Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique
Abstract
:1. Introduction
2. Data and Methods
2.1. Site Description
2.2. Data Sources
2.2.1. Measurements of NH3
2.2.2. Other Supporting Data
2.2.3. Burn Event
2.3. RF Models
3. Results and Discussion
3.1. Changes in Observed Concentrations of NH3
3.2. Changes in Predicted Concentrations of NH3
3.3. Dominant Source of NH3 during the Burn Event
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D.K. Atmospheric nitrogen deposition to the northwestern Pacific: Seasonal variation and source attribution. Atmos. Chem. Phys. 2015, 15, 10905–10924. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Xu, W.; Li, Q.; Han, M.; Tang, A.; Zhang, Y.; Luo, X.; Shen, J.; Wang, W.; Li, K.; et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 2020, 144, 106022. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Zhang, Q.; Zheng, B.; Michalski, G.; Wang, Y. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environ. Sci. Technol. 2016, 50, 8049–8056. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, S.; Xing, J.; Zhang, X.; Wang, T.; Hao, J. Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOx emissions reduction in east China. Environ. Sci. Technol. Lett. 2017, 4, 221–227. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Dan, M.; Zhang, S.; Zhang, X.; Pan, Y. Typical atmospheric haze during crop harvest season in northeastern China: A case in the Changchun region. J. Environ. Sci. 2017, 54, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Wang, Y.; Wang, L.; Tang, G.; Sun, Y.; Pan, Y.; Ji, D. Reductions of PM2.5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Adv. Atmos. Sci. 2012, 29, 1330–1342. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Zhang, Y.; Sun, K.; Wu, Y.; Xue, R.; Zeng, L.; Qu, Y.; An, J. Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China. J. Environ. Sci. 2018, 63, 236–249. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Tian, Y.; Wu, Y.; Wang, M.; Wang, X.; Wang, Z.; Hu, Y. Association between ambient fine particulate matter and adult hospital admissions for pneumonia in Beijing, China. Atmos. Environ. 2020, 231, 117497. [Google Scholar] [CrossRef]
- Zhu, L.; Henze, D.K.; Bash, J.O.; Cady-Pereira, K.E.; Shephard, M.W.; Luo, M.; Capps, S.L. Sources and impacts of atmospheric NH3: Current understanding and frontiers for modeling, measurements, and remote sensing in North America. Curr. Pollut. Rep. 2015, 1, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Felix, J.D.; Elliott, E.M.; Gay, D.A. Spatial and temporal patterns of nitrogen isotopic composition of ammonia at U.S. ammonia monitoring network sites. Atmos. Environ. 2017, 150, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Huang, X.; Song, Y.; Tang, J.; Cao, J.; Zhang, X.; Zhang, Q.; Wang, S.; Xu, T.; Kang, L.; et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA 2019, 116, 7760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Gu, M.; He, Y.; Wu, D.; Liu, C.; Song, L.; Tian, S.; Lü, X.; Sun, Y.; Song, T.; et al. Revisiting the concentration observations and source apportionment of atmospheric ammonia. Adv. Atmos. Sci. 2020, 37, 933–938. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Pan, Y.; Wu, H.; Wu, L.; Wu, Q.; He, Y.; Tian, S.; et al. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble kalman filter. Environ. Sci. Technol. 2019, 53, 12529–12538. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, M.; Song, Y.; Huang, X.; Yao, H.; Cai, X.; Zhang, H.; Kang, L.; Liu, X.; Yan, X.; et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 2016, 16, 2043–2058. [Google Scholar] [CrossRef] [Green Version]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Whitburn, S.; Van Damme, M.; Clarisse, L.; Turquety, S.; Clerbaux, C.; Coheur, P.-F. Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophys. Res. Lett. 2016, 43, 11007–11014. [Google Scholar] [CrossRef]
- R’Honi, Y.; Clarisse, L.; Clerbaux, C.; Hurtmans, D.; Duflot, V.; Turquety, S.; Ngadi, Y.; Coheur, P.F. Exceptional emissions of NH3 and HCOOH in the 2010 Russian wildfires. Atmos. Chem. Phys. 2013, 13, 4171–4181. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Gao, M.; Gao, J.; Michalski, G.; Wang, Y. Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere. Environ. Pollut. 2018, 238, 942–947. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Liu, D.; Fang, Y.; Zhu, X.; Gao, M.; Wentworth, G.R.; Michalski, G.; Huang, X.; Wang, Y. Source apportionment of aerosol ammonium in an ammonia-rich atmosphere: An isotopic study of summer clean and hazy days in urban Beijing. J. Geophys. Res. 2018, 123, 5681–5689. [Google Scholar] [CrossRef]
- Gu, M.; Pan, Y.; Walters, W.W.; Sun, Q.; Song, L.; Wang, Y.; Xue, Y.; Fang, Y. Vehicular emissions enhanced ammonia concentrations in winter mornings: Insights from diurnal nitrogen isotopic signatures. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Meng, W.; Zhong, Q.; Yun, X.; Zhu, X.; Huang, T.; Shen, H.; Chen, Y.; Chen, H.; Zhou, F.; Liu, J.; et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with mew data from the residential and transportation sectors. Environ. Sci. Technol. 2017, 51, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhu, Z.; Bu, R.; Li, Y.; Hu, Y. Environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987–2007) in China. For. Ecol. Manag. 2015, 356, 13–21. [Google Scholar] [CrossRef]
- Xiong, Q.; Luo, X.; Liang, P.; Xiao, Y.; Xiao, Q.; Sun, H.; Pan, K.; Wang, L.; Li, L.; Pang, X. Fire from policy, human interventions, or biophysical factors? Temporal–spatial patterns of forest fire in southwestern China. For. Ecol. Manag. 2020, 474, 118381. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Liu, X.; Reis, S.; Jin, J.; Dragosits, U.; Van Damme, M.; Clarisse, L.; Whitburn, S.; Coheur, P.-F.; et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 2017, 51, 12089–12096. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, Q.; et al. Identifying ammonia hotspots in China using a national observation network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lei, L.; Zhou, W.; Chen, C.; He, Y.; Sun, J.; Li, Z.; Xu, W.; Wang, Q.; Ji, D.; et al. A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Sci. Total Environ. 2020, 742, 140739. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Y.; Ren, L.; Wang, W.; Tao, J.; Gao, Y.; Li, G.; Yang, X.; Han, Z.; Zhang, R. Variation in PM2.5 sources in central North China Plain during 2017–2019: Response to mitigation strategies. J. Environ. Manag. 2021, 288, 112370. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.Q.; He, K.; Zhang, Q.; Chai, L. Sulfate-nitrate-ammonium aerosols over China: Response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 2013, 13, 2635–2652. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, M.; Zhang, M.; Song, Y.; Wang, S.; Zhang, L.; Xu, T.; Wang, T.; Yan, C.; Zhou, T.; et al. High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmos. Chem. Phys. 2019, 19, 5605–5613. [Google Scholar] [CrossRef]
- Berden, G.; Peeters, R.; Meijer, G. Cavity ring-down spectroscopy: Experimental schemes and applications. Int. Rev. Phys. Chem. 2000, 19, 565–607. [Google Scholar] [CrossRef]
- von Bobrutzki, K.; Braban, C.F.; Famulari, D.; Jones, S.K.; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Tech. 2010, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.A.; Ferracci, V.; Cassidy, N.; Hoffnagle, J.A. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures. Appl. Phys. B 2016, 122, 219. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Pan, Y.; Zhang, G.; Ji, D.; Tian, S.; Xu, X.; Zhang, R.; Wang, Y. Tracking ammonia morning peak, sources and transport with 1 Hz measurements at a rural site in North China Plain. Atmos. Environ. 2020, 235, 117630. [Google Scholar] [CrossRef]
- Jia, Y.; Rahn, K.A.; He, K.; Wen, T.; Wang, Y. A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles. J. Geophys. Res. 2008, 113, D21309. [Google Scholar] [CrossRef] [Green Version]
- Pu, W.; Ma, Z.; Collett, J.L., Jr.; Guo, H.; Lin, W.; Cheng, Y.; Quan, W.; Li, Y.; Dong, F.; He, D. Regional transport and urban emissions are important ammonia contributors in Beijing, China. Environ. Pollut. 2020, 265, 115062. [Google Scholar] [CrossRef] [PubMed]
- Saraswati; Sharma, S.K.; Mandal, T.K. Five-year measurements of ambient ammonia and its relationships with other trace gases at an urban site of Delhi, India. Meteorol. Atmos. Phys. 2018, 130, 241–257. [Google Scholar] [CrossRef]
- Backes, A.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part I: Development of a dynamical ammonia emission inventory. Atmos. Environ. 2016, 131, 55–66. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Pan, Y.; Gu, M.; Sun, Q.; Zhang, Q.; Zhang, R.; Wang, Y. Changes of ammonia concentrations in wintertime on the North China Plain from 2018 to 2020. Atmos. Res. 2021, 253, 105490. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Han, H.; Zhao, T.; Zhang, X.; Zhuang, B.; Wang, T.; Chen, H.; Wu, Y.; Li, M. Collective impacts of biomass burning and synoptic weather on surface PM2.5 and CO in Northeast China. Atmos. Environ. 2019, 213, 64–80. [Google Scholar] [CrossRef]
- Whitburn, S.; Van Damme, M.; Clarisse, L.; Hurtmans, D.; Clerbaux, C.; Coheur, P.F. IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions. Atmos. Chem. Phys. 2017, 17, 12239–12252. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Walters, W.W.; Pan, Y.; Li, Z.; Gu, M.; Duan, Y.; Lü, X.; Fang, Y. 15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques. Atmos. Environ. 2021, 255, 118430. [Google Scholar] [CrossRef]
- Hegg, D.A.; Radke, L.F.; Hobbs, P.V.; Riggan, P.J. Ammonia emissions from biomass burning. Geophys. Res. Lett. 1988, 15, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Yokelson, R.J.; Crounse, J.D.; DeCarlo, P.F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A.D.; et al. Emissions from biomass burning in the Yucatan. Atmos. Chem. Phys. 2009, 9, 5785–5812. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.K.; Craven, J.S.; Taylor, J.W.; McMeeking, G.R.; Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Wold, C.E.; Seinfeld, J.H.; Coe, H.; et al. Evolution of trace gases and particles emitted by a chaparral fire in California. Atmos. Chem. Phys. 2012, 12, 1397–1421. [Google Scholar] [CrossRef] [Green Version]
- Benedict, K.B.; Prenni, A.J.; Carrico, C.M.; Sullivan, A.P.; Schichtel, B.A.; Collett, J.L. Enhanced concentrations of reactive nitrogen species in wildfire smoke. Atmos. Environ. 2017, 148, 8–15. [Google Scholar] [CrossRef]
- Baker, K.; Koplitz, S.; Foley, K.; Avey, L.; Hawkins, A. Characterizing grassland fire activity in the Flint Hills region and air quality using satellite and routine surface monitor data. Sci. Total Environ. 2019, 659, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Lindaas, J.; Pollack, I.B.; Calahorrano, J.J.; O’Dell, K.; Garofalo, L.A.; Pothier, M.A.; Farmer, D.K.; Kreidenweis, S.M.; Campos, T.; Flocke, F.; et al. Empirical insights into the fate of ammonia in western U.S. Wildfire smoke plumes. J. Geophys. Res. 2021, 126, e2020JD033730. [Google Scholar] [CrossRef]
Codes | Prediction Variables | Units |
---|---|---|
Meteorological parameters | ||
T | Air Temperature | °C |
WS | Wind speed | m/s |
WD | Wind direction | degree |
Pressure | Atmospheric pressure | hPa |
RH | Relative humidity | % |
Time parameters | ||
day_Julian | Date of the year (1–366) | n/a |
weekday | Day of the week (1–7) | n/a |
hour | Hour of the day (0–23) | n/a |
Air pollutants | ||
PM2.5 | Particulate matter | μg/m3 |
NOx | Nitrogen oxides | μg/m3 |
NO2 | Nitrogen dioxide | μg/m3 |
SO2 | Sulfur dioxide | μg/m3 |
CO | Carbon monoxide | ppb |
NO | Nitrogen monoxide | μg/m3 |
Regional transport parameter | ||
cluster | Back trajectory cluster | n/a |
Focus Region | Event | NH3 (ppb) | ER (ppb/ppb) | Reference | |
---|---|---|---|---|---|
Range | Average | ||||
Xianghe, China | Biomass burning | 2.4–601.4 | 145.6 ± 139.9 | 0.016 | this study |
Shenyang, China | Vehicular exhaust | 61.8–248.3 | 152.9 ± 55.6 | – | [43] |
Canada and U.S. | Forest fire | 7–130 | – | 0.012 | [44] |
Yucatan, Mexico | Biomass burning | – | – | 0.022 | [45] |
California, U.S. | Biomass burning | – | – | 0.019 | [46] |
Colorado, U.S. | Wildfires | <150 | – | 0.027 | [47] |
the Flint Hills, U.S. | Grassland fire | – | 95 | – | [48] |
Western U.S. | Wildfires | >400 | – | – | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Liao, T.; Lü, Y.; Wang, Y.; He, Y.; Shen, W.; Yang, X.; Ji, D.; Pan, Y. Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere 2022, 13, 170. https://doi.org/10.3390/atmos13020170
Hu J, Liao T, Lü Y, Wang Y, He Y, Shen W, Yang X, Ji D, Pan Y. Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere. 2022; 13(2):170. https://doi.org/10.3390/atmos13020170
Chicago/Turabian StyleHu, Jiabao, Tingting Liao, Yixuan Lü, Yanjun Wang, Yuexin He, Weishou Shen, Xianyu Yang, Dongsheng Ji, and Yuepeng Pan. 2022. "Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique" Atmosphere 13, no. 2: 170. https://doi.org/10.3390/atmos13020170
APA StyleHu, J., Liao, T., Lü, Y., Wang, Y., He, Y., Shen, W., Yang, X., Ji, D., & Pan, Y. (2022). Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere, 13(2), 170. https://doi.org/10.3390/atmos13020170