef] [Green Version]
- Magro, C.; Nunes, L.; Goncalves, O.C.; Neng, N.R.; Nogueira, J.M.F.; Rego, F.C.; Vieira, P. Atmospheric trends of CO and CH4 from extreme wildfires in portugal using Sentinel-5p TROPOMI level-2 data. Fire 2021, 4, 25. [Google Scholar] [CrossRef]
- Galli, A.; Butz, A.; Scheepmaker, R.A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Wunch, D.; Deutscher, N.M.; Toon, G.C.; Wennberg, P.O.; et al. CH4, CO, and H2O spectroscopy for the Sentinel-5 precursor mission: An assessment with the total carbon column observing network measurements. Atmos. Meas. Tech. 2012, 5, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Cherepanova, E.V.; Feoktistova, N.V.; Chudakova, M.A. Analysis of methane concentration anomalies over burned areas of the boreal and arctic zone of eastern Siberia in 2018–2019 using TROPOMI data. Izv. Atmos. Ocean. Phys. 2020, 56, 1470–1481. [Google Scholar] [CrossRef]
- Qu, Z.; Jacob, D.; Shen, L.; Lu, X.; Zhang, Y.; Scarpelli, T.; Nesser, H.; Sulprizio, M.; Maasakkers, J.; Bloom, A.; et al. Global distribution of methane emissions: A comparative inverse analysis of observations from the tropomi and gosat satellite instruments. Atmos. Chem. Phys. 2021, 21, 14159–14175. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Jacob, D.J.; Sheng, J.X.; Benmergui, J.; Turner, A.J.; Brandman, J.; White, L.; Randles, C.A. Detecting high-emitting methane sources in oil/gas fields using satellite observations. Atmos. Chem. Phys. 2018, 18, 16885–16896. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; He, J.; Miao, Z.; Du, L. Space-time linear mixed-effects (stlme) model for mapping hourly fine particulate loadings in the Beijing-Tianjin-Hebei region, China. J. Clean. Prod. 2021, 292, 125993. [Google Scholar] [CrossRef]
- Pei, Z.P.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Gong, S.; Shi, Y. Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China. Sci. Total Environ. 2021, 784, 147116. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, S.; Zhang, Y.; Shi, S.; Du, L. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the prospect-d model. Opt. Express 2021, 29, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Commission, E.; Centre, J.R.; Olivier, J.; Guizzardi, D.; Schaaf, E.; Solazzo, E.; Crippa, M.; Vignati, E.; Banja, M.; Muntean, M.; et al. Ghg Emissions of All World: 2021 Report; Publications Office of the Eurpoean Union: Luxembourg, 2021. [Google Scholar]
- Hayashida, S.; Ono, A.; Yoshizaki, S.; Frankenberg, C.; Takeuchi, W.; Yan, X. Methane concentrations over monsoon asia as observed by SCIAMACHY: Signals of methane emission from rice cultivation. Remote Sens. Environ. 2013, 139, 246–256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Han, G.; Mao, H.; Pei, Z.; Ma, X.; Jia, W.; Gong, W. The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI. Atmosphere 2022, 13, 177. https://doi.org/10.3390/atmos13020177
Zhang J, Han G, Mao H, Pei Z, Ma X, Jia W, Gong W. The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI. Atmosphere. 2022; 13(2):177. https://doi.org/10.3390/atmos13020177
Chicago/Turabian StyleZhang, Jiaxing, Ge Han, Huiqin Mao, Zhipeng Pei, Xin Ma, Weijie Jia, and Wei Gong. 2022. "The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI" Atmosphere 13, no. 2: 177. https://doi.org/10.3390/atmos13020177
APA StyleZhang, J., Han, G., Mao, H., Pei, Z., Ma, X., Jia, W., & Gong, W. (2022). The Spatial and Temporal Distribution Patterns of XCH4 in China: New Observations from TROPOMI. Atmosphere, 13(2), 177. https://doi.org/10.3390/atmos13020177